research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[bis­­(acetato-κO)copper(II)]-bis­­[μ-4-(1H-imidazol-1-yl)phenol]-κ2N3:O;κ2O:N3]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, TR-03200 Afyonkarahisar, Turkey, and bDepartment of Physics Education, Gazi University, Beşevler, TR-06500 Ankara, Turkey
*Correspondence e-mail: poyraz@aku.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 December 2016; accepted 16 January 2017; online 20 January 2017)

In the title compound, [Cu(CH3COO)2(C9H8N2O)2]n, the CuII ion resides on a centre of inversion, displaying a tetra­gonally distorted octa­hedral coordination environment defined by two pairs of N and O atoms of symmetry-related 4-(1H-imidazol-1-yl)phenol ligands and the O atoms of two symmetry-related acetate ligands. The bridging mode of the 4-(1H-imidazol-1-yl)phenol ligands is associated with a very long Cu⋯O inter­actions involving the phenol O atom of the heterocyclic ligand, which creates chains extending parallel to [100]. In the crystal, the chains are arranged in a distorted hexa­gonal rod packing and are linked via C—H⋯O hydrogen bonds and by ππ stacking inter­actions involving centrosymmetrically related pairs of imidazole and phenol rings.

1. Chemical context

Coordination polymers have been investigated as materials with inter­esting properties such as magnetism (Zhu et al., 2010[Zhu, X., Zhao, J. W., Li, B. L., Song, Y., Zhang, Y. M. & Zhang, Y. (2010). Inorg. Chem. 49, 1266-1270.]), luminescence (Cui et al., 2012[Cui, Y. J., Yue, Y. F., Qian, G. D. & Chen, B. L. (2012). Chem. Rev. 112, 1126-1162.]), catalysis (Wang et al., 2011[Wang, S. J., Li, L., Zhang, J. Y., Yuan, X. C. & Su, C. Y. (2011). J. Mater. Chem. 21, 7098-7104.]) or absorption (Zhang et al., 2017[Zhang, X., Wu, X. X., Guo, J. Z., Huo, J. H. & Ding, B. (2017). J. Mol. Struct. 1127, 183-190.]). Some coordination polymers are also known to show photocatalytic activity with respect to the decomposition of organic dyes (Yang et al., 2010[Yang, H. X., Liu, T. F., Cao, M. N., Li, H. F., Gao, S. Y. & Cao, R. (2010). Chem. Commun. 46, 2429-2431.]; Yin et al., 2015[Yin, W.-Y., Huang, Z.-L., Tang, X.-Y., Wang, J., Cheng, H.-J., Ma, Y.-S., Yuan, R.-X. & Liu, D. (2015). New J. Chem. 39, 7130-7139.]).

[Scheme 1]

In the past few years, metal complexes with ligands derived from imidazole have attracted much attention, not only for their fascinating crystal structures, but also for their inter­esting applications related to anti­fungal (Rezaei et al., 2011[Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N. & Gholami, S. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 658-665.]), pesticidal (Stenersen et al., 2004[Stenersen, J. (2004). In Chemical Pesticides Mode of Action and Toxicology. Boca Raton: CRC Press.]) and plant-growth regulatory properties (Choi et al., 2010[Choi, J. H., Abe, N., Tanaka, H., Fushimi, K., Nishina, Y., Morita, A., Kiriiwa, Y., Motohashi, R., Hashizume, D., Koshino, H. & Kawagishi, H. (2010). J. Agric. Food Chem. 58, 9956-9959.]), or drugs in general (Lednicer et al., 1998[Lednicer, D. (1998). Drugs Based on Five-Membered Heterocycles, in Strategies for Organic Drug Synthesis and Design. New York: Wiley.]; Adams et al., 2001[Adams, J. L., Boehm, J. C., Gallagher, T. F., Kassis, S., Webb, E. F., Hall, R., Sorenson, M., Garigipati, R., Griswold, D. E. & Lee, J. C. (2001). Bioorg. Med. Chem. Lett. 11, 2867-2870.]). Most of these compounds exhibit typical mol­ecular structures whereas the number of imidazole-based coordination polymers (Martins et al., 2010[Martins, G. A. V., Byrne, P. J., Allan, P., Teat, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). Dalton Trans. 39, 1758-1762.]; Masciocchi et al., 2001[Masciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S. & Sironi, A. (2001). Inorg. Chem. 40, 5897-5905.]; Stamatatos et al., 2009[Stamatatos, T. C., Perlepes, S. P., Raptopoulou, C. P., Terzis, A., Patrickios, C. S., Tasiopoulos, A. J. & Boudalis, A. K. (2009). Dalton Trans. pp. 3354-3362.]) is much lower, probably due to the difficulty of growing single crystals.

In this communication we report on the synthesis and crystal structure of a copper(II) coordination polymer, [Cu(CH3COO)2(C9H8N2O)2]n, comprising 4-(1H-imidazol-1-yl)-phenol and acetate ligands.

2. Structural commentary

The asymmetric unit of the title compound comprises of one CuII atom, one 4-(1H-imidazol-1-yl)-phenol ligand and one acetate group, with the CuII atom situated on a crystallographic inversion centre. The distorted octa­hedral coordination environment of the CuII atom is defined by two symmetry-related pairs of imidazole N atoms and phenol O atoms from the heterocyclic ligands and by two O atoms of a symmetry-related pair of monodentate acetate ligands (Fig. 1[link]). The Cu—O(acetate) [1.9322 (18) Å] and Cu—N(imidazole) [2.003 (2) Å] bonds are arranged in the equatorial plane and are within normal lengths (Ding et al., 2005[Ding, C.-F., Zhang, S.-S., Tian, B.-Q., Li, X.-M., Xu, H. & Ouyang, P.-K. (2005). Acta Cryst. E61, m235-m236.]; Song et al., 2008[Song, W.-D., Huang, X.-H. & Wang, H. (2008). Acta Cryst. E64, m764.]; Yun et al., 2008[Yun, R., Ying, W., Qi, B., Fan, X. & Wu, H. (2008). Acta Cryst. E64, m1529.]; Yu & Deng, 2011[Yu, R.-J. & Deng, B. (2011). Acta Cryst. E67, m1253.]). The equatorial bond angles are in the range 86.94 (7)–93.06 (7)° in the Cu1N2O4 polyhedron (Table 1[link]). The bond involving the phenolic O3 atom is very weak, with a distance of Cu⋯O = 2.739 (2) Å, completing the tetra­gonally distorted octa­hedron. The N,O-bridging character of the 4-(1H-imidazol-1-yl)-phenol ligand leads to the formation of chains extending parallel to [100], whereby the ligands are oriented in an anti­parallel fashion within a chain. The dihedral angle between the imidazole group (N1,N2,C1–C3) and the phenyl ring (C4–C9) is 24.07 (2)°. An intra­chain hydrogen bond between the phenol OH group (O3) and the non-coordinating carboxyl­ate O atom (O1) of the acetate ligand is present (Table 2[link], Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

N1—Cu1 2.003 (2) O3—Cu1i 2.739 (2)
Cu1—O2 1.9322 (18)    
       
O2—Cu1—N1 90.56 (8) N1—Cu1—O3iii 91.31 (7)
N1—Cu1—N1ii 180.0 O2—Cu1—O3iv 86.94 (7)
O2—Cu1—O3iii 93.06 (7) N1—Cu1—O3iv 88.69 (7)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1v 0.95 2.44 3.356 (3) 161
O3—H3A⋯O1iii 0.84 1.80 2.637 (3) 172
Symmetry codes: (iii) -x+1, -y+1, -z+1; (v) x, y, z+1.
[Figure 1]
Figure 1
The coordination environment of the CuII atom in the title compound. Displacement ellipsoids are drawn at the 30% probability level; non-labelled atoms are related to labelled atoms by (−x + 1, −y + 1, −z).
[Figure 2]
Figure 2
The crystal structure of the title compound showing the formation of chains extending parallel to [100]. Hydrogen-bonding inter­actions are shown as dashed lines.

3. Supra­molecular features

In the crystal, the chains are aligned in a distorted hexa­gonal rod packing perpendicular to the chain direction. Chains are linked through inter­molecular C—H⋯O inter­actions between a phenyl CH group and the non-coordinating carboxyl­ate O atom (O1) that consequently acts as a double acceptor atom (Fig. 2[link], Table 2[link]). Additional ππ stacking inter­actions involving centrosymmetrically related pairs of imidazole and phenol rings, with the shortest distance between an N atom and a C atom being 3.372 (2) Å, are also present. The inter­planar angle between the two rings is 24.1 (1)°.

4. Database survey

The literature about one-dimensional inorganic–organic coordination polymers based on copper(II) complexes with CuII either in a square-pyramidal or a distorted octa­hedral coordination environment is vast. Just to take very recent examples, three such structures have been reported (Hazra et al., 2017[Hazra, S., Martins, L. M. D. R. S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Inorg. Chim. Acta, 455, 549-556.]; Puchoňová et al., 2017[Puchoňová, M., Švorec, J., Švorc, Ľ., Pavlik, J., Mazúr, M., Dlháň, Ľ., Růžičková, Z., Moncoľ, J. & Valigura, D. (2017). Inorg. Chim. Acta, 455, 298-306.]; Shaabani et al., 2017[Shaabani, B., Rad-Yousefnia, N., Zahedi, M., Ertan, Ş., Blake, G. R. & Zakerhamidi, M. S. (2017). Inorg. Chim. Acta, 455, 158-165.]). Nevertheless, there is only limited research on 4-(1H-imidazol-1-yl)-phenol as a ligand (Maher et al., 1994[Maher, J. P., McCleverty, J. A., Ward, M. D. & Wlodarczyk, A. (1994). J. Chem. Soc. Dalton Trans. pp. 143-147.]; Wei et al., 2007[Wei, R. G., Adler, M., Davey, D., Ho, E., Mohan, R., Polokoff, R., Tseng, J.-L., Whitlow, M., Xu, W., Yuan, S. & Phillips, G. (2007). Bioorg. Med. Chem. Lett. 17, 2499-2504.]; Yurdakul & Badoğlu, 2015[Yurdakul, S. & Badoğlu, S. (2015). Spectrochim. Acta Part A, 150, 614-622.]). To the best of our know­ledge, only one discrete copper(II) complex of 4-(1H-imidazol-1-yl)-phenol (Yu & Deng, 2011[Yu, R.-J. & Deng, B. (2011). Acta Cryst. E67, m1253.]) has been reported. In this regard, the title compound is the first CuII coordination polymer with 4-(1H-imidazol-1-yl)-phenol.

5. Synthesis and crystallization

4-(1H-Imidazol-1-yl)phenol (0.0480 g, 0.3 mmol) was dissolved in 5 ml ethanol, a water solution (5 ml) of Na2CO3 (0.0318 g, 0.3 mmol) was slowly added, and an ethanol solution (5 ml) of Cu(NO3)2·2.5H2O (0.0349 g, 0.15 mmol) was added slowly with stirring for 30 min. To the formed cloudy suspension, an aqueous solution of acetic acid (0.3 mmol) was added. The resulting solution turned to a transparent blue colour. After stirring for three h, the solution was allowed to evaporate at room temperature. A number of blue single crystals were obtained after a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with distances in the range 0.93–0.96Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl atoms. The H atom of the phenol OH group was located in a difference map and was constrained at a distance of O—H = 0.84 Å and with Uiso(H) =1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C2H3O2)2(C9H8N2O)2]
Mr 501.99
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.2029 (15), 15.089 (2), 7.7814 (11)
β (°) 111.545 (4)
V3) 1114.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.11 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.895, 0.931
No. of measured, independent and observed [I > 2σ(I)] reflections 40729, 2784, 2156
Rint 0.051
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.15
No. of reflections 2784
No. of parameters 153
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[bis(acetato-κO)copper(II)]-bis[µ-4-(1H-imidazol-1-yl)phenol]-κ2N3:O;κ2O:N3] top
Crystal data top
[Cu(C2H3O2)2(C9H8N2O)2]F(000) = 518
Mr = 501.99Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.2029 (15) ÅCell parameters from 9911 reflections
b = 15.089 (2) Åθ = 3.2–28.0°
c = 7.7814 (11) ŵ = 1.03 mm1
β = 111.545 (4)°T = 296 K
V = 1114.2 (3) Å3Block, blue
Z = 20.11 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2156 reflections with I > 2σ(I)
φ and ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 28.3°, θmin = 3.1°
Tmin = 0.895, Tmax = 0.931h = 1313
40729 measured reflectionsk = 2020
2784 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0249P)2 + 1.2448P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2784 reflectionsΔρmax = 0.26 e Å3
153 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7431 (2)0.55700 (18)0.5692 (3)0.0350 (5)
H10.74610.50590.64200.042*
C20.7933 (4)0.6526 (2)0.4009 (5)0.0601 (9)
H20.83940.68190.33080.072*
C30.6778 (4)0.6824 (2)0.4266 (5)0.0656 (10)
H30.62850.73590.37940.079*
C40.5265 (2)0.62360 (16)0.5918 (3)0.0333 (5)
C50.5302 (3)0.57796 (19)0.7472 (4)0.0408 (6)
H50.61250.54630.81950.049*
C60.4129 (3)0.5787 (2)0.7968 (4)0.0430 (6)
H60.41490.54700.90330.052*
C70.2929 (2)0.62494 (18)0.6930 (3)0.0370 (6)
C80.2926 (3)0.67390 (18)0.5434 (4)0.0419 (6)
H80.21260.70870.47600.050*
C90.4084 (3)0.67258 (18)0.4912 (4)0.0403 (6)
H90.40690.70530.38610.048*
C100.9356 (3)0.56669 (19)0.1300 (3)0.0402 (6)
C110.9592 (4)0.6405 (2)0.0154 (4)0.0617 (9)
H11A0.90940.62730.11590.093*
H11B1.06030.64630.04080.093*
H11C0.92340.69610.04640.093*
N10.8345 (2)0.57396 (15)0.4905 (3)0.0368 (5)
N20.6450 (2)0.62096 (14)0.5338 (3)0.0362 (5)
Cu11.00000.50000.50000.03750 (14)
O10.8401 (2)0.51168 (15)0.0597 (3)0.0528 (5)
O21.01849 (18)0.56716 (14)0.2987 (2)0.0455 (5)
O30.17326 (19)0.62330 (15)0.7320 (3)0.0502 (5)
H3A0.17750.58110.80430.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (11)0.0431 (14)0.0347 (12)0.0002 (10)0.0115 (9)0.0037 (10)
C20.073 (2)0.0432 (17)0.089 (2)0.0039 (15)0.060 (2)0.0134 (16)
C30.079 (2)0.0395 (17)0.104 (3)0.0157 (16)0.064 (2)0.0252 (17)
C40.0288 (11)0.0337 (12)0.0384 (13)0.0008 (9)0.0135 (10)0.0017 (10)
C50.0271 (12)0.0540 (17)0.0403 (13)0.0071 (11)0.0111 (10)0.0107 (12)
C60.0345 (13)0.0601 (18)0.0369 (13)0.0048 (12)0.0161 (11)0.0117 (12)
C70.0282 (11)0.0441 (14)0.0403 (13)0.0003 (10)0.0144 (10)0.0056 (11)
C80.0333 (13)0.0411 (15)0.0494 (15)0.0096 (11)0.0129 (11)0.0067 (12)
C90.0380 (13)0.0397 (14)0.0440 (14)0.0047 (11)0.0159 (11)0.0092 (11)
C100.0364 (13)0.0524 (16)0.0369 (13)0.0142 (12)0.0195 (11)0.0071 (12)
C110.082 (2)0.056 (2)0.0539 (18)0.0127 (17)0.0328 (17)0.0158 (15)
N10.0313 (10)0.0428 (12)0.0393 (11)0.0035 (9)0.0165 (9)0.0029 (9)
N20.0333 (10)0.0357 (11)0.0435 (11)0.0015 (9)0.0187 (9)0.0027 (9)
Cu10.0246 (2)0.0589 (3)0.0293 (2)0.0002 (2)0.01022 (15)0.0018 (2)
O10.0430 (10)0.0701 (14)0.0416 (10)0.0012 (10)0.0112 (8)0.0052 (10)
O20.0316 (9)0.0717 (14)0.0350 (9)0.0000 (9)0.0141 (8)0.0087 (9)
O30.0339 (9)0.0667 (14)0.0571 (12)0.0073 (9)0.0253 (9)0.0065 (10)
Geometric parameters (Å, º) top
C1—N11.315 (3)C8—C91.383 (4)
C1—N21.345 (3)C8—Cu1i3.895 (3)
C1—Cu12.989 (2)C8—H80.9500
C1—H10.9500C9—H90.9500
C2—C31.343 (4)C10—O11.244 (3)
C2—N11.361 (4)C10—O21.274 (3)
C2—Cu13.024 (3)C10—C111.501 (4)
C2—H20.9500C10—Cu12.888 (3)
C3—N21.369 (4)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.380 (3)C11—H11C0.9800
C4—C91.385 (3)N1—Cu12.003 (2)
C4—N21.438 (3)Cu1—O2ii1.9322 (18)
C5—C61.386 (3)Cu1—O21.9322 (18)
C5—H50.9500Cu1—N1ii2.003 (2)
C6—C71.383 (4)Cu1—O3iii2.739 (2)
C6—H60.9500Cu1—O3iv2.739 (2)
C7—O31.363 (3)O3—Cu1i2.739 (2)
C7—C81.377 (4)O3—H3A0.8400
C7—Cu1i3.383 (2)
N1—C1—N2111.5 (2)O1—C10—O2125.0 (3)
N2—C1—Cu1143.71 (17)O1—C10—C11120.3 (3)
N1—C1—H1124.2O2—C10—C11114.7 (3)
N2—C1—H1124.2O1—C10—Cu193.50 (16)
Cu1—C1—H192.1C11—C10—Cu1145.5 (2)
C3—C2—N1109.8 (3)C10—C11—H11A109.5
C3—C2—Cu1141.7 (2)C10—C11—H11B109.5
C3—C2—H2125.1H11A—C11—H11B109.5
N1—C2—H2125.1C10—C11—H11C109.5
Cu1—C2—H293.2H11A—C11—H11C109.5
C2—C3—N2106.8 (3)H11B—C11—H11C109.5
C2—C3—H3126.6C1—N1—C2105.7 (2)
N2—C3—H3126.6C1—N1—Cu1127.34 (18)
C5—C4—C9120.0 (2)C2—N1—Cu1127.00 (18)
C5—C4—N2120.4 (2)C1—N2—C3106.3 (2)
C9—C4—N2119.6 (2)C1—N2—C4127.2 (2)
C4—C5—C6119.4 (2)C3—N2—C4126.5 (2)
C4—C5—H5120.3O2ii—Cu1—O2180.0
C6—C5—H5120.3O2ii—Cu1—N189.44 (8)
C7—C6—C5120.7 (2)O2—Cu1—N190.56 (8)
C7—C6—H6119.6O2ii—Cu1—N1ii90.56 (8)
C5—C6—H6119.6O2—Cu1—N1ii89.44 (8)
O3—C7—C8118.3 (2)N1—Cu1—N1ii180.0
O3—C7—C6122.3 (2)O2ii—Cu1—O3iii86.94 (7)
C8—C7—C6119.4 (2)O2—Cu1—O3iii93.06 (7)
O3—C7—Cu1i51.02 (13)N1—Cu1—O3iii91.31 (7)
C8—C7—Cu1i101.33 (16)N1ii—Cu1—O3iii88.69 (7)
C6—C7—Cu1i115.23 (18)O2ii—Cu1—O3iv93.06 (7)
C7—C8—C9120.2 (2)O2—Cu1—O3iv86.94 (7)
C7—C8—Cu1i58.39 (14)N1—Cu1—O3iv88.69 (7)
C9—C8—Cu1i132.43 (19)N1ii—Cu1—O3iv91.31 (7)
C7—C8—H8119.9O3iii—Cu1—O3iv180.00 (7)
C9—C8—H8119.9C10—O1—Cu163.78 (14)
Cu1i—C8—H881.3C10—O2—Cu1127.36 (18)
C8—C9—C4120.1 (2)C7—O3—Cu1i106.23 (16)
C8—C9—H9120.0C7—O3—H3A109.5
C4—C9—H9120.0Cu1i—O3—H3A77.8
N1—C2—C3—N20.4 (4)C3—C2—N1—C10.1 (4)
Cu1—C2—C3—N20.5 (6)Cu1—C2—N1—C1179.9 (3)
C9—C4—C5—C62.6 (4)C3—C2—N1—Cu1179.8 (2)
N2—C4—C5—C6177.6 (3)N1—C1—N2—C30.4 (3)
C4—C5—C6—C70.3 (4)Cu1—C1—N2—C30.5 (4)
C5—C6—C7—O3176.5 (3)N1—C1—N2—C4177.9 (2)
C5—C6—C7—C82.9 (4)Cu1—C1—N2—C4177.83 (19)
C5—C6—C7—Cu1i118.1 (3)C2—C3—N2—C10.5 (4)
O3—C7—C8—C9175.6 (3)C2—C3—N2—C4177.9 (3)
C6—C7—C8—C93.8 (4)C5—C4—N2—C125.2 (4)
Cu1i—C7—C8—C9123.9 (2)C9—C4—N2—C1155.1 (3)
O3—C7—C8—Cu1i51.63 (19)C5—C4—N2—C3156.8 (3)
C6—C7—C8—Cu1i127.7 (3)C9—C4—N2—C323.0 (4)
C7—C8—C9—C41.5 (4)O2—C10—O1—Cu16.7 (2)
Cu1i—C8—C9—C474.7 (3)C11—C10—O1—Cu1172.5 (3)
C5—C4—C9—C81.7 (4)O1—C10—O2—Cu112.6 (4)
N2—C4—C9—C8178.5 (2)C11—C10—O2—Cu1166.60 (19)
N2—C1—N1—C20.2 (3)C8—C7—O3—Cu1i81.4 (3)
Cu1—C1—N1—C2179.9 (3)C6—C7—O3—Cu1i97.9 (3)
N2—C1—N1—Cu1179.88 (16)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1v0.952.443.356 (3)161
O3—H3A···O1iii0.841.802.637 (3)172
Symmetry codes: (iii) x+1, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

The authors acknowledge Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer and Dr Onur Şahin for help and guidance.

References

First citationAdams, J. L., Boehm, J. C., Gallagher, T. F., Kassis, S., Webb, E. F., Hall, R., Sorenson, M., Garigipati, R., Griswold, D. E. & Lee, J. C. (2001). Bioorg. Med. Chem. Lett. 11, 2867–2870.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, J. H., Abe, N., Tanaka, H., Fushimi, K., Nishina, Y., Morita, A., Kiriiwa, Y., Motohashi, R., Hashizume, D., Koshino, H. & Kawagishi, H. (2010). J. Agric. Food Chem. 58, 9956–9959.  CSD CrossRef CAS Google Scholar
First citationCui, Y. J., Yue, Y. F., Qian, G. D. & Chen, B. L. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDing, C.-F., Zhang, S.-S., Tian, B.-Q., Li, X.-M., Xu, H. & Ouyang, P.-K. (2005). Acta Cryst. E61, m235–m236.  CSD CrossRef IUCr Journals Google Scholar
First citationHazra, S., Martins, L. M. D. R. S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Inorg. Chim. Acta, 455, 549–556.  CSD CrossRef CAS Google Scholar
First citationLednicer, D. (1998). Drugs Based on Five-Membered Heterocycles, in Strategies for Organic Drug Synthesis and Design. New York: Wiley.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaher, J. P., McCleverty, J. A., Ward, M. D. & Wlodarczyk, A. (1994). J. Chem. Soc. Dalton Trans. pp. 143–147.  CrossRef Google Scholar
First citationMartins, G. A. V., Byrne, P. J., Allan, P., Teat, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). Dalton Trans. 39, 1758–1762.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMasciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S. & Sironi, A. (2001). Inorg. Chem. 40, 5897–5905.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPuchoňová, M., Švorec, J., Švorc, Ľ., Pavlik, J., Mazúr, M., Dlháň, Ľ., Růžičková, Z., Moncoľ, J. & Valigura, D. (2017). Inorg. Chim. Acta, 455, 298–306.  Google Scholar
First citationRezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N. & Gholami, S. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 658–665.  CrossRef CAS Google Scholar
First citationShaabani, B., Rad-Yousefnia, N., Zahedi, M., Ertan, Ş., Blake, G. R. & Zakerhamidi, M. S. (2017). Inorg. Chim. Acta, 455, 158–165.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Huang, X.-H. & Wang, H. (2008). Acta Cryst. E64, m764.  CSD CrossRef IUCr Journals Google Scholar
First citationStamatatos, T. C., Perlepes, S. P., Raptopoulou, C. P., Terzis, A., Patrickios, C. S., Tasiopoulos, A. J. & Boudalis, A. K. (2009). Dalton Trans. pp. 3354–3362.  CSD CrossRef Google Scholar
First citationStenersen, J. (2004). In Chemical Pesticides Mode of Action and Toxicology. Boca Raton: CRC Press.  Google Scholar
First citationWang, S. J., Li, L., Zhang, J. Y., Yuan, X. C. & Su, C. Y. (2011). J. Mater. Chem. 21, 7098–7104.  CSD CrossRef CAS Google Scholar
First citationWei, R. G., Adler, M., Davey, D., Ho, E., Mohan, R., Polokoff, R., Tseng, J.-L., Whitlow, M., Xu, W., Yuan, S. & Phillips, G. (2007). Bioorg. Med. Chem. Lett. 17, 2499–2504.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H. X., Liu, T. F., Cao, M. N., Li, H. F., Gao, S. Y. & Cao, R. (2010). Chem. Commun. 46, 2429–2431.  CrossRef CAS Google Scholar
First citationYin, W.-Y., Huang, Z.-L., Tang, X.-Y., Wang, J., Cheng, H.-J., Ma, Y.-S., Yuan, R.-X. & Liu, D. (2015). New J. Chem. 39, 7130–7139.  CSD CrossRef CAS Google Scholar
First citationYu, R.-J. & Deng, B. (2011). Acta Cryst. E67, m1253.  CSD CrossRef IUCr Journals Google Scholar
First citationYun, R., Ying, W., Qi, B., Fan, X. & Wu, H. (2008). Acta Cryst. E64, m1529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYurdakul, S. & Badoğlu, S. (2015). Spectrochim. Acta Part A, 150, 614–622.  CrossRef CAS Google Scholar
First citationZhang, X., Wu, X. X., Guo, J. Z., Huo, J. H. & Ding, B. (2017). J. Mol. Struct. 1127, 183–190.  CSD CrossRef CAS Google Scholar
First citationZhu, X., Zhao, J. W., Li, B. L., Song, Y., Zhang, Y. M. & Zhang, Y. (2010). Inorg. Chem. 49, 1266–1270.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds