research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of caesium di­hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu HI, USA, and bIllinois Institute of Technology, Chicago IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 2 January 2017; accepted 4 January 2017; online 10 January 2017)

The crystal structure of caesium di­hydrogen citrate, Cs+·H2C6H5O7, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The coordination polyhedra of the nine-coordinate Cs+ cations share edges to form chains along the a-axis. These chains are linked by corners along the c-axis. The un-ionized carb­oxy­lic acid groups form two different types of hydrogen bonds; one forms a helical chain along the c-axis, and the other is discrete. The hy­droxy group participates in both intra- and inter­molecular hydrogen bonds.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2017a[Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B.]). Ten of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7(H2O), Rb3C6H5O7, and Na5H(C6H5O7)2 – have been published recently (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170-173.],b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403-406.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793-796.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854-857.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159-1162.], 2017b[Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92-95.],c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.],d[Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250-253.],e[Rammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286-290.]; Rammohan et al., 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]), and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the CSD (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457-1446458.],b[Kaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460-1446461.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the Rietveld-refined and DFT-optimized structures is 0.387 Å (Fig. 2[link]). This agreement is at the upper end of the range of correct structures as discussed by van de Streek & Neumann (2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). Re-starting the Rietveld refinement from the DFT-optimized structure led to higher residuals (Rwp = 0.1287 and χ2 = 26.43). Accurate determination of the positions of C and O atoms in the presence of the heavy Cs atoms using X-ray powder data might be expected to be difficult. This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), but the torsion angles involving the central carboxyl­ate and hydroxyl group are flagged as unusual; the central portion of the mol­ecule is less-planar than usual. In the refined structure, the O8—C1 and O10—C6 bonds, as well as the C3—C2—C1 angle, were flagged as unusual. The citrate anion occurs in the trans,trans conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxyl­ate O10 and the terminal carboxyl­ate O12 atoms chelate to the Cs+cation. The Mulliken overlap populations and atomic charges indicate that the metal-oxygen bonding is ionic.

[Figure 1]
Figure 1
The asymmetric unit, with the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of caesium di­hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect a platy morphology for cesium di­hydrogen citrate, with {020} as the principal faces. A 4th-order spherical harmonic texture model was included in the refinement. The texture index was 1.183, indicating that preferred orientation was significant for this rotated flat-plate specimen.

3. Supra­molecular features

The nine-coordinate Cs+ cation (bond-valence sum 0.96) share edges to form chains along the a axis (Fig. 3[link]). These chains are linked by corners along the c axis. The O7—H20⋯O8 hydrogen bonds (Table 1[link]) form a helical chain along the c axis, and the O11—H21⋯O10 hydrogen bonds are discrete. The Mulliken overlap populations in these hydrogen bonds are 0.064 and 0.095 e, respectively. By the correlation in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B.]), these hydrogen bonds contribute 13.8 and 16.8 kcal mol−1 to the crystal energy. The hy­droxy group O13—H16 acts as a donor in two hydrogen bonds. The one to O10 is intra­molecular, with a graph-set symbol S(5). The one to O9 is inter­molecular, with a graph set symbol S(7). These hydrogen bonds are weaker, contributing 11.2 and 9.1 kcal mol−1 to the crystal energy.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H21⋯O10i 1.028 1.575 2.600 174.4
O7—H20⋯O8ii 0.996 1.674 2.637 161.7
O13—H16⋯O9iii 0.979 1.985 2.865 148.4
O13—H16⋯O10 0.979 2.149 2.691 113.3
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x, -y, z+{\script{1\over 2}}]; (iii) x, y, z+1.
[Figure 3]
Figure 3
Crystal structure of CsH2C6H5O7, viewed down the c-axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B.]). A reduced-cell search of the cell of cesium di­hydrogen citrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 60 hits, but combining the cell search with the elements C, H, Cs, and O only yielded no hits.

5. Synthesis and crystallization

H3C6H5O7(H2O) (2.0766 g, 10.0 mmol) was dissolved in 10 ml deionized water. Cs2CO3 (1.6508 g, 5.0 mmol, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. A white precipitate formed in about two minutes, and the colourless solution was evaporated to dryness at ambient conditions.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The powder pattern (Fig. 4[link]) was indexed using DICVOL06 (Louer & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191-196.]) [M/F(18) = 64/117] on a primitive ortho­rhom­bic unit cell having a = 8.7362 (2), b = 20.5351 (2), c = 5.1682 (5) Å, V = 927.17 (9) Å3, and Z = 4. The peak list from a Le Bail fit in GSAS was imported into Endeavour 1.7b (Putz et al., 1999[Putz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864-870.]), and used for structure solution. The successful solution used a citrate, a Cs atom, and two oxygen atoms from water mol­ecules. Initial Rietveld refinements moved the oxygens close to the Cs site, so they were deleted from the refinement.

Table 2
Experimental details

  Powder data
Crystal data
Chemical formula Cs+·H2C6H5O7
Mr 323.97
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 300
a, b, c (Å) 8.7362 (2), 20.53510 (16), 5.1682 (5)
V3) 927.17 (9)
Z 4
Radiation type Kα1, Kα2, λ = 1.540629, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 24 × 24
 
Data collection
Diffractometer Bruker D2 Phaser
Specimen mounting Standard holder
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 5.042 2θmax = 70.050 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.068, Rwp = 0.089, Rexp = 0.026, R(F2) = 0.171, χ2 = 11.765
No. of parameters 57
No. of restraints 29
H-atom treatment Only H-atom displacement parameters refined
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC.Measurement. Bruker-AXS, Madison Wisconsin USA.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamond.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Rietveld plot for the refinement of CsH2C6H5O7. The vertical scale is not the raw counts but the counts multiplied by the least squares weights. This plot emphasizes the fit of the weaker peaks. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The row of black tick marks indicates the reflection positions.

Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied, and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The structure was refined by the Rietveld method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]).

All C—C and C—O bond lengths were restrained. The C—C bonds were restrained at 1.54 (1) Å, and the C3—O13 bond at 1.42 (2) Å. The C—O bonds in the carboxyl­ate groups were restrained at 1.26 (2) Å. All angles were also restrained; the restraints were 109 (3)° for the angles around tetra­hedral carbon atoms, and 120 (3)° for the angles in the planar carboxyl­ate groups. The restraints contributed 3.0% to the final χ2. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systèmes, 2014[Dassault Systèmes (2014). Materials Studio. BIOVIA, San Diego California, USA.]).

7. DFT calculations

A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Cs was that of Prencipe (1990[Prencipe, M. (1990). Laurea Thesis, 91-92.]). The calculation used 8 k-points and the B3LYP functional, and took about 59 h on a 2.4 GHz PC. Uiso were assigned to the optimized fractional coordinates based on the Uiso from the refined structure.

Supporting information


Computing details top

Data collection: DIFFRAC.Measurement (Bruker, 2009) for RAMM013_publ. Program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) for RAMM013_publ. Molecular graphics: DIAMOND (Crystal Impact, 2015) for RAMM013_publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for RAMM013_publ.

(RAMM013_publ) cesium dihydrogen citrate top
Crystal data top
Cs+·C6H7O7Z = 4
Mr = 323.97Dx = 2.321 Mg m3
Orthorhombic, Pna21Kα1, Kα2 radiation, λ = 1.540629, 1.544451 Å
Hall symbol: P 2c -2nT = 300 K
a = 8.7362 (2) Åwhite
b = 20.53510 (16) Åflat_sheet, 24 × 24 mm
c = 5.1682 (5) ÅSpecimen preparation: Prepared at 295 K
V = 927.17 (9) Å3
Data collection top
Bruker D2 Phaser
diffractometer
Scan method: step
Specimen mounting: standard holder2θmin = 5.042°, 2θmax = 70.050°, 2θstep = 0.020°
Data collection mode: reflection
Refinement top
Least-squares matrix: full57 parameters
Rp = 0.06829 restraints
Rwp = 0.089Only H-atom displacement parameters refined
Rexp = 0.026Weighting scheme based on measured s.u.'s
R(F2) = 0.17055(Δ/σ)max = 0.05
3217 data pointsBackground function: GSAS Background function number 1 with 6 terms. Shifted Chebyshev function of 1st kind 1: 1098.70 2: -707.295 3: 219.700 4: -87.7806 5: 41.2782 6: -44.6612
Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 1.718 #2(GV) = 0.000 #3(GW) = 4.751 #4(GP) = 0.000 #5(LX) = 2.847 #6(ptec) = 0.00 #7(trns) = 1.83 #8(shft) = 5.2787 #9(sfec) = 0.00 #10(S/L) = 0.0315 #11(H/L) = 0.0005 #12(eta) = 0.9000 #13(S400) = 1.7E-04 #14(S040) = 5.1E-06 #15(S004) = 1.4E-02 #16(S220) = -4.1E-05 #17(S202) = 5.1E-02 #18(S022) = 4.5E-04 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1876 (17)0.0459 (9)0.281 (8)0.065 (4)*
C20.347 (2)0.0446 (9)0.166 (6)0.009 (9)*
C30.4423 (18)0.0965 (6)0.304 (5)0.009 (9)*
C40.609 (2)0.0896 (10)0.212 (7)0.009 (9)*
C50.706 (2)0.1464 (9)0.317 (6)0.065 (4)*
C60.380 (3)0.1665 (7)0.241 (6)0.065 (4)*
O70.130 (2)0.0065 (11)0.333 (9)0.065 (4)*
O80.107 (2)0.0874 (9)0.223 (13)0.065 (4)*
O90.371 (5)0.1862 (12)0.010 (7)0.065 (4)*
O100.351 (4)0.2037 (12)0.418 (7)0.065 (4)*
O110.716 (3)0.1978 (11)0.185 (7)0.065 (4)*
O120.730 (3)0.1503 (12)0.552 (7)0.065 (4)*
O130.436 (3)0.0847 (9)0.577 (5)0.065 (4)*
H140.399110.005640.195840.012 (11)*
H150.340270.056030.049590.012 (11)*
H160.314960.118700.643200.085 (6)*
H170.658100.041630.285580.012 (11)*
H180.612120.090080.008500.012 (11)*
Cs190.0454 (3)0.20017 (14)0.75940.0505 (15)*
H200.069400.050970.568600.05*
H210.675280.243000.252400.05*
Geometric parameters (Å, º) top
C1—C21.509 (10)O9—Cs19ii3.07 (3)
C1—O71.218 (18)O10—C61.217 (19)
C1—O81.148 (17)O10—O92.15 (2)
C2—C11.509 (10)O10—Cs193.20 (4)
C2—C31.532 (10)O10—Cs19iii3.14 (4)
C3—C21.532 (10)O11—C51.260 (19)
C3—C41.537 (10)O11—O122.14 (3)
C3—C61.569 (9)O11—Cs19iv3.62 (3)
C3—O131.429 (11)O11—Cs19ii3.38 (3)
C4—C31.537 (10)O11—Cs19iii3.93 (3)
C4—C51.542 (10)O12—C51.24 (2)
C5—C41.542 (10)O12—O112.14 (3)
C5—O111.260 (19)O12—Cs19v3.13 (3)
C5—O121.24 (2)O12—Cs19iii3.63 (3)
C6—C31.569 (9)O13—C31.429 (11)
C6—O91.267 (19)Cs19—O83.65 (5)
C6—O101.217 (19)Cs19—O8vi3.37 (5)
O7—C11.218 (18)Cs19—O9vi3.14 (4)
O7—O82.02 (2)Cs19—O9vii3.07 (3)
O8—C11.148 (17)Cs19—O103.20 (4)
O8—O72.02 (2)Cs19—O10viii3.14 (4)
O8—Cs19i3.37 (5)Cs19—O11ix3.62 (3)
O8—Cs193.65 (5)Cs19—O11viii3.93 (3)
O9—C61.267 (19)Cs19—O11vii3.38 (3)
O9—O102.15 (2)Cs19—O12x3.13 (3)
O9—Cs19i3.14 (4)Cs19—O12viii3.63 (3)
C2—C1—O7116.8 (10)C5—O11—Cs19ii147.2 (15)
C2—C1—O8118.6 (10)C5—O12—Cs19v120.3 (19)
O7—C1—O8117.4 (10)C3—O13—H16114.5 (15)
C1—C2—C3107.9 (8)O8vi—Cs19—O9vi60.0 (7)
C2—C3—C4108.0 (8)O8vi—Cs19—O9vii107.5 (11)
C2—C3—C6110.6 (8)O8vi—Cs19—O10106.0 (7)
C2—C3—O13108.6 (9)O8vi—Cs19—O10viii156.2 (7)
C4—C3—C6110.2 (9)O8vi—Cs19—O11vii83.9 (9)
C4—C3—O13109.1 (9)O8vi—Cs19—O12x99.1 (6)
C6—C3—O13110.3 (8)O9vi—Cs19—O9vii110.2 (11)
C3—C4—C5110.1 (9)O9vi—Cs19—O1058.2 (5)
C4—C5—O11118.7 (9)O9vi—Cs19—O10viii141.1 (6)
C4—C5—O12119.1 (9)O9vi—Cs19—O11vii52.3 (7)
O11—C5—O12118.0 (10)O9vi—Cs19—O12x155.4 (7)
C3—C6—O9120.8 (8)O9vii—Cs19—O10129.0 (7)
C3—C6—O10119.5 (8)O9vii—Cs19—O10viii59.5 (5)
O9—C6—O10119.5 (8)O9vii—Cs19—O11vii58.4 (7)
C1—O8—Cs19i142 (2)O9vii—Cs19—O12x87.4 (8)
C6—O9—Cs19i119 (3)O10—Cs19—O10viii97.2 (9)
C6—O9—Cs19ii127 (3)O10—Cs19—O11vii88.6 (7)
Cs19i—O9—Cs19ii101.9 (7)O10—Cs19—O12x123.6 (10)
C6—O10—Cs19125 (3)O10viii—Cs19—O11vii102.4 (6)
C6—O10—Cs19iii135 (3)O10viii—Cs19—O12x62.5 (7)
Cs19—O10—Cs19iii98.9 (9)O11vii—Cs19—O12x144.4 (7)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x1/2, y+1/2, z+1; (viii) x1/2, y+1/2, z; (ix) x1, y, z+1; (x) x1, y, z.
(ramm013_DFT) top
Crystal data top
CsH2C6H5O7c = 5.1682 Å
Mr = 323.97V = 927.17 Å3
Orthorhombic, Pna21Z = 4
Hall symbol: P 2c -2nDx = 2.321 Mg m3
a = 8.7362 ÅCu Kα radiation, λ = 1.5418 Å
b = 20.5351 ÅT = 300 K
Data collection top
Density functional calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.147290.010070.322680.06500*
C20.286820.027220.166390.00900*
C30.358780.089450.284920.00900*
C40.525140.096640.180150.00900*
C50.609470.152120.308280.06500*
C60.269910.151580.201350.06500*
O70.157300.046000.447420.06500*
O80.034010.045860.340610.06500*
O90.238180.159010.032790.06500*
O100.243010.193470.378890.06500*
O110.626420.204420.156270.06500*
O120.656990.150900.530960.06500*
O130.360270.080890.556850.06500*
H140.368020.013070.173230.01200*
H150.254790.036040.034770.01200*
H160.314960.118700.643200.08500*
H170.586850.051700.221760.01200*
H180.522430.103750.028900.01200*
Cs190.056060.210800.741220.05030*
H200.069400.050970.568600.05000*
H210.675280.243000.252400.05000*
Bond lengths (Å) top
C1—C21.504C4—H171.090
C1—O71.322C4—H181.091
C1—O81.354C5—O111.339
C2—C31.550C5—O121.224
C2—H141.090C6—O91.251
C2—H151.092C6—O101.279
C3—C41.558O7—H20i0.996
C3—C61.555O11—H211.028
C3—O131.416O13—H160.979
C4—C51.510H20—O7ii0.996
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H21···O10ii1.0281.5752.600174.4
O7—H20···O8iii0.9961.6742.637161.7
O13—H16···O9iv0.9791.9852.865148.4
O13—H16···O100.9792.1492.691113.3
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y, z+1/2; (iv) x, y, z+1.
 

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC.Measurement. Bruker-AXS, Madison Wisconsin USA.  Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamondGoogle Scholar
First citationDassault Systèmes (2014). Materials Studio. BIOVIA, San Diego California, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457-1446458.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460-1446461.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLouër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191–196.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrencipe, M. (1990). Laurea Thesis, 91-92.  Google Scholar
First citationPutz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864–870.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. BGoogle Scholar
First citationRammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286–290.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds