research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of penta­sodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu HI, USA, and bIllinois Institute of Technology, Chicago IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 4 January 2017; accepted 24 January 2017; online 27 January 2017)

The crystal structure of penta­sodium hydrogen dicitrate, Na5H(C6H5O7)2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H⋯O hydrogen bonds, with O⋯O distances of 2.419 and 2.409 Å. Four octa­hedrally coordinated Na+ ions share edges to form open layers parallel to the ab plane. A fifth Na+ ion in trigonal–bipyramidal coordination shares faces with NaO6 octahedra on both sides of these layers.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using X-ray powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously characterized structures are being reported separately (Rammohan & Kaduk, 2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B73. Submitted.]). Nine of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7(H2O), and Rb3C6H5O7 – have been published recently (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170-173.],b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403-406.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793-796.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854-857.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159-1162.], 2017b[Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92-95.],c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.],d[Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250-253.]; Rammohan et al., 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]), and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the CSD (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457-1446458. CCDC Cambridge, England.],b[Kaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460-1446461. CCDC Cambridge, England.]).

[Scheme 1]

2. Structural commentary

The compound Na5H(C6H5O7)2 was unexpectedly synthesized by heating Na2HC6H5O7(H2O)1.5. The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the Rietveld-refined and DFT-optimized structures is 0.216 Å (Fig. 2[link]). The reasonable agreement between the two structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Both the O28—C10 bond length of 1.249 Å [Z-score = 3.4; average = 1.213 (13) Å] and the O28—C10—C8 angle of 120.4° [Z-score = 4.0; average = 126.9 (16)°] are flagged as unusual. Since this oxygen atom also coordinates to an Na+ cation, it is not unreasonable to encounter some slightly unusual geometry. Each Na+ cation is chelated by at least one citrate anion. The chelation modes include hydrox­yl/terminal carboxyl, terminal/central carboxyl, and coordination of both oxygen atoms of a terminal carboxyl group.

[Figure 1]
Figure 1
The asymmetric unit of Na5H(C6H5O7)2, with the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of penta­sodium hydrogen dicitrate. The refined structure is in red, and the DFT-optimized structure is in blue.

The structure contains five independent Na+ cations. Na37, Na38, Na39, and Na40 exhibit octahedral coordination spheres, with bond-valence sums of 1.19, 1.24, 1.04, and 1.17 valence units, respectively. Na41 is only five-coordinate with a trigonal–bipyramidal coordination sphere, but its bond-valence sum is 1.26. The only O atom not coordinating to an Na+ cation is O26, which participates in very strong centrosymmetric hydrogen bonds. The octahedra involving Na37–Na40 share edges to form open layers parallel to the ab plane. Trigonal–bipyramidal Na41O5 polyhedra share faces with Na37O6 and Na39O6 octahedra on both sides of these layers. The crystal structure is illustrated in Fig. 3[link].

[Figure 3]
Figure 3
Crystal structure of Na5H(C6H5O7)2, viewed down the a axis.

The Mulliken overlap populations and atomic charges indicate that the metal–oxygen bonding is ionic. Comparison of the structures of the starting material Na2HC6H5O7(H2O)1.5 and the title compound does not suggest any plausible mechanism for the conversion.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect elongated morphology for penta­sodium hydrogen dicitrate, with {100} as the principal axis. A 4th-order spherical harmonic texture model was included in the refinement. The texture index was 1.014, indicating that preferred orientation was slight for this rotated capillary specimen.

3. Supra­molecular features

The layers are connected by very strong centrosymmetric O26—H44⋯O26 and O25—H43⋯O25 hydrogen bonds (Table 1[link]). The O26⋯O26 distance is 2.419 Å and the O25⋯O25 distance is 2.409 Å, making these among the shortest hydrogen bonds. The Mulliken overlap populations in the hydrogen bonds are 0.145 and 0.136 e, which correspond to 20.8 and 20.2 kcal mol−1 for each hydrogen bond (Rammohan & Kaduk, 2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B73. Submitted.]). These hydrogen bonds link two citrates into dimers.

Table 1
Hydrogen-bond geometry (Å, °) for Na5Hcit2_DFT[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O26—H44⋯O26i 1.210 1.210 2.419 180.0
O25—H43⋯O25ii 1.205 1.205 2.409 180.0
O33—H35⋯O23iii 0.975 2.045 2.799 132.8
O33—H35⋯O29 0.975 2.450 2.664 91.7
O34—H36⋯O30 0.971 2.212 2.631 104.6
O34—H36⋯O28 0.971 2.302 2.831 113.4
O34—H36⋯O24iii 0.971 2.385 3.223 144.3
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z.

The Mulliken overlap populations indicate that the hydroxyl groups O33—H35 and O34—H36 each act as donors in three hydrogen bonds. One [with graph set S(5)] is to the central carboxyl­ate group, and another is intra­molecular to a terminal carboxyl group. The third hydrogen bond is inter­molecular. These hydrogen bonds are much weaker than the centrosymmetric ones, contributing 5–8 kcal mol−1 to the crystal energy.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B73. Submitted.]). A reduced cell search of the cell of penta­sodium hydrogen dicitrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 98 hits, but combining the cell search with the elements C, H, Na, and O only yielded no hits.

5. Synthesis and crystallization

The title compound was prepared by heating commercial reagent Na2HC6H5O7(H2O)1.5 (Sigma–Aldrich lot BCBC6031V) from 295–453K at 14 K min−1 in air. The crystal structure of this reagent is reported in Rammohan et al. (2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]). After holding at 453 K for two minutes, the sample began to discolour (turn yellow), and it was taken from the oven and sealed in a glass jar to cool.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The sample was blended with NIST SRM 640b silicon inter­nal standard in a Spex 8000 mixer/mill, and packed into a standard sample holder. It was protected from the atmosphere by a thin Kapton window attached to the cell edges with Vaseline. The pattern was measured on a Bruker D2 Phaser at IIT, and eventually at 11-BM at APS/ANL (Lee et al., 2008[Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427-432.]; Wang et al., 2008[Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105.]). The structure was solved and refined using the synchrotron data. Diffraction data are displayed in Fig. 4[link].

Table 2
Experimental details

Crystal data
Chemical formula Na5H(C6H5O7)2
Mr 494.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 6.35262 (9), 11.98628 (18), 12.16544 (16)
α, β, γ (°) 73.8374 (13), 80.8808 (15), 80.7103 (10)
V3) 871.72 (2)
Z 2
Radiation type Synchrotron, λ = 0.413891 Å
Specimen shape, size (mm) Cylinder, 1.5 × 1.5
 
Data collection
Diffractometer 11-BM APS
Specimen mounting Kapton capillary
Data collection mode Transmission
Scan method Step
Tmin, Tmax 1.000, 1.000
2θ values (°) 2θmin = 0.5 2θmax = 50.0 2θstep = 0.001
 
Refinement
R factors and goodness of fit Rp = 0.083, Rwp = 0.097, Rexp = 0.073, R(F2) = 0.085, χ2 = 1.823
No. of parameters 145
No. of restraints 58
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison Wisconsin, USA.]), DASH (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Rietveld plot for the refinement of Na5H(C6H5O7)2. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 2.0 at 2.2°, and by 5.0 at 10.8°. The row of black tick marks indicates the reflection positions. The red tick marks indicate the positions of the peaks of the Si inter­nal standard.

The synchrotron pattern was indexed with Jade 9.5 (MDI, 2012[MDI (2012). Jade. Materials Data Inc., Livermore, CA, USA.]) on a primitive triclinic unit cell having a = 6.263, b = 12.029, c = 12.132 Å, α = 74.145, β = 81.530, γ = 80.8 6°, and V = 863.06 Å3. The volume corresponds to four citrate anions per cell. A Le Bail fit using this cell yielded a reduced χ2 = 2.866, but it was not possible to solve the crystal structure using this unit cell.

Removing the weak peak at 2.510° yielded a new cell, with a = 6.131, b = 6.352, c = 12.142 Å, α = 100.486, β = 98.839, γ = 110.4 0°, and V = 435.852 Å3. This is a sub-cell of the original cell. The volume corresponds to two citrate anions per cell, and space group P[\overline1] was assumed. A Le Bail fit yielded a reduced χ2 of 2.716.

The structure was solved in the sub-cell using DASH 3.3.2 (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]), with a citrate anion and two Na+ cations as fragments. Two of the 25 simulated annealing runs yielded figures of merit much lower than the rest. Since two O13 atoms were 2.53 Å apart (related by a centre of symmetry), a hydrogen was placed at the centre. Refinement of this model yielded a reduced χ2 of 2.6, but the charge did not balance. A difference-Fourier map indicated a peak 2.33 Å from O13; this is too close to be an oxygen atom, but is reasonable for an Na atom. Refinement of this model yielded a reduced χ2 of 1.85, and an Na occupancy of 1/2.

The structure was transformed (matrix [0[\overline{1}]0/[\overline{2}][\overline{1}]0/[\overline{1}][\overline{1}][\overline{1}]]) to the original cell using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego California, USA.]). The occupancies of the now two half-Na were refined. They refined to 1/0, and the low-occupancy Na moved too close to other atoms. Refinement of the resulting Na5H(citrate)2 model yielded a reduced χ2 of 1.829. This larger cell accounts for the 2.510° peak and several other very weak peaks not explained by the sub-cell. A possible C-centering, as suggested by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), is not present.

Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied, and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The structure was refined by the Rietveld method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). All C—C and C—O bond lengths were restrained, as were all bond angles. The C—C bonds between the terminal carboxyl carbon atoms and the adjacent carbon atoms were restrained at 1.51 (1) Å, the C—C bonds between the central carbon atoms and the adjacent carbon atoms at 1.54 (1) Å, the C—C bond between the central carbon atom and the central carboxyl carbon at 1.55 (1) Å, the C—O bond to the hydroxyl group at 1.42 (3) Å, and the C—O bonds in the carboxyl­ate groups at 1.27 (3) Å. The tetra­hedral carbon bond angles were restrained at 109 (3)°, and the angles in the planar carboxyl groups at 120 (3)°. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego California, USA.]). The Uiso values of the C and O atoms were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3 times those of the atoms to which they are attached. A common Uiso value was refined for the Na atoms.

7. DFT calculations

A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Na was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]). The calculation used 8 k-points and the B3LYP functional, and took about eight days on a 2.4 GHz PC. Uiso values were assigned to the optimized fractional coordinates based on the Ueq from the refined structure.

Supporting information


Computing details top

Program(s) used to solve structure: DASH (David et al., 2006) for NA2HCITRATE_2_phase_1.

(NA2HCITRATE_2_phase_1) Pentasodium hydrogen dicitrate top
Crystal data top
5Na+·H+·2C6H5O73α = 73.8374 (13)°
Mr = 494.16β = 80.8808 (15)°
Triclinic, P1γ = 80.7103 (10)°
Hall symbol: -P 1V = 871.72 (2) Å3
a = 6.35262 (9) ÅZ = 2
b = 11.98628 (18) ÅDx = 1.883 Mg m3
c = 12.16544 (16) ÅT = 295 K
Data collection top
11-BM APS
diffractometer
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2177 (12)0.5862 (7)0.8244 (8)0.0106 (6)*
C20.2860 (11)0.0939 (6)0.8273 (7)0.0106 (6)*
C30.1531 (12)0.6732 (7)0.7124 (6)0.0160 (15)*
C40.3818 (13)0.1567 (7)0.7088 (6)0.0160 (15)*
C50.0541 (9)0.7213 (5)0.7189 (4)0.0160 (15)*
C60.5481 (10)0.2314 (5)0.7211 (5)0.0160 (15)*
C70.0934 (13)0.8216 (7)0.6099 (6)0.0160 (15)*
C80.5470 (10)0.3460 (6)0.6243 (8)0.0160 (15)*
C90.2718 (13)0.8898 (7)0.6129 (7)0.0106 (6)*
C100.7654 (12)0.3882 (8)0.6007 (7)0.0106 (6)*
C110.0204 (12)0.7688 (6)0.8273 (5)0.0106 (6)*
C120.4917 (12)0.2646 (7)0.8374 (5)0.0106 (6)*
H130.287880.748760.694570.0209 (19)*
H140.249080.215580.659610.0209 (19)*
H150.123670.629410.639100.0209 (19)*
H160.463800.089800.659960.0209 (19)*
H170.059050.886340.598360.0209 (19)*
H180.421590.415710.651670.0209 (19)*
H190.134310.783430.532010.0209 (19)*
H200.505740.329910.542590.0209 (19)*
O210.0775 (13)0.5070 (8)0.8710 (8)0.0106 (6)*
O220.3882 (14)0.0013 (7)0.8837 (7)0.0106 (6)*
O230.4076 (12)0.5956 (8)0.8744 (8)0.0106 (6)*
O240.0872 (12)0.1157 (7)0.8570 (8)0.0106 (6)*
O250.3428 (14)0.9557 (8)0.5183 (6)0.0106 (6)*
O260.8231 (13)0.4548 (8)0.5025 (6)0.0106 (6)*
O270.3893 (13)0.8613 (8)0.6940 (7)0.0106 (6)*
O280.8709 (14)0.3768 (9)0.6843 (7)0.0106 (6)*
O290.1237 (15)0.7164 (7)0.9116 (6)0.0106 (6)*
O300.6331 (15)0.2353 (8)0.9069 (7)0.0106 (6)*
O310.1520 (14)0.8339 (7)0.8448 (7)0.0106 (6)*
O320.3407 (14)0.3458 (8)0.8468 (7)0.0106 (6)*
O330.2312 (11)0.6322 (6)0.7256 (8)0.0106 (6)*
O340.7524 (11)0.1640 (6)0.7170 (8)0.0106 (6)*
H350.307880.652870.778880.0138 (8)*
H360.807880.152870.778880.0138 (8)*
Na370.4491 (12)0.8035 (6)0.8933 (6)0.0127 (6)*
Na380.9726 (14)0.3022 (6)0.8899 (6)0.0127 (6)*
Na390.2243 (13)0.9924 (6)0.0661 (6)0.0127 (6)*
Na400.7348 (11)0.4891 (6)0.0844 (6)0.0127 (6)*
Na410.6543 (10)0.9874 (5)0.6852 (5)0.0127 (6)*
H430.51.00.50.01472*
H441.00.50.50.01472*
Geometric parameters (Å, º) top
C1—C31.5099 (13)O25—Na41vii2.375 (10)
C1—O211.267 (3)O25—H431.168 (8)
C1—O231.265 (3)O26—C101.274 (3)
C2—C41.5102 (13)O26—H441.317 (8)
C2—O221.268 (3)O27—C91.270 (3)
C2—O241.263 (3)O27—Na372.404 (10)
C3—C11.5099 (13)O27—Na412.409 (9)
C3—C51.5416 (13)O28—C101.269 (3)
C3—H130.733 (7)O28—Na382.560 (10)
C3—H151.216 (10)O29—C111.265 (3)
C4—C21.5102 (13)O29—Na372.416 (12)
C4—C61.5397 (13)O29—Na38viii2.352 (10)
C4—H140.932 (9)O29—Na40iii2.472 (11)
C4—H160.966 (10)O30—C121.272 (3)
C5—C31.5416 (13)O30—Na37viii2.333 (10)
C5—C71.5396 (13)O30—Na382.379 (12)
C5—C111.5483 (13)O30—Na39iii2.679 (11)
C5—O331.416 (3)O31—C111.263 (3)
C6—C41.5397 (13)O31—Na37i2.570 (12)
C6—C81.5404 (13)O31—Na39ix2.551 (10)
C6—C121.5468 (13)O31—Na41i2.590 (10)
C6—O341.416 (3)O32—C121.268 (3)
C7—C51.5396 (13)O32—Na38i2.422 (12)
C7—C91.5103 (13)O32—Na40iii2.309 (10)
C7—H171.206 (11)O33—C51.416 (3)
C7—H190.817 (8)O33—H350.974 (8)
C8—C61.5404 (13)O33—Na40iii2.386 (10)
C8—C101.5103 (13)O34—C61.416 (3)
C8—H180.790 (8)O34—H360.850 (9)
C8—H201.072 (11)O34—Na39iii2.789 (11)
C9—C71.5103 (13)O34—Na41iv2.445 (10)
C9—O251.263 (3)H35—O330.974 (8)
C9—O271.270 (3)H36—O340.850 (9)
C10—C81.5103 (13)Na37—O22x2.313 (11)
C10—O261.274 (3)Na37—O23xi2.571 (11)
C10—O281.269 (3)Na37—O272.404 (10)
C11—C51.5483 (13)Na37—O292.416 (12)
C11—O291.265 (3)Na37—O30viii2.333 (10)
C11—O311.263 (3)Na37—O31xi2.570 (12)
C12—C61.5468 (13)Na38—O21xi2.374 (12)
C12—O301.272 (3)Na38—O24xi2.359 (11)
C12—O321.268 (3)Na38—O282.560 (10)
H13—C30.733 (7)Na38—O29viii2.352 (10)
H14—C40.932 (9)Na38—O302.379 (12)
H15—C31.216 (10)Na38—O32xi2.422 (12)
H16—C40.966 (10)Na39—O22xii2.279 (9)
H17—C71.206 (11)Na39—O22iii2.646 (11)
H18—C80.790 (8)Na39—O24xii2.758 (11)
H19—C70.817 (8)Na39—O24vi2.457 (10)
H20—C81.072 (11)Na39—O30iii2.679 (11)
O21—C11.267 (3)Na39—O31ix2.551 (10)
O21—Na38i2.374 (12)Na39—O34iii2.789 (11)
O21—Na40ii2.645 (10)Na40—O21xiii2.645 (10)
O21—Na40iii2.336 (11)Na40—O21iii2.336 (11)
O22—C21.268 (3)Na40—O23xiii2.742 (12)
O22—Na37iv2.313 (11)Na40—O23vi2.382 (10)
O22—Na39v2.279 (9)Na40—O29iii2.472 (11)
O22—Na39iii2.646 (11)Na40—O32iii2.309 (10)
O22—Na41iv2.749 (10)Na40—O33iii2.386 (10)
O23—C11.265 (3)Na41—O22x2.749 (10)
O23—Na37i2.571 (11)Na41—O253.183 (11)
O23—Na40ii2.742 (12)Na41—O25vii2.375 (10)
O23—Na40vi2.382 (10)Na41—O272.409 (9)
O24—C21.263 (3)Na41—O31xi2.590 (10)
O24—Na38i2.359 (11)Na41—O34x2.445 (10)
O24—Na39v2.758 (11)H43—O251.168 (8)
O24—Na39vi2.457 (10)H43—O25vii1.168 (8)
O25—C91.263 (3)H44—O261.317 (8)
O25—Na413.183 (11)H44—O26xiv1.317 (8)
C3—C1—O21119.5 (3)C6—O34—Na41iv100.0 (4)
C3—C1—O23120.5 (4)H36—O34—Na39iii38.5 (4)
O21—C1—O23120.0 (4)H36—O34—Na41iv114.5 (6)
C4—C2—O22119.8 (3)Na39iii—O34—Na41iv78.4 (3)
C4—C2—O24119.1 (4)O33—H35—Na40iii98.3 (5)
O22—C2—O24118.8 (3)O34—H36—Na39iii127.5 (5)
C1—C3—C5110.6 (4)O22x—Na37—O23xi167.4 (4)
C2—C4—C6109.1 (4)O22x—Na37—O2785.7 (4)
C3—C5—C7108.1 (3)O22x—Na37—O29113.4 (4)
C3—C5—C11108.3 (4)O22x—Na37—O30viii88.7 (4)
C3—C5—O33110.6 (3)O22x—Na37—O31xi85.3 (3)
C7—C5—C11109.8 (4)O23xi—Na37—O2789.6 (4)
C7—C5—O33110.0 (3)O23xi—Na37—O2977.3 (4)
C11—C5—O33110.0 (3)O23xi—Na37—O30viii99.8 (4)
C4—C6—C8110.9 (3)O23xi—Na37—O31xi83.3 (4)
C4—C6—C12109.7 (3)O27—Na37—O2981.3 (3)
C4—C6—O34107.8 (3)O27—Na37—O30viii158.3 (5)
C8—C6—C12107.6 (4)O27—Na37—O31xi92.9 (3)
C8—C6—O34110.6 (3)O29—Na37—O30viii81.8 (4)
C12—C6—O34110.2 (5)O29—Na37—O31xi159.7 (5)
C5—C7—C9114.0 (3)O30viii—Na37—O31xi107.5 (4)
C6—C8—C10110.0 (3)O21xi—Na38—O24xi163.1 (4)
C7—C9—O25116.8 (5)O21xi—Na38—O2880.0 (4)
C7—C9—O27122.9 (3)O21xi—Na38—O29viii85.6 (4)
O25—C9—O27117.4 (3)O21xi—Na38—O30109.5 (5)
C8—C10—O26119.7 (4)O21xi—Na38—O32xi78.9 (4)
C8—C10—O28119.4 (4)O24xi—Na38—O2889.3 (4)
O26—C10—O28119.5 (4)O24xi—Na38—O29viii109.8 (4)
C5—C11—O29119.7 (4)O24xi—Na38—O3080.3 (4)
C5—C11—O31117.9 (4)O24xi—Na38—O32xi89.8 (4)
O29—C11—O31118.7 (4)O28—Na38—O29viii148.9 (5)
C6—C12—O30117.9 (4)O28—Na38—O3077.0 (4)
C6—C12—O32118.9 (3)O28—Na38—O32xi97.6 (4)
O30—C12—O32120.0 (4)O29viii—Na38—O3082.2 (4)
C1—O21—Na38i130.6 (10)O29viii—Na38—O32xi106.5 (4)
C1—O21—Na40ii95.2 (6)O30—Na38—O32xi168.7 (5)
C1—O21—Na40iii132.9 (10)O22xii—Na39—O22iii85.5 (5)
Na38i—O21—Na40ii94.5 (4)O22xii—Na39—O24xii50.2 (2)
Na38i—O21—Na40iii94.3 (4)O22xii—Na39—O24vi120.6 (5)
Na40ii—O21—Na40iii94.5 (4)O22xii—Na39—O30iii81.4 (4)
C2—O22—Na37iv138.9 (9)O22xii—Na39—O31ix123.8 (4)
C2—O22—Na39v100.9 (5)O22xii—Na39—O34iii136.3 (4)
C2—O22—Na39iii119.6 (8)O22iii—Na39—O24xii122.2 (4)
C2—O22—Na41iv89.3 (4)O22iii—Na39—O24vi139.8 (4)
Na37iv—O22—Na39v99.3 (4)O22iii—Na39—O30iii82.6 (4)
Na37iv—O22—Na39iii93.8 (4)O22iii—Na39—O31ix79.2 (3)
Na37iv—O22—Na41iv75.6 (3)O22iii—Na39—O34iii75.3 (3)
Na39v—O22—Na39iii94.5 (5)O24xii—Na39—O24vi97.5 (4)
Na39v—O22—Na41iv168.6 (5)O24xii—Na39—O30iii117.4 (3)
Na39iii—O22—Na41iv75.9 (3)O24xii—Na39—O31ix95.5 (3)
C1—O23—Na37i113.8 (6)O24xii—Na39—O34iii162.2 (4)
C1—O23—Na40ii90.8 (7)O24vi—Na39—O30iii72.9 (4)
C1—O23—Na40vi143.0 (9)O24vi—Na39—O31ix104.8 (4)
Na37i—O23—Na40ii102.4 (4)O24vi—Na39—O34iii64.7 (3)
Na37i—O23—Na40vi100.1 (4)O30iii—Na39—O31ix147.1 (4)
Na40ii—O23—Na40vi96.1 (3)O30iii—Na39—O34iii57.7 (3)
C2—O24—Na38i115.7 (6)O31ix—Na39—O34iii91.0 (3)
C2—O24—Na39v79.2 (5)O21xiii—Na40—O21iii85.5 (4)
C2—O24—Na39vi138.3 (6)O21xiii—Na40—O23xiii47.98 (16)
Na38i—O24—Na39v101.1 (4)O21xiii—Na40—O23vi113.9 (5)
Na38i—O24—Na39vi104.4 (4)O21xiii—Na40—O29iii77.7 (3)
Na39v—O24—Na39vi82.5 (4)O21xiii—Na40—O32iii119.2 (4)
C9—O27—Na37153.7 (7)O21xiii—Na40—O33iii139.4 (4)
C9—O27—Na41117.3 (4)O21iii—Na40—O23xiii124.8 (4)
Na37—O27—Na4180.9 (3)O21iii—Na40—O23vi150.1 (4)
C10—O28—Na38157.8 (5)O21iii—Na40—O29iii82.7 (4)
C11—O29—Na37109.6 (7)O21iii—Na40—O32iii82.0 (4)
C11—O29—Na38viii130.2 (6)O21iii—Na40—O33iii71.4 (4)
C11—O29—Na40iii114.1 (5)O23xiii—Na40—O23vi83.9 (3)
Na37—O29—Na38viii96.9 (4)O23xiii—Na40—O29iii108.4 (3)
Na37—O29—Na40iii102.0 (4)O23xiii—Na40—O32iii95.5 (4)
Na38viii—O29—Na40iii99.8 (4)O23xiii—Na40—O33iii163.3 (4)
C12—O30—Na37viii123.5 (6)O23vi—Na40—O29iii79.9 (4)
C12—O30—Na38129.9 (7)O23vi—Na40—O32iii105.3 (5)
C12—O30—Na39iii108.7 (6)O23vi—Na40—O33iii79.5 (4)
Na37viii—O30—Na3898.5 (4)O29iii—Na40—O32iii156.1 (4)
Na37viii—O30—Na39iii88.3 (4)O29iii—Na40—O33iii66.9 (3)
Na38—O30—Na39iii97.4 (4)O32iii—Na40—O33iii90.8 (4)
C11—O31—Na37i134.6 (8)O22x—Na41—O25vii140.9 (4)
C11—O31—Na39ix130.3 (7)O22x—Na41—O2776.6 (4)
C11—O31—Na41i124.9 (5)O22x—Na41—O31xi76.7 (3)
Na37i—O31—Na39ix90.2 (3)O22x—Na41—O34x79.3 (3)
Na37i—O31—Na41i74.5 (3)O25vii—Na41—O2788.0 (4)
Na39ix—O31—Na41i80.4 (3)O25vii—Na41—O31xi140.6 (4)
C12—O32—Na38i119.5 (8)O25vii—Na41—O34x100.5 (4)
C12—O32—Na40iii140.3 (7)O27—Na41—O31xi92.3 (4)
Na38i—O32—Na40iii93.7 (4)O27—Na41—O34x150.5 (4)
C5—O33—Na40iii114.0 (4)O31xi—Na41—O34x98.4 (4)
H35—O33—Na40iii57.8 (5)O25—H43—O25vii180.0
C6—O34—Na39iii106.7 (5)O26—H44—O26xiv180.0
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y1, z+1; (vi) x, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x+1, y+1, z+2; (ix) x, y+2, z+1; (x) x, y+1, z; (xi) x+1, y, z; (xii) x, y+1, z1; (xiii) x+1, y, z1; (xiv) x+2, y+1, z+1.
(NA2HCITRATE_2_phase_2) Silicon top
Crystal data top
SiV = 160.20 (1) Å3
Mr = 28.09Z = 8
Cubic, Fd3mDx = 2.329 Mg m3
Hall symbol: -F 4vw 2vwT = 295 K
a = 5.431046 (9) Å
Data collection top
2θmin = 0.5°, 2θmax = 50.0°, 2θstep = 0.001°
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.1250.1250.1250.0056 (3)*
Geometric parameters (Å, º) top
Si1—Si1i2.3517Si1—Si1iii2.3517
Si1—Si1ii2.3517Si1—Si1iv2.3517
Si1i—Si1—Si1ii109.4712 (1)Si1ii—Si1—Si1iii109.4712 (1)
Si1i—Si1—Si1iii109.4712 (1)Si1ii—Si1—Si1iv109.4712 (1)
Si1i—Si1—Si1iv109.4712 (1)Si1iii—Si1—Si1iv109.4712 (1)
Symmetry codes: (i) x+1/4, y+1/4, z; (ii) z, x+1/4, y+1/4; (iii) y+1/4, z, x+1/4; (iv) x, y, z.
(Na5Hcit2_DFT) top
Crystal data top
Na5H(C6H5O7)2α = 73.8374°
Mr = 494.13β = 80.8808°
Triclinic, P1γ = 80.7103°
Hall symbol: -P 1V = 871.72 Å3
a = 6.3526 ÅZ = 2
b = 11.9863 ÅDx = 1.883 Mg m3
c = 12.1654 ÅT = 295 K
Data collection top
Density functional calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.210930.583800.837440.01060*
C20.285470.086990.827480.01060*
C30.119040.657130.720680.01600*
C40.343000.183160.717900.01600*
C50.069500.721030.728110.01600*
C60.537860.241800.725990.01600*
C70.116650.811560.611960.01600*
C80.551810.357320.631540.01600*
C90.299660.881490.604720.01060*
C100.770280.400700.617100.01060*
C110.009170.779400.830690.01060*
C120.508750.263010.847780.01060*
O210.089850.501690.894460.01060*
O220.431250.004450.863670.01060*
O230.406740.611480.874580.01060*
O240.098170.097330.880460.01060*
O250.340640.955460.504920.01060*
O260.828240.463300.515410.01060*
O270.404450.869210.686460.01060*
O280.877270.375700.700330.01060*
O290.118320.742560.913510.01060*
O300.650640.210540.912950.01060*
O310.152650.858300.824120.01060*
O320.341700.326150.875330.01060*
O330.253600.636350.745060.01060*
O340.729080.162020.711250.01060*
H350.365300.672710.763660.01380*
H360.834430.180090.751380.01380*
Na370.465480.797690.898860.01270*
Na380.973930.307750.885520.01270*
Na390.220040.988480.068870.01270*
Na400.716540.497170.075350.01270*
Na410.668890.985750.692660.01270*
H130.247750.721230.682790.02090*
H150.058300.599580.663950.02090*
H140.620990.852430.357890.02090*
H160.793870.749360.298320.02090*
H180.478570.652510.451090.02090*
H200.573610.575010.347260.02090*
H170.161930.236200.454780.02090*
H190.024210.126810.414910.02090*
H430.500001.000000.500000.01470*
H441.000000.500000.500000.01470*
Bond lengths (Å) top
C1—C31.529C8—H18i1.094
C1—O211.259C8—H20i1.096
C1—O231.278C9—O251.305
C2—C41.538C9—O271.245
C2—O221.273C10—O261.287
C2—O241.265C10—O281.249
C3—C51.549C11—O291.251
C3—H131.091C11—O311.276
C3—H151.094C12—O301.266
C4—C61.547C12—O321.257
C4—H14i1.098O25—H431.205
C4—H16i1.090O26—H441.210
C5—C71.543O33—H350.975
C5—C111.563O34—H360.971
C5—O331.420H14—C4i1.098
C6—C81.539H16—C4i1.090
C6—C121.550H18—C8i1.094
C6—O341.440H20—C8i1.096
C7—C91.518H17—C7ii1.096
C7—H17ii1.096H19—C7ii1.095
C7—H19ii1.095H43—O25iii1.205
C8—C101.527H44—O26iv1.210
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26—H44···O26iv1.2101.2102.419180.0
O25—H43···O25iii1.2051.2052.409180.0
O33—H35···O23v0.9752.0452.799132.8
O33—H35···O290.9752.4502.66491.7
O34—H36···O300.9712.2122.631104.6
O34—H36···O280.9712.3022.831113.4
O34—H36···O24v0.9712.3853.223144.3
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+1, y, z.
 

Acknowledgements

Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. This work was partially supported by the Inter­national Centre for Diffraction Data. We thank Lynn Ribaud for his assistance in data collection.

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego California, USA.  Google Scholar
First citationDavid, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457–1446458. CCDC Cambridge, England.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460–1446461. CCDC Cambridge, England.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427–432.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMDI (2012). Jade. Materials Data Inc., Livermore, CA, USA.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B73. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105.  Web of Science CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds