research communications
of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison
aAtlantic International University, Honolulu HI, USA, and bIllinois Institute of Technology, Chicago IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com
The 5H(C6H5O7)2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H⋯O hydrogen bonds, with O⋯O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na+ ions share edges to form open layers parallel to the ab plane. A fifth Na+ ion in trigonal–bipyramidal coordination shares faces with NaO6 octahedra on both sides of these layers.
of pentasodium hydrogen dicitrate, NaKeywords: powder diffraction; crystal structure; density functional theory; citrate; sodium.
1. Chemical context
In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using X-ray powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously characterized structures are being reported separately (Rammohan & Kaduk, 2017a). Nine of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7(H2O), and Rb3C6H5O7 – have been published recently (Rammohan & Kaduk, 2016a,b,c,d,e, 2017b,c,d; Rammohan et al., 2016), and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the CSD (Kaduk & Stern, 2016a,b).
2. Structural commentary
The compound Na5H(C6H5O7)2 was unexpectedly synthesized by heating Na2HC6H5O7(H2O)1.5. The of the title compound is shown in Fig. 1. The root-mean-square deviation of the non-hydrogen atoms in the Rietveld-refined and DFT-optimized structures is 0.216 Å (Fig. 2). The reasonable agreement between the two structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014). This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008). Both the O28—C10 bond length of 1.249 Å [Z-score = 3.4; average = 1.213 (13) Å] and the O28—C10—C8 angle of 120.4° [Z-score = 4.0; average = 126.9 (16)°] are flagged as unusual. Since this oxygen atom also coordinates to an Na+ cation, it is not unreasonable to encounter some slightly unusual geometry. Each Na+ cation is chelated by at least one citrate anion. The modes include hydroxyl/terminal carboxyl, terminal/central carboxyl, and coordination of both oxygen atoms of a terminal carboxyl group.
The structure contains five independent Na+ cations. Na37, Na38, Na39, and Na40 exhibit octahedral coordination spheres, with bond-valence sums of 1.19, 1.24, 1.04, and 1.17 valence units, respectively. Na41 is only five-coordinate with a trigonal–bipyramidal coordination sphere, but its bond-valence sum is 1.26. The only O atom not coordinating to an Na+ cation is O26, which participates in very strong centrosymmetric hydrogen bonds. The octahedra involving Na37–Na40 share edges to form open layers parallel to the ab plane. Trigonal–bipyramidal Na41O5 polyhedra share faces with Na37O6 and Na39O6 octahedra on both sides of these layers. The is illustrated in Fig. 3.
The Mulliken overlap populations and atomic charges indicate that the metal–oxygen bonding is ionic. Comparison of the structures of the starting material Na2HC6H5O7(H2O)1.5 and the title compound does not suggest any plausible mechanism for the conversion.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) morphology suggests that we might expect elongated morphology for pentasodium hydrogen dicitrate, with {100} as the principal axis. A 4th-order spherical harmonic texture model was included in the The texture index was 1.014, indicating that was slight for this rotated capillary specimen.
3. Supramolecular features
The layers are connected by very strong centrosymmetric O26—H44⋯O26 and O25—H43⋯O25 hydrogen bonds (Table 1). The O26⋯O26 distance is 2.419 Å and the O25⋯O25 distance is 2.409 Å, making these among the shortest hydrogen bonds. The Mulliken overlap populations in the hydrogen bonds are 0.145 and 0.136 e, which correspond to 20.8 and 20.2 kcal mol−1 for each hydrogen bond (Rammohan & Kaduk, 2017a). These hydrogen bonds link two citrates into dimers.
The Mulliken overlap populations indicate that the hydroxyl groups O33—H35 and O34—H36 each act as donors in three hydrogen bonds. One [with graph set S(5)] is to the central carboxylate group, and another is intramolecular to a terminal carboxyl group. The third hydrogen bond is intermolecular. These hydrogen bonds are much weaker than the centrosymmetric ones, contributing 5–8 kcal mol−1 to the crystal energy.
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a). A search of the cell of pentasodium hydrogen dicitrate in the Cambridge Structural Database (Groom et al., 2016) (increasing the default tolerance from 1.5 to 2.0%) yielded 98 hits, but combining the cell search with the elements C, H, Na, and O only yielded no hits.
5. Synthesis and crystallization
The title compound was prepared by heating commercial reagent Na2HC6H5O7(H2O)1.5 (Sigma–Aldrich lot BCBC6031V) from 295–453K at 14 K min−1 in air. The of this reagent is reported in Rammohan et al. (2016). After holding at 453 K for two minutes, the sample began to discolour (turn yellow), and it was taken from the oven and sealed in a glass jar to cool.
6. details
Crystal data, data collection and structure . The sample was blended with NIST SRM 640b silicon internal standard in a Spex 8000 mixer/mill, and packed into a standard sample holder. It was protected from the atmosphere by a thin Kapton window attached to the cell edges with Vaseline. The pattern was measured on a Bruker D2 Phaser at IIT, and eventually at 11-BM at APS/ANL (Lee et al., 2008; Wang et al., 2008). The structure was solved and refined using the synchrotron data. Diffraction data are displayed in Fig. 4.
details are summarized in Table 2
|
The synchrotron pattern was indexed with Jade 9.5 (MDI, 2012) on a primitive triclinic having a = 6.263, b = 12.029, c = 12.132 Å, α = 74.145, β = 81.530, γ = 80.8 6°, and V = 863.06 Å3. The volume corresponds to four citrate anions per cell. A Le Bail fit using this cell yielded a reduced χ2 = 2.866, but it was not possible to solve the using this unit cell.
Removing the weak peak at 2.510° yielded a new cell, with a = 6.131, b = 6.352, c = 12.142 Å, α = 100.486, β = 98.839, γ = 110.4 0°, and V = 435.852 Å3. This is a sub-cell of the original cell. The volume corresponds to two citrate anions per cell, and P was assumed. A Le Bail fit yielded a reduced χ2 of 2.716.
The structure was solved in the sub-cell using DASH 3.3.2 (David et al., 2006), with a citrate anion and two Na+ cations as fragments. Two of the 25 simulated annealing runs yielded figures of merit much lower than the rest. Since two O13 atoms were 2.53 Å apart (related by a centre of symmetry), a hydrogen was placed at the centre. of this model yielded a reduced χ2 of 2.6, but the charge did not balance. A difference-Fourier map indicated a peak 2.33 Å from O13; this is too close to be an oxygen atom, but is reasonable for an Na atom. of this model yielded a reduced χ2 of 1.85, and an Na occupancy of 1/2.
The structure was transformed (matrix [00/0/]) to the original cell using Materials Studio (Dassault Systemes, 2014). The occupancies of the now two half-Na were refined. They refined to 1/0, and the low-occupancy Na moved too close to other atoms. of the resulting Na5H(citrate)2 model yielded a reduced χ2 of 1.829. This larger cell accounts for the 2.510° peak and several other very weak peaks not explained by the sub-cell. A possible C-centering, as suggested by PLATON (Spek, 2009), is not present.
Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982). The asymmetry correction of Finger et al. (1994) was applied, and microstrain broadening by Stephens (1999). The structure was refined by the using GSAS/EXPGUI (Larson & Von Dreele, 2004; Toby, 2001). All C—C and C—O bond lengths were restrained, as were all bond angles. The C—C bonds between the terminal carboxyl carbon atoms and the adjacent carbon atoms were restrained at 1.51 (1) Å, the C—C bonds between the central carbon atoms and the adjacent carbon atoms at 1.54 (1) Å, the C—C bond between the central carbon atom and the central carboxyl carbon at 1.55 (1) Å, the C—O bond to the hydroxyl group at 1.42 (3) Å, and the C—O bonds in the carboxylate groups at 1.27 (3) Å. The tetrahedral carbon bond angles were restrained at 109 (3)°, and the angles in the planar carboxyl groups at 120 (3)°. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the using Materials Studio (Dassault Systemes, 2014). The Uiso values of the C and O atoms were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3 times those of the atoms to which they are attached. A common Uiso value was refined for the Na atoms.
7. DFT calculations
A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994), and the basis set for Na was that of Dovesi et al. (1991). The calculation used 8 k-points and the B3LYP functional, and took about eight days on a 2.4 GHz PC. Uiso values were assigned to the optimized fractional coordinates based on the Ueq from the refined structure.
Supporting information
https://doi.org/10.1107/S2056989017001256/vn2125sup1.cif
contains datablocks NA2HCITRATE_2_publ, Na5Hcit2_DFT, NA2HCITRATE_2_overall, NA2HCITRATE_2_phase_1, NA2HCITRATE_2_phase_2, NA2HCITRATE_2_p_01. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989017001256/vn2125NA2HCITRATE_2_phase_2sup2.cml
Program(s) used to solve structure: DASH (David et al., 2006) for NA2HCITRATE_2_phase_1.
5Na+·H+·2C6H5O73− | α = 73.8374 (13)° |
Mr = 494.16 | β = 80.8808 (15)° |
Triclinic, P1 | γ = 80.7103 (10)° |
Hall symbol: -P 1 | V = 871.72 (2) Å3 |
a = 6.35262 (9) Å | Z = 2 |
b = 11.98628 (18) Å | Dx = 1.883 Mg m−3 |
c = 12.16544 (16) Å | T = 295 K |
x | y | z | Uiso*/Ueq | ||
C1 | −0.2177 (12) | 0.5862 (7) | 0.8244 (8) | 0.0106 (6)* | |
C2 | 0.2860 (11) | 0.0939 (6) | 0.8273 (7) | 0.0106 (6)* | |
C3 | −0.1531 (12) | 0.6732 (7) | 0.7124 (6) | 0.0160 (15)* | |
C4 | 0.3818 (13) | 0.1567 (7) | 0.7088 (6) | 0.0160 (15)* | |
C5 | 0.0541 (9) | 0.7213 (5) | 0.7189 (4) | 0.0160 (15)* | |
C6 | 0.5481 (10) | 0.2314 (5) | 0.7211 (5) | 0.0160 (15)* | |
C7 | 0.0934 (13) | 0.8216 (7) | 0.6099 (6) | 0.0160 (15)* | |
C8 | 0.5470 (10) | 0.3460 (6) | 0.6243 (8) | 0.0160 (15)* | |
C9 | 0.2718 (13) | 0.8898 (7) | 0.6129 (7) | 0.0106 (6)* | |
C10 | 0.7654 (12) | 0.3882 (8) | 0.6007 (7) | 0.0106 (6)* | |
C11 | 0.0204 (12) | 0.7688 (6) | 0.8273 (5) | 0.0106 (6)* | |
C12 | 0.4917 (12) | 0.2646 (7) | 0.8374 (5) | 0.0106 (6)* | |
H13 | −0.28788 | 0.74876 | 0.69457 | 0.0209 (19)* | |
H14 | 0.24908 | 0.21558 | 0.65961 | 0.0209 (19)* | |
H15 | −0.12367 | 0.62941 | 0.63910 | 0.0209 (19)* | |
H16 | 0.46380 | 0.08980 | 0.65996 | 0.0209 (19)* | |
H17 | −0.05905 | 0.88634 | 0.59836 | 0.0209 (19)* | |
H18 | 0.42159 | 0.41571 | 0.65167 | 0.0209 (19)* | |
H19 | 0.13431 | 0.78343 | 0.53201 | 0.0209 (19)* | |
H20 | 0.50574 | 0.32991 | 0.54259 | 0.0209 (19)* | |
O21 | −0.0775 (13) | 0.5070 (8) | 0.8710 (8) | 0.0106 (6)* | |
O22 | 0.3882 (14) | 0.0013 (7) | 0.8837 (7) | 0.0106 (6)* | |
O23 | −0.4076 (12) | 0.5956 (8) | 0.8744 (8) | 0.0106 (6)* | |
O24 | 0.0872 (12) | 0.1157 (7) | 0.8570 (8) | 0.0106 (6)* | |
O25 | 0.3428 (14) | 0.9557 (8) | 0.5183 (6) | 0.0106 (6)* | |
O26 | 0.8231 (13) | 0.4548 (8) | 0.5025 (6) | 0.0106 (6)* | |
O27 | 0.3893 (13) | 0.8613 (8) | 0.6940 (7) | 0.0106 (6)* | |
O28 | 0.8709 (14) | 0.3768 (9) | 0.6843 (7) | 0.0106 (6)* | |
O29 | 0.1237 (15) | 0.7164 (7) | 0.9116 (6) | 0.0106 (6)* | |
O30 | 0.6331 (15) | 0.2353 (8) | 0.9069 (7) | 0.0106 (6)* | |
O31 | −0.1520 (14) | 0.8339 (7) | 0.8448 (7) | 0.0106 (6)* | |
O32 | 0.3407 (14) | 0.3458 (8) | 0.8468 (7) | 0.0106 (6)* | |
O33 | 0.2312 (11) | 0.6322 (6) | 0.7256 (8) | 0.0106 (6)* | |
O34 | 0.7524 (11) | 0.1640 (6) | 0.7170 (8) | 0.0106 (6)* | |
H35 | 0.30788 | 0.65287 | 0.77888 | 0.0138 (8)* | |
H36 | 0.80788 | 0.15287 | 0.77888 | 0.0138 (8)* | |
Na37 | 0.4491 (12) | 0.8035 (6) | 0.8933 (6) | 0.0127 (6)* | |
Na38 | 0.9726 (14) | 0.3022 (6) | 0.8899 (6) | 0.0127 (6)* | |
Na39 | 0.2243 (13) | 0.9924 (6) | 0.0661 (6) | 0.0127 (6)* | |
Na40 | 0.7348 (11) | 0.4891 (6) | 0.0844 (6) | 0.0127 (6)* | |
Na41 | 0.6543 (10) | 0.9874 (5) | 0.6852 (5) | 0.0127 (6)* | |
H43 | 0.5 | 1.0 | 0.5 | 0.01472* | |
H44 | 1.0 | 0.5 | 0.5 | 0.01472* |
C1—C3 | 1.5099 (13) | O25—Na41vii | 2.375 (10) |
C1—O21 | 1.267 (3) | O25—H43 | 1.168 (8) |
C1—O23 | 1.265 (3) | O26—C10 | 1.274 (3) |
C2—C4 | 1.5102 (13) | O26—H44 | 1.317 (8) |
C2—O22 | 1.268 (3) | O27—C9 | 1.270 (3) |
C2—O24 | 1.263 (3) | O27—Na37 | 2.404 (10) |
C3—C1 | 1.5099 (13) | O27—Na41 | 2.409 (9) |
C3—C5 | 1.5416 (13) | O28—C10 | 1.269 (3) |
C3—H13 | 0.733 (7) | O28—Na38 | 2.560 (10) |
C3—H15 | 1.216 (10) | O29—C11 | 1.265 (3) |
C4—C2 | 1.5102 (13) | O29—Na37 | 2.416 (12) |
C4—C6 | 1.5397 (13) | O29—Na38viii | 2.352 (10) |
C4—H14 | 0.932 (9) | O29—Na40iii | 2.472 (11) |
C4—H16 | 0.966 (10) | O30—C12 | 1.272 (3) |
C5—C3 | 1.5416 (13) | O30—Na37viii | 2.333 (10) |
C5—C7 | 1.5396 (13) | O30—Na38 | 2.379 (12) |
C5—C11 | 1.5483 (13) | O30—Na39iii | 2.679 (11) |
C5—O33 | 1.416 (3) | O31—C11 | 1.263 (3) |
C6—C4 | 1.5397 (13) | O31—Na37i | 2.570 (12) |
C6—C8 | 1.5404 (13) | O31—Na39ix | 2.551 (10) |
C6—C12 | 1.5468 (13) | O31—Na41i | 2.590 (10) |
C6—O34 | 1.416 (3) | O32—C12 | 1.268 (3) |
C7—C5 | 1.5396 (13) | O32—Na38i | 2.422 (12) |
C7—C9 | 1.5103 (13) | O32—Na40iii | 2.309 (10) |
C7—H17 | 1.206 (11) | O33—C5 | 1.416 (3) |
C7—H19 | 0.817 (8) | O33—H35 | 0.974 (8) |
C8—C6 | 1.5404 (13) | O33—Na40iii | 2.386 (10) |
C8—C10 | 1.5103 (13) | O34—C6 | 1.416 (3) |
C8—H18 | 0.790 (8) | O34—H36 | 0.850 (9) |
C8—H20 | 1.072 (11) | O34—Na39iii | 2.789 (11) |
C9—C7 | 1.5103 (13) | O34—Na41iv | 2.445 (10) |
C9—O25 | 1.263 (3) | H35—O33 | 0.974 (8) |
C9—O27 | 1.270 (3) | H36—O34 | 0.850 (9) |
C10—C8 | 1.5103 (13) | Na37—O22x | 2.313 (11) |
C10—O26 | 1.274 (3) | Na37—O23xi | 2.571 (11) |
C10—O28 | 1.269 (3) | Na37—O27 | 2.404 (10) |
C11—C5 | 1.5483 (13) | Na37—O29 | 2.416 (12) |
C11—O29 | 1.265 (3) | Na37—O30viii | 2.333 (10) |
C11—O31 | 1.263 (3) | Na37—O31xi | 2.570 (12) |
C12—C6 | 1.5468 (13) | Na38—O21xi | 2.374 (12) |
C12—O30 | 1.272 (3) | Na38—O24xi | 2.359 (11) |
C12—O32 | 1.268 (3) | Na38—O28 | 2.560 (10) |
H13—C3 | 0.733 (7) | Na38—O29viii | 2.352 (10) |
H14—C4 | 0.932 (9) | Na38—O30 | 2.379 (12) |
H15—C3 | 1.216 (10) | Na38—O32xi | 2.422 (12) |
H16—C4 | 0.966 (10) | Na39—O22xii | 2.279 (9) |
H17—C7 | 1.206 (11) | Na39—O22iii | 2.646 (11) |
H18—C8 | 0.790 (8) | Na39—O24xii | 2.758 (11) |
H19—C7 | 0.817 (8) | Na39—O24vi | 2.457 (10) |
H20—C8 | 1.072 (11) | Na39—O30iii | 2.679 (11) |
O21—C1 | 1.267 (3) | Na39—O31ix | 2.551 (10) |
O21—Na38i | 2.374 (12) | Na39—O34iii | 2.789 (11) |
O21—Na40ii | 2.645 (10) | Na40—O21xiii | 2.645 (10) |
O21—Na40iii | 2.336 (11) | Na40—O21iii | 2.336 (11) |
O22—C2 | 1.268 (3) | Na40—O23xiii | 2.742 (12) |
O22—Na37iv | 2.313 (11) | Na40—O23vi | 2.382 (10) |
O22—Na39v | 2.279 (9) | Na40—O29iii | 2.472 (11) |
O22—Na39iii | 2.646 (11) | Na40—O32iii | 2.309 (10) |
O22—Na41iv | 2.749 (10) | Na40—O33iii | 2.386 (10) |
O23—C1 | 1.265 (3) | Na41—O22x | 2.749 (10) |
O23—Na37i | 2.571 (11) | Na41—O25 | 3.183 (11) |
O23—Na40ii | 2.742 (12) | Na41—O25vii | 2.375 (10) |
O23—Na40vi | 2.382 (10) | Na41—O27 | 2.409 (9) |
O24—C2 | 1.263 (3) | Na41—O31xi | 2.590 (10) |
O24—Na38i | 2.359 (11) | Na41—O34x | 2.445 (10) |
O24—Na39v | 2.758 (11) | H43—O25 | 1.168 (8) |
O24—Na39vi | 2.457 (10) | H43—O25vii | 1.168 (8) |
O25—C9 | 1.263 (3) | H44—O26 | 1.317 (8) |
O25—Na41 | 3.183 (11) | H44—O26xiv | 1.317 (8) |
C3—C1—O21 | 119.5 (3) | C6—O34—Na41iv | 100.0 (4) |
C3—C1—O23 | 120.5 (4) | H36—O34—Na39iii | 38.5 (4) |
O21—C1—O23 | 120.0 (4) | H36—O34—Na41iv | 114.5 (6) |
C4—C2—O22 | 119.8 (3) | Na39iii—O34—Na41iv | 78.4 (3) |
C4—C2—O24 | 119.1 (4) | O33—H35—Na40iii | 98.3 (5) |
O22—C2—O24 | 118.8 (3) | O34—H36—Na39iii | 127.5 (5) |
C1—C3—C5 | 110.6 (4) | O22x—Na37—O23xi | 167.4 (4) |
C2—C4—C6 | 109.1 (4) | O22x—Na37—O27 | 85.7 (4) |
C3—C5—C7 | 108.1 (3) | O22x—Na37—O29 | 113.4 (4) |
C3—C5—C11 | 108.3 (4) | O22x—Na37—O30viii | 88.7 (4) |
C3—C5—O33 | 110.6 (3) | O22x—Na37—O31xi | 85.3 (3) |
C7—C5—C11 | 109.8 (4) | O23xi—Na37—O27 | 89.6 (4) |
C7—C5—O33 | 110.0 (3) | O23xi—Na37—O29 | 77.3 (4) |
C11—C5—O33 | 110.0 (3) | O23xi—Na37—O30viii | 99.8 (4) |
C4—C6—C8 | 110.9 (3) | O23xi—Na37—O31xi | 83.3 (4) |
C4—C6—C12 | 109.7 (3) | O27—Na37—O29 | 81.3 (3) |
C4—C6—O34 | 107.8 (3) | O27—Na37—O30viii | 158.3 (5) |
C8—C6—C12 | 107.6 (4) | O27—Na37—O31xi | 92.9 (3) |
C8—C6—O34 | 110.6 (3) | O29—Na37—O30viii | 81.8 (4) |
C12—C6—O34 | 110.2 (5) | O29—Na37—O31xi | 159.7 (5) |
C5—C7—C9 | 114.0 (3) | O30viii—Na37—O31xi | 107.5 (4) |
C6—C8—C10 | 110.0 (3) | O21xi—Na38—O24xi | 163.1 (4) |
C7—C9—O25 | 116.8 (5) | O21xi—Na38—O28 | 80.0 (4) |
C7—C9—O27 | 122.9 (3) | O21xi—Na38—O29viii | 85.6 (4) |
O25—C9—O27 | 117.4 (3) | O21xi—Na38—O30 | 109.5 (5) |
C8—C10—O26 | 119.7 (4) | O21xi—Na38—O32xi | 78.9 (4) |
C8—C10—O28 | 119.4 (4) | O24xi—Na38—O28 | 89.3 (4) |
O26—C10—O28 | 119.5 (4) | O24xi—Na38—O29viii | 109.8 (4) |
C5—C11—O29 | 119.7 (4) | O24xi—Na38—O30 | 80.3 (4) |
C5—C11—O31 | 117.9 (4) | O24xi—Na38—O32xi | 89.8 (4) |
O29—C11—O31 | 118.7 (4) | O28—Na38—O29viii | 148.9 (5) |
C6—C12—O30 | 117.9 (4) | O28—Na38—O30 | 77.0 (4) |
C6—C12—O32 | 118.9 (3) | O28—Na38—O32xi | 97.6 (4) |
O30—C12—O32 | 120.0 (4) | O29viii—Na38—O30 | 82.2 (4) |
C1—O21—Na38i | 130.6 (10) | O29viii—Na38—O32xi | 106.5 (4) |
C1—O21—Na40ii | 95.2 (6) | O30—Na38—O32xi | 168.7 (5) |
C1—O21—Na40iii | 132.9 (10) | O22xii—Na39—O22iii | 85.5 (5) |
Na38i—O21—Na40ii | 94.5 (4) | O22xii—Na39—O24xii | 50.2 (2) |
Na38i—O21—Na40iii | 94.3 (4) | O22xii—Na39—O24vi | 120.6 (5) |
Na40ii—O21—Na40iii | 94.5 (4) | O22xii—Na39—O30iii | 81.4 (4) |
C2—O22—Na37iv | 138.9 (9) | O22xii—Na39—O31ix | 123.8 (4) |
C2—O22—Na39v | 100.9 (5) | O22xii—Na39—O34iii | 136.3 (4) |
C2—O22—Na39iii | 119.6 (8) | O22iii—Na39—O24xii | 122.2 (4) |
C2—O22—Na41iv | 89.3 (4) | O22iii—Na39—O24vi | 139.8 (4) |
Na37iv—O22—Na39v | 99.3 (4) | O22iii—Na39—O30iii | 82.6 (4) |
Na37iv—O22—Na39iii | 93.8 (4) | O22iii—Na39—O31ix | 79.2 (3) |
Na37iv—O22—Na41iv | 75.6 (3) | O22iii—Na39—O34iii | 75.3 (3) |
Na39v—O22—Na39iii | 94.5 (5) | O24xii—Na39—O24vi | 97.5 (4) |
Na39v—O22—Na41iv | 168.6 (5) | O24xii—Na39—O30iii | 117.4 (3) |
Na39iii—O22—Na41iv | 75.9 (3) | O24xii—Na39—O31ix | 95.5 (3) |
C1—O23—Na37i | 113.8 (6) | O24xii—Na39—O34iii | 162.2 (4) |
C1—O23—Na40ii | 90.8 (7) | O24vi—Na39—O30iii | 72.9 (4) |
C1—O23—Na40vi | 143.0 (9) | O24vi—Na39—O31ix | 104.8 (4) |
Na37i—O23—Na40ii | 102.4 (4) | O24vi—Na39—O34iii | 64.7 (3) |
Na37i—O23—Na40vi | 100.1 (4) | O30iii—Na39—O31ix | 147.1 (4) |
Na40ii—O23—Na40vi | 96.1 (3) | O30iii—Na39—O34iii | 57.7 (3) |
C2—O24—Na38i | 115.7 (6) | O31ix—Na39—O34iii | 91.0 (3) |
C2—O24—Na39v | 79.2 (5) | O21xiii—Na40—O21iii | 85.5 (4) |
C2—O24—Na39vi | 138.3 (6) | O21xiii—Na40—O23xiii | 47.98 (16) |
Na38i—O24—Na39v | 101.1 (4) | O21xiii—Na40—O23vi | 113.9 (5) |
Na38i—O24—Na39vi | 104.4 (4) | O21xiii—Na40—O29iii | 77.7 (3) |
Na39v—O24—Na39vi | 82.5 (4) | O21xiii—Na40—O32iii | 119.2 (4) |
C9—O27—Na37 | 153.7 (7) | O21xiii—Na40—O33iii | 139.4 (4) |
C9—O27—Na41 | 117.3 (4) | O21iii—Na40—O23xiii | 124.8 (4) |
Na37—O27—Na41 | 80.9 (3) | O21iii—Na40—O23vi | 150.1 (4) |
C10—O28—Na38 | 157.8 (5) | O21iii—Na40—O29iii | 82.7 (4) |
C11—O29—Na37 | 109.6 (7) | O21iii—Na40—O32iii | 82.0 (4) |
C11—O29—Na38viii | 130.2 (6) | O21iii—Na40—O33iii | 71.4 (4) |
C11—O29—Na40iii | 114.1 (5) | O23xiii—Na40—O23vi | 83.9 (3) |
Na37—O29—Na38viii | 96.9 (4) | O23xiii—Na40—O29iii | 108.4 (3) |
Na37—O29—Na40iii | 102.0 (4) | O23xiii—Na40—O32iii | 95.5 (4) |
Na38viii—O29—Na40iii | 99.8 (4) | O23xiii—Na40—O33iii | 163.3 (4) |
C12—O30—Na37viii | 123.5 (6) | O23vi—Na40—O29iii | 79.9 (4) |
C12—O30—Na38 | 129.9 (7) | O23vi—Na40—O32iii | 105.3 (5) |
C12—O30—Na39iii | 108.7 (6) | O23vi—Na40—O33iii | 79.5 (4) |
Na37viii—O30—Na38 | 98.5 (4) | O29iii—Na40—O32iii | 156.1 (4) |
Na37viii—O30—Na39iii | 88.3 (4) | O29iii—Na40—O33iii | 66.9 (3) |
Na38—O30—Na39iii | 97.4 (4) | O32iii—Na40—O33iii | 90.8 (4) |
C11—O31—Na37i | 134.6 (8) | O22x—Na41—O25vii | 140.9 (4) |
C11—O31—Na39ix | 130.3 (7) | O22x—Na41—O27 | 76.6 (4) |
C11—O31—Na41i | 124.9 (5) | O22x—Na41—O31xi | 76.7 (3) |
Na37i—O31—Na39ix | 90.2 (3) | O22x—Na41—O34x | 79.3 (3) |
Na37i—O31—Na41i | 74.5 (3) | O25vii—Na41—O27 | 88.0 (4) |
Na39ix—O31—Na41i | 80.4 (3) | O25vii—Na41—O31xi | 140.6 (4) |
C12—O32—Na38i | 119.5 (8) | O25vii—Na41—O34x | 100.5 (4) |
C12—O32—Na40iii | 140.3 (7) | O27—Na41—O31xi | 92.3 (4) |
Na38i—O32—Na40iii | 93.7 (4) | O27—Na41—O34x | 150.5 (4) |
C5—O33—Na40iii | 114.0 (4) | O31xi—Na41—O34x | 98.4 (4) |
H35—O33—Na40iii | 57.8 (5) | O25—H43—O25vii | 180.0 |
C6—O34—Na39iii | 106.7 (5) | O26—H44—O26xiv | 180.0 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x, y−1, z+1; (vi) −x, −y+1, −z+1; (vii) −x+1, −y+2, −z+1; (viii) −x+1, −y+1, −z+2; (ix) −x, −y+2, −z+1; (x) x, y+1, z; (xi) x+1, y, z; (xii) x, y+1, z−1; (xiii) x+1, y, z−1; (xiv) −x+2, −y+1, −z+1. |
Si | V = 160.20 (1) Å3 |
Mr = 28.09 | Z = 8 |
Cubic, Fd3m | Dx = 2.329 Mg m−3 |
Hall symbol: -F 4vw 2vw | T = 295 K |
a = 5.431046 (9) Å |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.125 | 0.125 | 0.125 | 0.0056 (3)* |
Si1—Si1i | 2.3517 | Si1—Si1iii | 2.3517 |
Si1—Si1ii | 2.3517 | Si1—Si1iv | 2.3517 |
Si1i—Si1—Si1ii | 109.4712 (1) | Si1ii—Si1—Si1iii | 109.4712 (1) |
Si1i—Si1—Si1iii | 109.4712 (1) | Si1ii—Si1—Si1iv | 109.4712 (1) |
Si1i—Si1—Si1iv | 109.4712 (1) | Si1iii—Si1—Si1iv | 109.4712 (1) |
Symmetry codes: (i) x+1/4, y+1/4, −z; (ii) −z, x+1/4, y+1/4; (iii) y+1/4, −z, x+1/4; (iv) −x, −y, −z. |
Na5H(C6H5O7)2 | α = 73.8374° |
Mr = 494.13 | β = 80.8808° |
Triclinic, P1 | γ = 80.7103° |
Hall symbol: -P 1 | V = 871.72 Å3 |
a = 6.3526 Å | Z = 2 |
b = 11.9863 Å | Dx = 1.883 Mg m−3 |
c = 12.1654 Å | T = 295 K |
x | y | z | Uiso*/Ueq | ||
C1 | −0.21093 | 0.58380 | 0.83744 | 0.01060* | |
C2 | 0.28547 | 0.08699 | 0.82748 | 0.01060* | |
C3 | −0.11904 | 0.65713 | 0.72068 | 0.01600* | |
C4 | 0.34300 | 0.18316 | 0.71790 | 0.01600* | |
C5 | 0.06950 | 0.72103 | 0.72811 | 0.01600* | |
C6 | 0.53786 | 0.24180 | 0.72599 | 0.01600* | |
C7 | 0.11665 | 0.81156 | 0.61196 | 0.01600* | |
C8 | 0.55181 | 0.35732 | 0.63154 | 0.01600* | |
C9 | 0.29966 | 0.88149 | 0.60472 | 0.01060* | |
C10 | 0.77028 | 0.40070 | 0.61710 | 0.01060* | |
C11 | 0.00917 | 0.77940 | 0.83069 | 0.01060* | |
C12 | 0.50875 | 0.26301 | 0.84778 | 0.01060* | |
O21 | −0.08985 | 0.50169 | 0.89446 | 0.01060* | |
O22 | 0.43125 | 0.00445 | 0.86367 | 0.01060* | |
O23 | −0.40674 | 0.61148 | 0.87458 | 0.01060* | |
O24 | 0.09817 | 0.09733 | 0.88046 | 0.01060* | |
O25 | 0.34064 | 0.95546 | 0.50492 | 0.01060* | |
O26 | 0.82824 | 0.46330 | 0.51541 | 0.01060* | |
O27 | 0.40445 | 0.86921 | 0.68646 | 0.01060* | |
O28 | 0.87727 | 0.37570 | 0.70033 | 0.01060* | |
O29 | 0.11832 | 0.74256 | 0.91351 | 0.01060* | |
O30 | 0.65064 | 0.21054 | 0.91295 | 0.01060* | |
O31 | −0.15265 | 0.85830 | 0.82412 | 0.01060* | |
O32 | 0.34170 | 0.32615 | 0.87533 | 0.01060* | |
O33 | 0.25360 | 0.63635 | 0.74506 | 0.01060* | |
O34 | 0.72908 | 0.16202 | 0.71125 | 0.01060* | |
H35 | 0.36530 | 0.67271 | 0.76366 | 0.01380* | |
H36 | 0.83443 | 0.18009 | 0.75138 | 0.01380* | |
Na37 | 0.46548 | 0.79769 | 0.89886 | 0.01270* | |
Na38 | 0.97393 | 0.30775 | 0.88552 | 0.01270* | |
Na39 | 0.22004 | 0.98848 | 0.06887 | 0.01270* | |
Na40 | 0.71654 | 0.49717 | 0.07535 | 0.01270* | |
Na41 | 0.66889 | 0.98575 | 0.69266 | 0.01270* | |
H13 | −0.24775 | 0.72123 | 0.68279 | 0.02090* | |
H15 | −0.05830 | 0.59958 | 0.66395 | 0.02090* | |
H14 | 0.62099 | 0.85243 | 0.35789 | 0.02090* | |
H16 | 0.79387 | 0.74936 | 0.29832 | 0.02090* | |
H18 | 0.47857 | 0.65251 | 0.45109 | 0.02090* | |
H20 | 0.57361 | 0.57501 | 0.34726 | 0.02090* | |
H17 | −0.16193 | 0.23620 | 0.45478 | 0.02090* | |
H19 | 0.02421 | 0.12681 | 0.41491 | 0.02090* | |
H43 | 0.50000 | 1.00000 | 0.50000 | 0.01470* | |
H44 | 1.00000 | 0.50000 | 0.50000 | 0.01470* |
C1—C3 | 1.529 | C8—H18i | 1.094 |
C1—O21 | 1.259 | C8—H20i | 1.096 |
C1—O23 | 1.278 | C9—O25 | 1.305 |
C2—C4 | 1.538 | C9—O27 | 1.245 |
C2—O22 | 1.273 | C10—O26 | 1.287 |
C2—O24 | 1.265 | C10—O28 | 1.249 |
C3—C5 | 1.549 | C11—O29 | 1.251 |
C3—H13 | 1.091 | C11—O31 | 1.276 |
C3—H15 | 1.094 | C12—O30 | 1.266 |
C4—C6 | 1.547 | C12—O32 | 1.257 |
C4—H14i | 1.098 | O25—H43 | 1.205 |
C4—H16i | 1.090 | O26—H44 | 1.210 |
C5—C7 | 1.543 | O33—H35 | 0.975 |
C5—C11 | 1.563 | O34—H36 | 0.971 |
C5—O33 | 1.420 | H14—C4i | 1.098 |
C6—C8 | 1.539 | H16—C4i | 1.090 |
C6—C12 | 1.550 | H18—C8i | 1.094 |
C6—O34 | 1.440 | H20—C8i | 1.096 |
C7—C9 | 1.518 | H17—C7ii | 1.096 |
C7—H17ii | 1.096 | H19—C7ii | 1.095 |
C7—H19ii | 1.095 | H43—O25iii | 1.205 |
C8—C10 | 1.527 | H44—O26iv | 1.210 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O26—H44···O26iv | 1.210 | 1.210 | 2.419 | 180.0 |
O25—H43···O25iii | 1.205 | 1.205 | 2.409 | 180.0 |
O33—H35···O23v | 0.975 | 2.045 | 2.799 | 132.8 |
O33—H35···O29 | 0.975 | 2.450 | 2.664 | 91.7 |
O34—H36···O30 | 0.971 | 2.212 | 2.631 | 104.6 |
O34—H36···O28 | 0.971 | 2.302 | 2.831 | 113.4 |
O34—H36···O24v | 0.971 | 2.385 | 3.223 | 144.3 |
Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z. |
Acknowledgements
Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. This work was partially supported by the International Centre for Diffraction Data. We thank Lynn Ribaud for his assistance in data collection.
References
Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego California, USA. Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573. Web of Science CrossRef CAS Google Scholar
Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19. CrossRef CAS Web of Science Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Howard, C. J. (1982). J. Appl. Cryst. 15, 615–620. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457–1446458. CCDC Cambridge, England. Google Scholar
Kaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460–1446461. CCDC Cambridge, England. Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427–432. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
MDI (2012). Jade. Materials Data Inc., Livermore, CA, USA. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B73. Submitted. Google Scholar
Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230. CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253. CrossRef IUCr Journals Google Scholar
Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105. Web of Science CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.