research communications
catena-poly[[bis(acetato-κO)copper(II)]-bis[μ-4-(1H-imidazol-1-yl)phenol]-κ2N3:O;κ2O:N3]
ofaDepartment of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, TR-03200 Afyonkarahisar, Turkey, and bDepartment of Physics Education, Gazi University, Beşevler, TR-06500 Ankara, Turkey
*Correspondence e-mail: poyraz@aku.edu.tr
In the title compound, [Cu(CH3COO)2(C9H8N2O)2]n, the CuII ion resides on a centre of inversion, displaying a tetragonally distorted octahedral coordination environment defined by two pairs of N and O atoms of symmetry-related 4-(1H-imidazol-1-yl)phenol ligands and the O atoms of two symmetry-related acetate ligands. The bridging mode of the 4-(1H-imidazol-1-yl)phenol ligands is associated with a very long Cu⋯O interactions involving the phenol O atom of the heterocyclic ligand, which creates chains extending parallel to [100]. In the crystal, the chains are arranged in a distorted hexagonal rod packing and are linked via C—H⋯O hydrogen bonds and by π–π stacking interactions involving centrosymmetrically related pairs of imidazole and phenol rings.
Keywords: crystal structure; polymeric structure; hydrogen bonds; copper(II); acetate; imidazole; π–π stacking.
CCDC reference: 1520352
1. Chemical context
Coordination polymers have been investigated as materials with interesting properties such as magnetism (Zhu et al., 2010), luminescence (Cui et al., 2012), catalysis (Wang et al., 2011) or absorption (Zhang et al., 2017). Some coordination polymers are also known to show photocatalytic activity with respect to the decomposition of organic dyes (Yang et al., 2010; Yin et al., 2015).
In the past few years, metal complexes with ligands derived from imidazole have attracted much attention, not only for their fascinating crystal structures, but also for their interesting applications related to antifungal (Rezaei et al., 2011), pesticidal (Stenersen et al., 2004) and plant-growth regulatory properties (Choi et al., 2010), or drugs in general (Lednicer et al., 1998; Adams et al., 2001). Most of these compounds exhibit typical molecular structures whereas the number of imidazole-based coordination polymers (Martins et al., 2010; Masciocchi et al., 2001; Stamatatos et al., 2009) is much lower, probably due to the difficulty of growing single crystals.
In this communication we report on the synthesis and 3COO)2(C9H8N2O)2]n, comprising 4-(1H-imidazol-1-yl)-phenol and acetate ligands.
of a copper(II) coordination polymer, [Cu(CH2. Structural commentary
The II atom, one 4-(1H-imidazol-1-yl)-phenol ligand and one acetate group, with the CuII atom situated on a crystallographic inversion centre. The distorted octahedral coordination environment of the CuII atom is defined by two symmetry-related pairs of imidazole N atoms and phenol O atoms from the heterocyclic ligands and by two O atoms of a symmetry-related pair of monodentate acetate ligands (Fig. 1). The Cu—O(acetate) [1.9322 (18) Å] and Cu—N(imidazole) [2.003 (2) Å] bonds are arranged in the equatorial plane and are within normal lengths (Ding et al., 2005; Song et al., 2008; Yun et al., 2008; Yu & Deng, 2011). The equatorial bond angles are in the range 86.94 (7)–93.06 (7)° in the Cu1N2O4 polyhedron (Table 1). The bond involving the phenolic O3 atom is very weak, with a distance of Cu⋯O = 2.739 (2) Å, completing the tetragonally distorted octahedron. The N,O-bridging character of the 4-(1H-imidazol-1-yl)-phenol ligand leads to the formation of chains extending parallel to [100], whereby the ligands are oriented in an antiparallel fashion within a chain. The dihedral angle between the imidazole group (N1,N2,C1–C3) and the phenyl ring (C4–C9) is 24.07 (2)°. An intrachain hydrogen bond between the phenol OH group (O3) and the non-coordinating carboxylate O atom (O1) of the acetate ligand is present (Table 2, Fig. 2).
of the title compound comprises of one Cu3. Supramolecular features
In the crystal, the chains are aligned in a distorted hexagonal rod packing perpendicular to the chain direction. Chains are linked through intermolecular C—H⋯O interactions between a phenyl CH group and the non-coordinating carboxylate O atom (O1) that consequently acts as a double acceptor atom (Fig. 2, Table 2). Additional π–π stacking interactions involving centrosymmetrically related pairs of imidazole and phenol rings, with the shortest distance between an N atom and a C atom being 3.372 (2) Å, are also present. The interplanar angle between the two rings is 24.1 (1)°.
4. Database survey
The literature about one-dimensional inorganic–organic coordination polymers based on copper(II) complexes with CuII either in a square-pyramidal or a distorted octahedral coordination environment is vast. Just to take very recent examples, three such structures have been reported (Hazra et al., 2017; Puchoňová et al., 2017; Shaabani et al., 2017). Nevertheless, there is only limited research on 4-(1H-imidazol-1-yl)-phenol as a ligand (Maher et al., 1994; Wei et al., 2007; Yurdakul & Badoğlu, 2015). To the best of our knowledge, only one discrete copper(II) complex of 4-(1H-imidazol-1-yl)-phenol (Yu & Deng, 2011) has been reported. In this regard, the title compound is the first CuII coordination polymer with 4-(1H-imidazol-1-yl)-phenol.
5. Synthesis and crystallization
4-(1H-Imidazol-1-yl)phenol (0.0480 g, 0.3 mmol) was dissolved in 5 ml ethanol, a water solution (5 ml) of Na2CO3 (0.0318 g, 0.3 mmol) was slowly added, and an ethanol solution (5 ml) of Cu(NO3)2·2.5H2O (0.0349 g, 0.15 mmol) was added slowly with stirring for 30 min. To the formed cloudy suspension, an aqueous solution of acetic acid (0.3 mmol) was added. The resulting solution turned to a transparent blue colour. After stirring for three h, the solution was allowed to evaporate at room temperature. A number of blue single crystals were obtained after a few days.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with distances in the range 0.93–0.96Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl atoms. The H atom of the phenol OH group was located in a difference map and was constrained at a distance of O—H = 0.84 Å and with Uiso(H) =1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1520352
https://doi.org/10.1107/S2056989017000780/wm4035sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017000780/wm4035Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C2H3O2)2(C9H8N2O)2] | F(000) = 518 |
Mr = 501.99 | Dx = 1.496 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2029 (15) Å | Cell parameters from 9911 reflections |
b = 15.089 (2) Å | θ = 3.2–28.0° |
c = 7.7814 (11) Å | µ = 1.03 mm−1 |
β = 111.545 (4)° | T = 296 K |
V = 1114.2 (3) Å3 | Block, blue |
Z = 2 | 0.11 × 0.09 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2156 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.051 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 28.3°, θmin = 3.1° |
Tmin = 0.895, Tmax = 0.931 | h = −13→13 |
40729 measured reflections | k = −20→20 |
2784 independent reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0249P)2 + 1.2448P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
2784 reflections | Δρmax = 0.26 e Å−3 |
153 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7431 (2) | 0.55700 (18) | 0.5692 (3) | 0.0350 (5) | |
H1 | 0.7461 | 0.5059 | 0.6420 | 0.042* | |
C2 | 0.7933 (4) | 0.6526 (2) | 0.4009 (5) | 0.0601 (9) | |
H2 | 0.8394 | 0.6819 | 0.3308 | 0.072* | |
C3 | 0.6778 (4) | 0.6824 (2) | 0.4266 (5) | 0.0656 (10) | |
H3 | 0.6285 | 0.7359 | 0.3794 | 0.079* | |
C4 | 0.5265 (2) | 0.62360 (16) | 0.5918 (3) | 0.0333 (5) | |
C5 | 0.5302 (3) | 0.57796 (19) | 0.7472 (4) | 0.0408 (6) | |
H5 | 0.6125 | 0.5463 | 0.8195 | 0.049* | |
C6 | 0.4129 (3) | 0.5787 (2) | 0.7968 (4) | 0.0430 (6) | |
H6 | 0.4149 | 0.5470 | 0.9033 | 0.052* | |
C7 | 0.2929 (2) | 0.62494 (18) | 0.6930 (3) | 0.0370 (6) | |
C8 | 0.2926 (3) | 0.67390 (18) | 0.5434 (4) | 0.0419 (6) | |
H8 | 0.2126 | 0.7087 | 0.4760 | 0.050* | |
C9 | 0.4084 (3) | 0.67258 (18) | 0.4912 (4) | 0.0403 (6) | |
H9 | 0.4069 | 0.7053 | 0.3861 | 0.048* | |
C10 | 0.9356 (3) | 0.56669 (19) | 0.1300 (3) | 0.0402 (6) | |
C11 | 0.9592 (4) | 0.6405 (2) | 0.0154 (4) | 0.0617 (9) | |
H11A | 0.9094 | 0.6273 | −0.1159 | 0.093* | |
H11B | 1.0603 | 0.6463 | 0.0408 | 0.093* | |
H11C | 0.9234 | 0.6961 | 0.0464 | 0.093* | |
N1 | 0.8345 (2) | 0.57396 (15) | 0.4905 (3) | 0.0368 (5) | |
N2 | 0.6450 (2) | 0.62096 (14) | 0.5338 (3) | 0.0362 (5) | |
Cu1 | 1.0000 | 0.5000 | 0.5000 | 0.03750 (14) | |
O1 | 0.8401 (2) | 0.51168 (15) | 0.0597 (3) | 0.0528 (5) | |
O2 | 1.01849 (18) | 0.56716 (14) | 0.2987 (2) | 0.0455 (5) | |
O3 | 0.17326 (19) | 0.62330 (15) | 0.7320 (3) | 0.0502 (5) | |
H3A | 0.1775 | 0.5811 | 0.8043 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0274 (11) | 0.0431 (14) | 0.0347 (12) | −0.0002 (10) | 0.0115 (9) | 0.0037 (10) |
C2 | 0.073 (2) | 0.0432 (17) | 0.089 (2) | 0.0039 (15) | 0.060 (2) | 0.0134 (16) |
C3 | 0.079 (2) | 0.0395 (17) | 0.104 (3) | 0.0157 (16) | 0.064 (2) | 0.0252 (17) |
C4 | 0.0288 (11) | 0.0337 (12) | 0.0384 (13) | −0.0008 (9) | 0.0135 (10) | −0.0017 (10) |
C5 | 0.0271 (12) | 0.0540 (17) | 0.0403 (13) | 0.0071 (11) | 0.0111 (10) | 0.0107 (12) |
C6 | 0.0345 (13) | 0.0601 (18) | 0.0369 (13) | 0.0048 (12) | 0.0161 (11) | 0.0117 (12) |
C7 | 0.0282 (11) | 0.0441 (14) | 0.0403 (13) | 0.0003 (10) | 0.0144 (10) | −0.0056 (11) |
C8 | 0.0333 (13) | 0.0411 (15) | 0.0494 (15) | 0.0096 (11) | 0.0129 (11) | 0.0067 (12) |
C9 | 0.0380 (13) | 0.0397 (14) | 0.0440 (14) | 0.0047 (11) | 0.0159 (11) | 0.0092 (11) |
C10 | 0.0364 (13) | 0.0524 (16) | 0.0369 (13) | 0.0142 (12) | 0.0195 (11) | 0.0071 (12) |
C11 | 0.082 (2) | 0.056 (2) | 0.0539 (18) | 0.0127 (17) | 0.0328 (17) | 0.0158 (15) |
N1 | 0.0313 (10) | 0.0428 (12) | 0.0393 (11) | −0.0035 (9) | 0.0165 (9) | −0.0029 (9) |
N2 | 0.0333 (10) | 0.0357 (11) | 0.0435 (11) | 0.0015 (9) | 0.0187 (9) | 0.0027 (9) |
Cu1 | 0.0246 (2) | 0.0589 (3) | 0.0293 (2) | 0.0002 (2) | 0.01022 (15) | 0.0018 (2) |
O1 | 0.0430 (10) | 0.0701 (14) | 0.0416 (10) | 0.0012 (10) | 0.0112 (8) | 0.0052 (10) |
O2 | 0.0316 (9) | 0.0717 (14) | 0.0350 (9) | 0.0000 (9) | 0.0141 (8) | 0.0087 (9) |
O3 | 0.0339 (9) | 0.0667 (14) | 0.0571 (12) | 0.0073 (9) | 0.0253 (9) | 0.0065 (10) |
C1—N1 | 1.315 (3) | C8—C9 | 1.383 (4) |
C1—N2 | 1.345 (3) | C8—Cu1i | 3.895 (3) |
C1—Cu1 | 2.989 (2) | C8—H8 | 0.9500 |
C1—H1 | 0.9500 | C9—H9 | 0.9500 |
C2—C3 | 1.343 (4) | C10—O1 | 1.244 (3) |
C2—N1 | 1.361 (4) | C10—O2 | 1.274 (3) |
C2—Cu1 | 3.024 (3) | C10—C11 | 1.501 (4) |
C2—H2 | 0.9500 | C10—Cu1 | 2.888 (3) |
C3—N2 | 1.369 (4) | C11—H11A | 0.9800 |
C3—H3 | 0.9500 | C11—H11B | 0.9800 |
C4—C5 | 1.380 (3) | C11—H11C | 0.9800 |
C4—C9 | 1.385 (3) | N1—Cu1 | 2.003 (2) |
C4—N2 | 1.438 (3) | Cu1—O2ii | 1.9322 (18) |
C5—C6 | 1.386 (3) | Cu1—O2 | 1.9322 (18) |
C5—H5 | 0.9500 | Cu1—N1ii | 2.003 (2) |
C6—C7 | 1.383 (4) | Cu1—O3iii | 2.739 (2) |
C6—H6 | 0.9500 | Cu1—O3iv | 2.739 (2) |
C7—O3 | 1.363 (3) | O3—Cu1i | 2.739 (2) |
C7—C8 | 1.377 (4) | O3—H3A | 0.8400 |
C7—Cu1i | 3.383 (2) | ||
N1—C1—N2 | 111.5 (2) | O1—C10—O2 | 125.0 (3) |
N2—C1—Cu1 | 143.71 (17) | O1—C10—C11 | 120.3 (3) |
N1—C1—H1 | 124.2 | O2—C10—C11 | 114.7 (3) |
N2—C1—H1 | 124.2 | O1—C10—Cu1 | 93.50 (16) |
Cu1—C1—H1 | 92.1 | C11—C10—Cu1 | 145.5 (2) |
C3—C2—N1 | 109.8 (3) | C10—C11—H11A | 109.5 |
C3—C2—Cu1 | 141.7 (2) | C10—C11—H11B | 109.5 |
C3—C2—H2 | 125.1 | H11A—C11—H11B | 109.5 |
N1—C2—H2 | 125.1 | C10—C11—H11C | 109.5 |
Cu1—C2—H2 | 93.2 | H11A—C11—H11C | 109.5 |
C2—C3—N2 | 106.8 (3) | H11B—C11—H11C | 109.5 |
C2—C3—H3 | 126.6 | C1—N1—C2 | 105.7 (2) |
N2—C3—H3 | 126.6 | C1—N1—Cu1 | 127.34 (18) |
C5—C4—C9 | 120.0 (2) | C2—N1—Cu1 | 127.00 (18) |
C5—C4—N2 | 120.4 (2) | C1—N2—C3 | 106.3 (2) |
C9—C4—N2 | 119.6 (2) | C1—N2—C4 | 127.2 (2) |
C4—C5—C6 | 119.4 (2) | C3—N2—C4 | 126.5 (2) |
C4—C5—H5 | 120.3 | O2ii—Cu1—O2 | 180.0 |
C6—C5—H5 | 120.3 | O2ii—Cu1—N1 | 89.44 (8) |
C7—C6—C5 | 120.7 (2) | O2—Cu1—N1 | 90.56 (8) |
C7—C6—H6 | 119.6 | O2ii—Cu1—N1ii | 90.56 (8) |
C5—C6—H6 | 119.6 | O2—Cu1—N1ii | 89.44 (8) |
O3—C7—C8 | 118.3 (2) | N1—Cu1—N1ii | 180.0 |
O3—C7—C6 | 122.3 (2) | O2ii—Cu1—O3iii | 86.94 (7) |
C8—C7—C6 | 119.4 (2) | O2—Cu1—O3iii | 93.06 (7) |
O3—C7—Cu1i | 51.02 (13) | N1—Cu1—O3iii | 91.31 (7) |
C8—C7—Cu1i | 101.33 (16) | N1ii—Cu1—O3iii | 88.69 (7) |
C6—C7—Cu1i | 115.23 (18) | O2ii—Cu1—O3iv | 93.06 (7) |
C7—C8—C9 | 120.2 (2) | O2—Cu1—O3iv | 86.94 (7) |
C7—C8—Cu1i | 58.39 (14) | N1—Cu1—O3iv | 88.69 (7) |
C9—C8—Cu1i | 132.43 (19) | N1ii—Cu1—O3iv | 91.31 (7) |
C7—C8—H8 | 119.9 | O3iii—Cu1—O3iv | 180.00 (7) |
C9—C8—H8 | 119.9 | C10—O1—Cu1 | 63.78 (14) |
Cu1i—C8—H8 | 81.3 | C10—O2—Cu1 | 127.36 (18) |
C8—C9—C4 | 120.1 (2) | C7—O3—Cu1i | 106.23 (16) |
C8—C9—H9 | 120.0 | C7—O3—H3A | 109.5 |
C4—C9—H9 | 120.0 | Cu1i—O3—H3A | 77.8 |
N1—C2—C3—N2 | −0.4 (4) | C3—C2—N1—C1 | 0.1 (4) |
Cu1—C2—C3—N2 | −0.5 (6) | Cu1—C2—N1—C1 | 179.9 (3) |
C9—C4—C5—C6 | 2.6 (4) | C3—C2—N1—Cu1 | −179.8 (2) |
N2—C4—C5—C6 | −177.6 (3) | N1—C1—N2—C3 | −0.4 (3) |
C4—C5—C6—C7 | −0.3 (4) | Cu1—C1—N2—C3 | −0.5 (4) |
C5—C6—C7—O3 | 176.5 (3) | N1—C1—N2—C4 | 177.9 (2) |
C5—C6—C7—C8 | −2.9 (4) | Cu1—C1—N2—C4 | 177.83 (19) |
C5—C6—C7—Cu1i | 118.1 (3) | C2—C3—N2—C1 | 0.5 (4) |
O3—C7—C8—C9 | −175.6 (3) | C2—C3—N2—C4 | −177.9 (3) |
C6—C7—C8—C9 | 3.8 (4) | C5—C4—N2—C1 | 25.2 (4) |
Cu1i—C7—C8—C9 | −123.9 (2) | C9—C4—N2—C1 | −155.1 (3) |
O3—C7—C8—Cu1i | −51.63 (19) | C5—C4—N2—C3 | −156.8 (3) |
C6—C7—C8—Cu1i | 127.7 (3) | C9—C4—N2—C3 | 23.0 (4) |
C7—C8—C9—C4 | −1.5 (4) | O2—C10—O1—Cu1 | 6.7 (2) |
Cu1i—C8—C9—C4 | −74.7 (3) | C11—C10—O1—Cu1 | −172.5 (3) |
C5—C4—C9—C8 | −1.7 (4) | O1—C10—O2—Cu1 | −12.6 (4) |
N2—C4—C9—C8 | 178.5 (2) | C11—C10—O2—Cu1 | 166.60 (19) |
N2—C1—N1—C2 | 0.2 (3) | C8—C7—O3—Cu1i | 81.4 (3) |
Cu1—C1—N1—C2 | −179.9 (3) | C6—C7—O3—Cu1i | −97.9 (3) |
N2—C1—N1—Cu1 | −179.88 (16) |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1v | 0.95 | 2.44 | 3.356 (3) | 161 |
O3—H3A···O1iii | 0.84 | 1.80 | 2.637 (3) | 172 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (v) x, y, z+1. |
Acknowledgements
The authors acknowledge Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer and Dr Onur Şahin for help and guidance.
References
Adams, J. L., Boehm, J. C., Gallagher, T. F., Kassis, S., Webb, E. F., Hall, R., Sorenson, M., Garigipati, R., Griswold, D. E. & Lee, J. C. (2001). Bioorg. Med. Chem. Lett. 11, 2867–2870. CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, J. H., Abe, N., Tanaka, H., Fushimi, K., Nishina, Y., Morita, A., Kiriiwa, Y., Motohashi, R., Hashizume, D., Koshino, H. & Kawagishi, H. (2010). J. Agric. Food Chem. 58, 9956–9959. CSD CrossRef CAS Google Scholar
Cui, Y. J., Yue, Y. F., Qian, G. D. & Chen, B. L. (2012). Chem. Rev. 112, 1126–1162. Web of Science CrossRef CAS PubMed Google Scholar
Ding, C.-F., Zhang, S.-S., Tian, B.-Q., Li, X.-M., Xu, H. & Ouyang, P.-K. (2005). Acta Cryst. E61, m235–m236. CSD CrossRef IUCr Journals Google Scholar
Hazra, S., Martins, L. M. D. R. S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Inorg. Chim. Acta, 455, 549–556. CSD CrossRef CAS Google Scholar
Lednicer, D. (1998). Drugs Based on Five-Membered Heterocycles, in Strategies for Organic Drug Synthesis and Design. New York: Wiley. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maher, J. P., McCleverty, J. A., Ward, M. D. & Wlodarczyk, A. (1994). J. Chem. Soc. Dalton Trans. pp. 143–147. CrossRef Google Scholar
Martins, G. A. V., Byrne, P. J., Allan, P., Teat, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). Dalton Trans. 39, 1758–1762. Web of Science CrossRef CAS PubMed Google Scholar
Masciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S. & Sironi, A. (2001). Inorg. Chem. 40, 5897–5905. Web of Science CSD CrossRef PubMed CAS Google Scholar
Puchoňová, M., Švorec, J., Švorc, Ľ., Pavlik, J., Mazúr, M., Dlháň, Ľ., Růžičková, Z., Moncoľ, J. & Valigura, D. (2017). Inorg. Chim. Acta, 455, 298–306. Google Scholar
Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N. & Gholami, S. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 658–665. CrossRef CAS Google Scholar
Shaabani, B., Rad-Yousefnia, N., Zahedi, M., Ertan, Ş., Blake, G. R. & Zakerhamidi, M. S. (2017). Inorg. Chim. Acta, 455, 158–165. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, W.-D., Huang, X.-H. & Wang, H. (2008). Acta Cryst. E64, m764. CSD CrossRef IUCr Journals Google Scholar
Stamatatos, T. C., Perlepes, S. P., Raptopoulou, C. P., Terzis, A., Patrickios, C. S., Tasiopoulos, A. J. & Boudalis, A. K. (2009). Dalton Trans. pp. 3354–3362. CSD CrossRef Google Scholar
Stenersen, J. (2004). In Chemical Pesticides Mode of Action and Toxicology. Boca Raton: CRC Press. Google Scholar
Wang, S. J., Li, L., Zhang, J. Y., Yuan, X. C. & Su, C. Y. (2011). J. Mater. Chem. 21, 7098–7104. CSD CrossRef CAS Google Scholar
Wei, R. G., Adler, M., Davey, D., Ho, E., Mohan, R., Polokoff, R., Tseng, J.-L., Whitlow, M., Xu, W., Yuan, S. & Phillips, G. (2007). Bioorg. Med. Chem. Lett. 17, 2499–2504. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H. X., Liu, T. F., Cao, M. N., Li, H. F., Gao, S. Y. & Cao, R. (2010). Chem. Commun. 46, 2429–2431. CrossRef CAS Google Scholar
Yin, W.-Y., Huang, Z.-L., Tang, X.-Y., Wang, J., Cheng, H.-J., Ma, Y.-S., Yuan, R.-X. & Liu, D. (2015). New J. Chem. 39, 7130–7139. CSD CrossRef CAS Google Scholar
Yu, R.-J. & Deng, B. (2011). Acta Cryst. E67, m1253. CSD CrossRef IUCr Journals Google Scholar
Yun, R., Ying, W., Qi, B., Fan, X. & Wu, H. (2008). Acta Cryst. E64, m1529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yurdakul, S. & Badoğlu, S. (2015). Spectrochim. Acta Part A, 150, 614–622. CrossRef CAS Google Scholar
Zhang, X., Wu, X. X., Guo, J. Z., Huo, J. H. & Ding, B. (2017). J. Mol. Struct. 1127, 183–190. CSD CrossRef CAS Google Scholar
Zhu, X., Zhao, J. W., Li, B. L., Song, Y., Zhang, Y. M. & Zhang, Y. (2010). Inorg. Chem. 49, 1266–1270. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.