research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and hydrogen bonding in the isotypic series of hydrated alkali metal (K, Rb and Cs) complexes with 4-amino­phenyl­arsonic acid

CROSSMARK_Color_square_no_text.svg

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: gsmith@bigpond.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 December 2016; accepted 10 January 2017; online 17 January 2017)

The structures of the alkali metal (K, Rb and Cs) complex salts with 4-amino­phenyl­arsonic acid (p-arsanilic acid) manifest an isotypic series with the general formula [M2(C6H7AsNO3)2(H2O)3], with M = K {poly[di-μ3-4-amino­phenyl­arsonato-tri-μ2-aqua-dipotassium], [K2(C6H7AsNO3)2(H2O)3], (I)}, Rb {poly[di-μ3-4-amino­phenyl­arsonato-tri-μ2-aqua-dirubidium], [Rb2(C6H7AsNO3)2(H2O)3], (II)}, and Cs {poly[di-μ3-4-amino­phenyl­arsonato-tri-μ2-aqua-dirubidium], [Cs2(C6H7AsNO3)2(H2O)3], (III)}, in which the repeating structural units lie across crystallographic mirror planes containing two independent and different metal cations and a bridging water mol­ecule, with the two hydrogen p-arsanilate ligands and the second water mol­ecule lying outside the mirror plane. The bonding about the two metal cations in all complexes is similar, one five-coordinate, the other progressing from five-coordinate in (I) to eight-coordinate in both (II) and (III), with overall M—O bond-length ranges of 2.694 (5)–3.009 (7) (K), 2.818 (4)–3.246 (4) (Rb) and 2.961 (9)–3.400 (10) Å (Cs). The additional three bonds in (II) and (III) are the result of inter-metal bridging through the water ligands. Two-dimensional coordination polymeric structures with the layers lying parallel to (100) are generated through a number of bridging bonds involving the water mol­ecules (including hydrogen-bonding inter­actions), as well as through the arsanilate O atoms. These layers are linked across [100] through amine N—H⋯O hydrogen bonds to arsonate and water O-atom acceptors, giving overall three-dimensional network structures.

1. Chemical context

Arsenical 4-amino­phenyl­arsonic acid (p-arsanilic acid) has biological significance as an anti-helminth in veterinary applications (Steverding, 2010[Steverding, D. (2010). Parasites & Vectors, 3, 15.]; O'Neil, 2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 243. Whitehouse Station, NJ: Merck and Co., Inc.]) and as a hydrated sodium salt (atox­yl) that had early usage as an anti-syphilitic (Ehrlich & Bertheim, 1907[Ehrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292-3297.]; Bosch & Rosich, 2008[Bosch, F. & Rosich, L. (2008). Pharmacology, 82, 171-179.]). The crystal structure of this salt has been determined together with the NH4+ salt (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]); the structure of the parent p-arsanilic acid, which exists as a zwitterion, is also known (Shimada, 1961[Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639-643.]; Nuttall & Hunter, 1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]). We have also determined the structures of the alkaline earth metal (Mg, Ca, Sr, Ba) salts of the acid (Smith & Wermuth, 2017[Smith, G. & Wermuth, U. D. (2017). Acta Cryst. C73, 61-67.]). However, simple p-arsanilate single-metal complex structures are not common in the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), examples being with AgI (three forms), Zn, Pb and Cd (Lesikar-Parrish et al., 2013[Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424-432.]; Xiao et al., 2015[Xiao, Z.-P., Wen, M., Wang, C.-Y. & Huang, X.-H. (2015). Acta Cryst. C71, 258-261.]); Zn (Lin et al., 2012[Lin, W.-Z., Liu, Z.-Q., Huang, X.-H., Li, H.-H., Wu, S.-T. & Huang, C.-C. (2012). Chin. J. Struct. Chem. 31, 1301-1308.]); Cd (Liu et al., 2010[Liu, Z.-Q., Zhao, Y.-F., Huang, X.-H., Li, H.-H. & Huang, C.-C. (2010). Chin. J. Struct. Chem. 29, 1724-1730.]); SnIV (Xie et al., 2008[Xie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093-4103.]); VIV and VV (Breen et al., 2012[Breen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19-21.]; Chen et al., 2012[Chen, B., Wang, B., Lin, Z., Fan, L., Gao, Y., Chi, Y. & Hu, C. (2012). Dalton Trans. 41, 6910-6913.]; Khan et al., 1992[Khan, M. I., Chang, Y., Chen, Q., Hope, H., Parking, S., Goshorn, D. P. & Zubieta, J. (1992). Angew. Chem. Int. Ed. Engl. 31, 1197-1200.]); UO2 (Adelani et al., 2012[Adelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). Inorg. Chem. 51, 12032-12040.]). Mixed-metal and/or mixed-ligand complexes are common, e.g. CoII/Mo=O, NiII/Mo=O, CuII/Mo=O and Zn/Mo=O with p-arsanilate and ligands such as 2,2′-bi­pyridine, 4,4′-bi­pyridine and 1,10-phenanthroline (Smith et al., 2013[Smith, T. M., Strauskulage, L., Perrin, K. A. & Zubieta, J. (2013). Inorg. Chim. Acta, 407, 48-57.]).

[Scheme 1]

In an attempt to complete the structures of the alkali metal series of p-arsanilate salts, our reaction of the acid with potassium carbonate, rubidium carbonate and caesium carbonate in ethanol/water resulted in the formation of the crystalline hydrated salts with general formula [M+2(C6H7AsNO3)2·3H2O]. Compounds (I)[link] (M = K), (II)[link] (Rb) and (III)[link] (Cs) and their crystal structures are reported herein. However, suitable crystals of the Li analogue were not obtained to allow its crystal structure determination.

2. Structural commentary

The structures of the three title compounds [(I), (II)[link] and (III)] form an isotypic series, with the asymmetric units in each comprising two independent and different metal complex cations (M1 and M2), which lie on crystallographic mirror planes that also contain one of the coordinating water mol­ecules (O2W), with the hydrogen p-arsanilate ligands and the second water mol­ecules (OW1, O1Wii) [symmetry code: (ii) −x + 1, −y, z] lying across the mirror plane (Figs. 1[link], 2[link] and 3[link], respectively). In all three examples, the M2 cation is five-coordinate, while with M1, the coordination spheres progress from five-coordinate in (I)[link] to eight-coordinate in (II)[link] and (III)[link]. The overall M—O bond length ranges are 2.694 (5)–3.009 (7) Å (K) (Table 1[link]), 2.818 (4)–3.246 (4) Å (Rb) (Table 2[link]) and 2.961 (9)–3.400 (10) Å (Cs) (Table 2[link]). The amine N atom is not involved in bonding to the metal, as is the case in a number of other p-arsanilate complexes, e.g. with Zn (Lin et al., 2012[Lin, W.-Z., Liu, Z.-Q., Huang, X.-H., Li, H.-H., Wu, S.-T. & Huang, C.-C. (2012). Chin. J. Struct. Chem. 31, 1301-1308.]). The M1O5 polyhedra in all three structures comprise four bridging arsonate O atoms and the μ2 bridging water mol­ecule (O2W) (Tables 1[link], 2[link] and 3[link]). The second M2O5 polyhedron in (I)[link] comprises the bridging O11 and O11ii donors, the μ2-O2Wi [symmetry code: (i) −x + 1, −y + 2, z + [{1\over 2}]] donor and two monodentate water mol­ecules (O1W and O1Wi) (Table 1[link]).

Table 1
Selected bond lengths (Å) for (I)[link]

K1—O1W 2.766 (5) K2—O2W 3.009 (7)
K1—O11 2.824 (4) K2—O11 2.713 (5)
K1—O2Wi 2.959 (7) K2—O12iii 2.694 (5)
K1—O1Wii 2.766 (5) K2—O11ii 2.713 (5)
K1—O11ii 2.824 (4) K2—O12iv 2.694 (5)
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) -x+1, y, z; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].

Table 2
Selected bond lengths (Å) for (II)[link]

Rb1—O1W 2.917 (4) Rb1—O1Wv 3.246 (4)
Rb1—O11 2.925 (3) Rb2—O2W 3.193 (6)
Rb1—O2Wi 3.151 (6) Rb2—O11 2.863 (3)
Rb1—O1Wii 3.246 (4) Rb2—O12vi 2.818 (4)
Rb1—O2Wiii 3.109 (5) Rb2—O11iv 2.863 (3)
Rb1—O1Wiv 2.917 (4) Rb2—O12vii 2.818 (4)
Rb1—O11iv 2.925 (3)    
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, -y+2, z-{\script{1\over 2}}]; (iii) [-x+1, -y+2, z+{\script{1\over 2}}]; (iv) -x+1, y, z; (v) [x, -y+2, z-{\script{1\over 2}}]; (vi) [-x+1, -y+1, z-{\script{1\over 2}}]; (vii) [x, -y+1, z-{\script{1\over 2}}].

Table 3
Selected bond lengths (Å) for (III)[link]

Cs1—O1W 3.087 (9) Cs1—O1Wiii 3.400 (10)
Cs1—O2W 3.286 (13) Cs2—O11 3.024 (8)
Cs1—O11 3.040 (8) Cs2—O2Wiv 3.324 (13)
Cs1—O1Wi 3.400 (10) Cs2—O12v 2.961 (9)
Cs1—O2Wi 3.295 (12) Cs2—O11ii 3.024 (8)
Cs1—O1Wii 3.087 (9) Cs2—O12vi 2.961 (9)
Cs1—O11ii 3.040 (8)    
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) -x+1, y, z; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x+1, -y+1, z+{\script{1\over 2}}]; (vi) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular configuration and atom numbering scheme for the complex unit in (I)[link]. The metal cations (K1 and K2) and the water mol­ecule (O2W) lie on a mirror plane with mirror-related atoms indicated by symmetry code (ii) −x + 1, −y, z + [{1\over 2}]. For other codes, see Table 1[link]. Non-H atoms are shown as displacement ellipsoids at the 40% probability level.
[Figure 2]
Figure 2
The mol­ecular configuration and atom numbering scheme for the complex unit in the isotypic structure (II)[link]. The metal cations (Rb1 and Rb2) and the water mol­ecule (O2W) also lie on a mirror plane. For symmetry codes, see Table 2[link]. Non-H atoms are shown as displacement ellipsoids at the 40% probability level.
[Figure 3]
Figure 3
The mol­ecular configuration and atom numbering scheme for the complex unit in the isotypic structure (III)[link]. The metal cations (Cs1 and Cs2) and the water mol­ecule (O2W) also lie on a mirror plane. For symmetry codes, see Table 3[link]. Non-H atoms are shown as displacement ellipsoids at the 40% probability level.

With (II)[link] and (III)[link], the irregular M2O8 coordination sphere comprises all bonds mentioned in the description of the K complex (I)[link], and in addition, the Rb and Cs bond length expansion allows further coordination sites through additional bridging bonds to both of the water mol­ecules (two through O1W and one through O2W), (Tables 2[link] and 3[link]). The M1⋯M2 separations are 4.139 (3) Å [for (I)], 4.2500 (11) Å [for (II)] and 4.3498 (15) Å [for (III)]. There are also slightly shorter M1⋯M1i separations in all structures: 4.079 (3) Å (I)[link], 4.1953 (13) Å (II)[link] and 4.3127 (16) Å (III)[link]. Relatively short M2⋯As1 separations are present within the repeat unit in all three structures: 3.6369 (19) Å (I)[link], 3.7796 (8) Å (II)[link] and 3.9488 (14) Å (III)[link].

In all structures, two-dimensional coordination polymeric complex structures are generated, with the layers lying in the mirror planes parallel to (100). Fig. 4[link] shows the basic makeup of the layer in (I)[link] while those for (II)[link] or (III)[link] are shown in Fig. 5[link]. The water mol­ecule O2W provides hydrogen-bonding links across the mirror plane to arsonate O13 acceptors (Tables 4[link], 5[link] and 6[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯N4v 0.88 (6) 2.05 (6) 2.915 (7) 171 (5)
O1W—H12W⋯O11vi 0.89 (5) 1.77 (5) 2.660 (6) 175 (7)
O2W—H21W⋯O13vii 0.86 (5) 2.09 (6) 2.819 (6) 142 (6)
O12—H12⋯O13iv 0.87 (6) 1.70 (6) 2.538 (7) 160 (7)
N4—H41⋯O1Wviii 0.86 (5) 2.17 (5) 3.010 (7) 164 (5)
N4—H42⋯O13ix 0.87 (6) 2.15 (6) 2.984 (7) 160 (5)
Symmetry codes: (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+2, z+{\script{1\over 2}}]; (vii) x, y, z-1; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ix) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯N4viii 0.89 (5) 2.04 (4) 2.923 (6) 176 (5)
O2W—H21W⋯O13ix 0.88 (4) 1.97 (4) 2.852 (5) 173 (5)
O12—H12⋯O13vii 0.86 (3) 1.73 (4) 2.552 (5) 158 (5)
N4—H41⋯O13x 0.86 (5) 2.18 (4) 3.022 (5) 167 (4)
N4—H42⋯O1Wxi 0.88 (4) 2.13 (4) 3.005 (6) 176 (4)
Symmetry codes: (vii) [x, -y+1, z-{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ix) x, y, z-1; (x) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (xi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯N4vii 0.89 (9) 2.28 (13) 2.952 (13) 132 (10)
O2W—H21W⋯O13 0.89 (12) 2.16 (12) 2.850 (10) 134 (12)
O12—H12⋯O13vi 0.88 (5) 2.00 (12) 2.567 (13) 121 (12)
N4—H41⋯O1Wviii 0.83 (14) 2.12 (15) 2.928 (15) 164 (9)
N4—H42⋯O13ix 0.91 (14) 2.20 (14) 3.082 (13) 166 (15)
Symmetry codes: (vi) [x, -y+1, z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ix) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial expansion of the two-dimensional coordination polymeric sheet structure of (I)[link], which extends across the mirror plane parallel to (100). Aromatic H atoms are omitted. For symmetry codes, see Table 1[link].
[Figure 5]
Figure 5
A partial expansion of the two-dimensional coordination polymeric sheet structure of (II)[link] [or (III)], which extends across the mirror plane parallel to (100). Aromatic H atoms have been omitted.

3. Supra­molecular features

In the crystals of all three compounds, similar overall packing modes are observed, with the coordination polymeric layers lying along the mirror planes inter-linked across [100] through amine N4—H⋯O hydrogen bonds to arsonate O13 and water O1W acceptors (Tables 4[link], 5[link] and 6[link]). In this respect, they resemble the crystal packing of the Na p-arsanilate analogue (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]) but the structure of that compound (a trihydrate) differs from the current isotypic set in having significantly different coordination spheres, also lacking the mirror symmetry of the primary polymeric layers in (I)–(III). With these, the N4 amino group acts as an acceptor to an O1W hydrogen bond. The water mol­ecule O1W also forms a hydrogen bond with O11vi [symmetry code: (vi) x, −y + 2, z + [{1\over 2}]] in (I)[link], but not in (II)[link] or (III)[link]. The protonated p-arsanilate O atom (O12) forms an intra-layer hydrogen bond with an O11 acceptor, giving overall three-dimensional network structures in all cases (Figs. 6[link] and 7[link]). No ππ associations are present in the structures.

[Figure 6]
Figure 6
A view of the packing in the unit cell of (I)[link] along [010], showing the associated cation/anion sheets linked peripherally across [100] by hydrogen bonds involving the anilinium amine groups. Hydrogen-bonding inter­actions are shown as dashed lines and aromatic H atoms have been omitted.
[Figure 7]
Figure 7
A view of the packing in the unit cell of (II)[link] [or (III)] along [010], showing the associated cation/anion sheets linked peripherally across [100] by hydrogen bonds involving the amine groups.

4. Database survey

Three-dimensional supra­molecular structures involving complexes of hydrogen p-arsanilate and mixed metal types, as distinct from those involving uni-metal types, such as in (I)–(III) and in those examples which have been previously mentioned in the Chemical context section of this article, are worthy of noting here. Mixed-metal-ligand examples (Smith et al., 2013[Smith, T. M., Strauskulage, L., Perrin, K. A. & Zubieta, J. (2013). Inorg. Chim. Acta, 407, 48-57.]) as well as mixed–metal structures add to the complexity of the coordination polymeric structures commonly generated, e.g. in the Mo/Ag, Mo/Cu and W/Na polyoxidometallate compounds (Johnson et al., 2002[Johnson, B. J. S., Schroden, R. C., Zhu, C., Young, V. G. Jr & Stein, A. (2002). Inorg. Chem. 41, 2213-2218.]), the Mo/V cage structure (Onet et al., 2011[Onet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. M. & Schmitt, W. (2011). Inorg. Chem. 50, 604-613.]) or the V/Na structure (Breen & Schmitt, 2008[Breen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904-6908.]).

5. Synthesis and crystallization

Compounds (I)–(III) were synthesized by heating together for 5 min, 1 mmol qu­anti­ties of 4-amino­phenyl­arsonic acid and 0.5 mmol of either K2CO3 [for (I)], Rb2CO3 [for (II)] or Cs2CO3 [for (III)], in 20 ml of 50% ethanol/water (v/v). Room temperature evaporation of the solutions gave colourless crystal plates of the title compounds from which specimens were cleaved for the X-ray analyses.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Hydrogen atoms potentially involved in hydrogen-bonding inter­actions were located by difference methods but their positional parameters were restrained in the refinement with N—H = 0.88 Å and O—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included in the refinement at calculated positions, C—H = 0.95 Å, and treated as riding with Uiso(H) = 1.2Ueq(C).

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [K2(C6H7AsNO3)2(H2O)3] [Rb2(C6H7AsNO3)2(H2O)3] [Cs2(C6H7AsNO3)2(H2O)3]
Mr 564.34 657.08 751.96
Crystal system, space group Orthorhombic, Cmc21 Orthorhombic, Cmc21 Orthorhombic, Cmc21
Temperature (K) 200 200 200
a, b, c (Å) 24.3426 (18), 10.4266 (7), 7.8315 (6) 24.4783 (19), 10.4577 (9), 8.0978 (7) 24.650 (3), 10.4373 (9), 8.3992 (7)
V3) 1987.7 (3) 2072.9 (3) 2160.9 (4)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.83 7.94 6.46
Crystal size (mm) 0.35 × 0.22 × 0.11 0.35 × 0.20 × 0.12 0.40 × 0.22 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD-detector Oxford Diffraction Gemini-S CCD-detector Oxford Diffraction Gemini-S CCD-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.])
Tmin, Tmax 0.650, 0.980 0.375, 0.980 0.217, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 2874, 1834, 1710 3623, 2093, 1899 4941, 1883, 1787
Rint 0.020 0.026 0.030
(sin θ/λ)max−1) 0.688 0.683 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.125, 1.23 0.032, 0.072, 1.03 0.041, 0.160, 1.18
No. of reflections 1834 2093 1883
No. of parameters 145 146 145
No. of restraints 8 8 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.84 0.70, −0.46 1.69, −1.00
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1281 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1309 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1405 Friedel pairs
Absolute structure parameter 0.03 (2) −0.008 (12) 0.10 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) Poly[di-µ3-4-aminophenylarsonato-tri-µ2-aqua-dipotassium] top
Crystal data top
[K2(C6H7AsNO3)2(H2O)3]F(000) = 1128
Mr = 564.34Dx = 1.886 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1421 reflections
a = 24.3426 (18) Åθ = 4.1–28.7°
b = 10.4266 (7) ŵ = 3.83 mm1
c = 7.8315 (6) ÅT = 200 K
V = 1987.7 (3) Å3Prism, colourless
Z = 40.35 × 0.22 × 0.11 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1834 independent reflections
Radiation source: Enhance (Mo) X-ray source1710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.077 pixels mm-1θmax = 29.3°, θmin = 3.2°
ω scansh = 3217
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1313
Tmin = 0.650, Tmax = 0.980l = 910
2874 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0744P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.001
1834 reflectionsΔρmax = 0.50 e Å3
145 parametersΔρmin = 0.84 e Å3
8 restraintsAbsolute structure: Flack (1983), 1281 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.60155 (2)0.63813 (4)0.55509 (10)0.0164 (2)
K10.500000.94523 (15)0.5457 (3)0.0224 (4)
K20.500000.63621 (19)0.2140 (3)0.0279 (6)
O1W0.5845 (2)1.0465 (4)0.7396 (6)0.0260 (12)
O2W0.500000.7951 (6)0.1067 (9)0.0263 (19)
O110.57103 (16)0.7477 (4)0.4358 (6)0.0227 (12)
O120.5720 (2)0.4898 (4)0.5138 (6)0.0333 (16)
O130.59063 (19)0.6581 (4)0.7630 (7)0.0247 (14)
N40.8483 (2)0.6311 (5)0.4372 (8)0.0243 (17)
C10.6778 (3)0.6280 (5)0.5052 (8)0.0197 (16)
C20.7027 (3)0.7225 (5)0.4072 (8)0.0203 (16)
C30.7583 (3)0.7230 (5)0.3828 (8)0.0230 (17)
C40.7918 (3)0.6313 (5)0.4615 (7)0.0170 (17)
C50.7669 (2)0.5344 (4)0.5574 (10)0.0203 (14)
C60.7104 (2)0.5332 (5)0.5803 (8)0.0197 (16)
H20.680800.787600.356500.0240*
H30.774400.786400.311500.0270*
H50.788800.469000.607200.0240*
H60.693800.467800.647300.0240*
H11W0.608 (2)0.998 (6)0.795 (9)0.0300*
H120.585 (3)0.450 (6)0.425 (6)0.0300*
H12W0.582 (3)1.116 (4)0.806 (8)0.0300*
H21W0.525 (2)0.781 (7)0.181 (7)0.0300*
H410.866 (3)0.622 (5)0.532 (5)0.0240*
H420.863 (3)0.683 (6)0.363 (7)0.0240*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0178 (3)0.0148 (3)0.0167 (3)0.0020 (2)0.0030 (3)0.0007 (3)
K10.0198 (7)0.0217 (7)0.0256 (8)0.00000.00000.0055 (9)
K20.0186 (9)0.0387 (11)0.0264 (10)0.00000.00000.0114 (8)
O1W0.028 (2)0.023 (2)0.027 (2)0.0021 (19)0.006 (2)0.001 (2)
O2W0.018 (3)0.027 (3)0.034 (4)0.00000.00000.003 (3)
O110.019 (2)0.026 (2)0.023 (2)0.0026 (17)0.0023 (18)0.0053 (18)
O120.037 (3)0.022 (2)0.041 (3)0.0120 (19)0.022 (2)0.014 (2)
O130.023 (2)0.024 (2)0.027 (3)0.0033 (19)0.008 (2)0.004 (2)
N40.019 (3)0.024 (3)0.030 (3)0.002 (2)0.001 (2)0.002 (2)
C10.022 (3)0.015 (2)0.022 (3)0.001 (2)0.001 (2)0.002 (2)
C20.022 (3)0.017 (2)0.022 (3)0.007 (2)0.001 (2)0.000 (2)
C30.026 (3)0.018 (3)0.025 (3)0.003 (2)0.006 (2)0.011 (3)
C40.025 (3)0.021 (3)0.005 (3)0.005 (2)0.005 (2)0.0027 (19)
C50.025 (2)0.013 (2)0.023 (3)0.0061 (18)0.002 (3)0.003 (3)
C60.024 (3)0.016 (2)0.019 (3)0.0002 (19)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
K1—O1W2.766 (5)O2W—H21W0.86 (5)
K1—O112.824 (4)O2W—H21Wii0.86 (5)
K1—O2Wi2.959 (7)O12—H120.87 (6)
K1—O1Wii2.766 (5)N4—C41.389 (9)
K1—O11ii2.824 (4)N4—H410.86 (5)
K2—O2W3.009 (7)N4—H420.87 (6)
K2—O112.713 (5)C1—C21.388 (8)
K2—O12iii2.694 (5)C1—C61.397 (8)
K2—O11ii2.713 (5)C2—C31.367 (10)
K2—O12iv2.694 (5)C3—C41.400 (9)
As1—O111.652 (4)C4—C51.397 (8)
As1—O121.736 (4)C5—C61.387 (7)
As1—O131.663 (5)C2—H20.9500
As1—C11.900 (7)C3—H30.9500
O1W—H11W0.88 (6)C5—H50.9500
O1W—H12W0.89 (5)C6—H60.9500
O11—As1—O12108.9 (2)K1—O1W—H12W125 (5)
O11—As1—O13113.3 (2)H11W—O1W—H12W103 (6)
O11—As1—C1111.2 (2)K1v—O2W—H21W116 (5)
O12—As1—O13103.2 (2)H21W—O2W—H21Wii91 (5)
O12—As1—C1108.5 (2)K1v—O2W—H21Wii116 (5)
O13—As1—C1111.4 (3)K2—O2W—H21W118 (4)
O1W—K1—O1189.45 (13)K2—O2W—H21Wii118 (4)
O1W—K1—O2Wi82.66 (13)K2vi—O12—H12118 (4)
O1W—K1—O1Wii96.08 (15)As1—O12—H12115 (4)
O1W—K1—O11ii154.31 (14)C4—N4—H41112 (4)
O2Wi—K1—O11122.99 (14)H41—N4—H42116 (6)
O1Wii—K1—O11154.31 (14)C4—N4—H42120 (5)
O11—K1—O11ii75.52 (12)As1—C1—C6120.5 (4)
O1Wii—K1—O2Wi82.66 (13)As1—C1—C2120.1 (5)
O2Wi—K1—O11ii122.99 (14)C2—C1—C6119.1 (6)
O1Wii—K1—O11ii89.45 (13)C1—C2—C3120.8 (6)
O2W—K2—O11107.37 (14)C2—C3—C4120.9 (6)
O2W—K2—O12iii77.45 (14)C3—C4—C5118.6 (6)
O2W—K2—O11ii107.37 (14)N4—C4—C3121.2 (5)
O2W—K2—O12iv77.45 (14)N4—C4—C5120.2 (5)
O11—K2—O12iii175.18 (16)C4—C5—C6120.4 (5)
O11—K2—O11ii79.20 (14)C1—C6—C5120.2 (5)
O11—K2—O12iv99.61 (13)C1—C2—H2120.00
O11ii—K2—O12iii99.61 (13)C3—C2—H2120.00
O12iii—K2—O12iv81.18 (15)C2—C3—H3120.00
O11ii—K2—O12iv175.18 (16)C4—C3—H3120.00
K1v—O2W—K299.6 (2)C4—C5—H5120.00
K1—O11—K296.75 (13)C6—C5—H5120.00
As1—O12—K2vi126.6 (2)C1—C6—H6120.00
K1—O1W—H11W122 (4)C5—C6—H6120.00
O12—As1—O11—K1109.9 (3)O11ii—K1—O11—K225.38 (14)
O12—As1—O11—K26.6 (3)O1W—K1—O11ii—K281.4 (4)
O13—As1—O11—K14.3 (3)O11—K1—O11ii—K225.38 (14)
O13—As1—O11—K2120.8 (2)O2W—K2—O11—As1146.8 (2)
C1—As1—O11—K1130.6 (3)O2W—K2—O11—K178.91 (15)
C1—As1—O11—K2112.9 (2)O11ii—K2—O11—As1108.2 (2)
O11—As1—O12—K2vi103.8 (3)O11ii—K2—O11—K126.09 (14)
O13—As1—O12—K2vi16.9 (3)O12iv—K2—O11—As167.1 (2)
C1—As1—O12—K2vi135.1 (3)O12iv—K2—O11—K1158.66 (14)
O11—As1—C1—C212.4 (6)O11—K2—O11ii—K126.09 (14)
O11—As1—C1—C6174.0 (5)As1—C1—C2—C3174.1 (5)
O12—As1—C1—C2132.2 (5)C6—C1—C2—C30.5 (9)
O12—As1—C1—C654.3 (5)As1—C1—C6—C5173.3 (5)
O13—As1—C1—C2114.9 (5)C2—C1—C6—C50.3 (9)
O13—As1—C1—C658.6 (5)C1—C2—C3—C42.6 (9)
O1W—K1—O11—As161.8 (3)C2—C3—C4—N4179.9 (6)
O1W—K1—O11—K2175.68 (15)C2—C3—C4—C53.8 (9)
O2Wi—K1—O11—As1142.7 (2)N4—C4—C5—C6179.2 (6)
O1Wii—K1—O11—As141.1 (5)C3—C4—C5—C63.0 (9)
O1Wii—K1—O11—K281.4 (4)C4—C5—C6—C11.0 (9)
O11ii—K1—O11—As197.1 (3)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z1/2; (iv) x, y+1, z1/2; (v) x+1, y+2, z1/2; (vi) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···N4vii0.88 (6)2.05 (6)2.915 (7)171 (5)
O1W—H12W···O11viii0.89 (5)1.77 (5)2.660 (6)175 (7)
O2W—H21W···O13ix0.86 (5)2.09 (6)2.819 (6)142 (6)
O12—H12···O13iv0.87 (6)1.70 (6)2.538 (7)160 (7)
N4—H41···O1Wx0.86 (5)2.17 (5)3.010 (7)164 (5)
N4—H42···O13xi0.87 (6)2.15 (6)2.984 (7)160 (5)
Symmetry codes: (iv) x, y+1, z1/2; (vii) x+3/2, y+3/2, z+1/2; (viii) x, y+2, z+1/2; (ix) x, y, z1; (x) x+3/2, y1/2, z; (xi) x+3/2, y+3/2, z1/2.
(II) Poly[di-µ3-4-aminophenylarsonato-tri-µ2-aqua-dirubidium] top
Crystal data top
[Rb2(C6H7AsNO3)2(H2O)3]F(000) = 1272
Mr = 657.08Dx = 2.105 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1374 reflections
a = 24.4783 (19) Åθ = 4.0–28.7°
b = 10.4577 (9) ŵ = 7.94 mm1
c = 8.0978 (7) ÅT = 200 K
V = 2072.9 (3) Å3Prism, colourless
Z = 40.35 × 0.20 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2093 independent reflections
Radiation source: Enhance (Mo) X-ray source1899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.077 pixels mm-1θmax = 29.0°, θmin = 3.9°
ω scansh = 3315
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1413
Tmin = 0.375, Tmax = 0.980l = 1010
3623 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0392P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.70 e Å3
2093 reflectionsΔρmin = 0.46 e Å3
146 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.00306 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1309 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.008 (12)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.500000.94747 (5)0.57916 (11)0.0264 (2)
Rb20.500000.63207 (8)0.24818 (10)0.0376 (3)
As10.60556 (2)0.63552 (4)0.58879 (6)0.0200 (1)
O1W0.58793 (16)1.0545 (3)0.7791 (5)0.0333 (11)
O2W0.500000.7864 (5)0.0920 (7)0.0337 (17)
O110.57535 (14)0.7458 (3)0.4753 (4)0.0302 (11)
O120.57765 (17)0.4882 (3)0.5436 (5)0.0404 (13)
O130.59344 (15)0.6516 (3)0.7898 (4)0.0275 (11)
N40.85111 (17)0.6329 (4)0.4734 (6)0.0287 (16)
C10.68166 (19)0.6279 (4)0.5443 (6)0.0200 (14)
C20.7060 (2)0.7197 (5)0.4430 (6)0.0250 (16)
C30.7614 (2)0.7222 (5)0.4197 (7)0.0270 (17)
C40.7946 (2)0.6315 (4)0.4982 (6)0.0230 (16)
C50.77044 (19)0.5380 (4)0.5957 (8)0.0270 (14)
C60.7146 (2)0.5357 (4)0.6178 (6)0.0260 (16)
H20.683800.781500.389400.0300*
H30.777300.785300.350300.0320*
H50.792600.475100.647600.0320*
H60.698500.470600.683700.0310*
H11W0.6067 (19)1.001 (4)0.842 (6)0.0370*
H120.582 (2)0.459 (5)0.445 (3)0.0370*
H12W0.589 (3)1.127 (3)0.833 (6)0.0370*
H21W0.5290 (15)0.741 (4)0.120 (7)0.0370*
H410.864 (2)0.689 (4)0.407 (6)0.0300*
H420.8680 (19)0.613 (4)0.566 (4)0.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0241 (3)0.0282 (3)0.0268 (3)0.00000.00000.0051 (4)
Rb20.0227 (4)0.0597 (5)0.0304 (4)0.00000.00000.0179 (4)
As10.0210 (2)0.0183 (2)0.0206 (2)0.0019 (2)0.0036 (2)0.0007 (3)
O1W0.032 (2)0.0309 (19)0.037 (2)0.0008 (16)0.0036 (19)0.0005 (18)
O2W0.032 (3)0.027 (3)0.042 (3)0.00000.00000.006 (2)
O110.0206 (19)0.037 (2)0.033 (2)0.0005 (16)0.0041 (16)0.0069 (16)
O120.046 (2)0.0303 (18)0.045 (3)0.0176 (17)0.0261 (19)0.0182 (19)
O130.036 (2)0.0257 (18)0.0207 (18)0.0053 (15)0.0064 (16)0.0031 (15)
N40.019 (2)0.035 (3)0.032 (3)0.0024 (18)0.0042 (19)0.006 (2)
C10.019 (2)0.021 (2)0.020 (3)0.0003 (17)0.0009 (18)0.0017 (18)
C20.025 (3)0.021 (2)0.029 (3)0.001 (2)0.002 (2)0.005 (2)
C30.023 (3)0.025 (3)0.033 (3)0.001 (2)0.006 (2)0.009 (2)
C40.025 (3)0.021 (2)0.023 (3)0.0018 (19)0.004 (2)0.0043 (19)
C50.031 (2)0.020 (2)0.030 (3)0.0078 (17)0.003 (3)0.003 (3)
C60.036 (3)0.018 (2)0.024 (3)0.0023 (19)0.006 (2)0.0040 (19)
Geometric parameters (Å, º) top
Rb1—O1W2.917 (4)O1W—H12W0.88 (4)
Rb1—O112.925 (3)O2W—H21W0.88 (4)
Rb1—O2Wi3.151 (6)O2W—H21Wiv0.88 (4)
Rb1—O1Wii3.246 (4)O12—H120.86 (3)
Rb1—O2Wiii3.109 (5)N4—C41.398 (6)
Rb1—O1Wiv2.917 (4)N4—H410.86 (5)
Rb1—O11iv2.925 (3)N4—H420.88 (4)
Rb1—O1Wv3.246 (4)C1—C21.396 (7)
Rb2—O2W3.193 (6)C1—C61.391 (6)
Rb2—O112.863 (3)C2—C31.369 (7)
Rb2—O12vi2.818 (4)C3—C41.402 (7)
Rb2—O11iv2.863 (3)C4—C51.389 (7)
Rb2—O12vii2.818 (4)C5—C61.379 (7)
As1—O111.650 (3)C2—H20.9500
As1—O121.725 (3)C3—H30.9500
As1—O131.663 (3)C5—H50.9500
As1—C11.899 (5)C6—H60.9500
O1W—H11W0.89 (5)
O1W—Rb1—O1188.34 (10)Rb1—O1W—Rb1iii85.63 (10)
O1W—Rb1—O2Wi74.69 (10)Rb1viii—O2W—Rb2178.05 (19)
O1W—Rb1—O1Wii155.13 (9)Rb1ii—O2W—Rb293.89 (15)
O1W—Rb1—O2Wiii84.49 (10)Rb1viii—O2W—Rb1ii84.16 (13)
O1W—Rb1—O1Wiv95.12 (11)Rb1—O11—Rb294.47 (10)
O1W—Rb1—O11iv154.37 (10)Rb1—O11—As1128.79 (16)
O1W—Rb1—O1Wv85.91 (10)Rb2—O11—As1110.86 (15)
O2Wi—Rb1—O1181.81 (10)Rb2ix—O12—As1122.77 (19)
O1Wii—Rb1—O11101.44 (9)Rb1iii—O1W—H12W70 (4)
O2Wiii—Rb1—O11121.14 (10)Rb1—O1W—H12W129 (5)
O1Wiv—Rb1—O11154.37 (10)H11W—O1W—H12W104 (5)
O11—Rb1—O11iv78.18 (9)Rb1—O1W—H11W117 (3)
O1Wv—Rb1—O1150.37 (9)Rb1iii—O1W—H11W85 (3)
O1Wii—Rb1—O2Wi128.99 (8)Rb2—O2W—H21Wiv87 (4)
O2Wi—Rb1—O2Wiii148.79 (14)Rb1viii—O2W—H21W94 (4)
O1Wiv—Rb1—O2Wi74.69 (10)Rb2—O2W—H21W87 (4)
O2Wi—Rb1—O11iv81.81 (10)H21W—O2W—H21Wiv107 (4)
O1Wv—Rb1—O2Wi128.99 (8)Rb1viii—O2W—H21Wiv94 (4)
O1Wii—Rb1—O2Wiii70.85 (9)Rb1ii—O2W—H21W127 (3)
O1Wii—Rb1—O1Wiv85.91 (10)Rb1ii—O2W—H21Wiv127 (3)
O1Wii—Rb1—O11iv50.37 (9)Rb2ix—O12—H12118 (3)
O1Wii—Rb1—O1Wv83.07 (10)As1—O12—H12118 (3)
O1Wiv—Rb1—O2Wiii84.49 (10)C4—N4—H41118 (3)
O2Wiii—Rb1—O11iv121.14 (10)C4—N4—H42110 (3)
O1Wv—Rb1—O2Wiii70.85 (9)H41—N4—H42122 (4)
O1Wiv—Rb1—O11iv88.34 (10)C2—C1—C6118.7 (4)
O1Wiv—Rb1—O1Wv155.13 (9)As1—C1—C2120.1 (3)
O1Wv—Rb1—O11iv101.44 (9)As1—C1—C6121.1 (3)
O2W—Rb2—O11110.13 (10)C1—C2—C3121.1 (5)
O2W—Rb2—O12vi73.64 (10)C2—C3—C4119.9 (5)
O2W—Rb2—O11iv110.13 (10)N4—C4—C5120.7 (4)
O2W—Rb2—O12vii73.64 (10)N4—C4—C3120.1 (4)
O11—Rb2—O12vi176.01 (11)C3—C4—C5119.2 (4)
O11—Rb2—O11iv80.20 (10)C4—C5—C6120.5 (4)
O11—Rb2—O12vii97.38 (11)C1—C6—C5120.5 (4)
O11iv—Rb2—O12vi97.38 (11)C1—C2—H2119.00
O12vi—Rb2—O12vii84.84 (12)C3—C2—H2119.00
O11iv—Rb2—O12vii176.01 (11)C2—C3—H3120.00
O11—As1—O12109.20 (17)C4—C3—H3120.00
O11—As1—O13113.24 (16)C4—C5—H5120.00
O11—As1—C1111.30 (18)C6—C5—H5120.00
O12—As1—O13103.14 (18)C1—C6—H6120.00
O12—As1—C1108.11 (19)C5—C6—H6120.00
O13—As1—C1111.40 (19)
O11—Rb1—O1W—Rb1iii128.95 (9)O13—As1—O11—Rb14.5 (3)
O1W—Rb1—O11—Rb2175.57 (10)O13—As1—O11—Rb2118.92 (17)
O1W—Rb1—O11—As163.0 (2)C1—As1—O11—Rb1130.9 (2)
O2Wi—Rb1—O11—As111.8 (2)C1—As1—O11—Rb2114.66 (18)
O1Wii—Rb1—O11—Rb218.62 (11)O11—As1—O12—Rb2ix101.6 (2)
O1Wii—Rb1—O11—As1140.0 (2)O13—As1—O12—Rb2ix19.1 (2)
O2Wiii—Rb1—O11—As1145.56 (19)C1—As1—O12—Rb2ix137.2 (2)
O1Wiv—Rb1—O11—Rb286.1 (2)O11—As1—C1—C27.8 (4)
O1Wiv—Rb1—O11—As135.4 (4)O11—As1—C1—C6175.6 (4)
O11iv—Rb1—O11—Rb226.37 (9)O12—As1—C1—C2127.7 (4)
O11iv—Rb1—O11—As195.1 (2)O12—As1—C1—C655.6 (4)
O1Wv—Rb1—O11—Rb289.51 (13)O13—As1—C1—C2119.7 (4)
O1Wv—Rb1—O11—As1149.1 (3)O13—As1—C1—C657.0 (4)
O1W—Rb1—O11iv—Rb286.1 (2)As1—C1—C2—C3174.8 (4)
O11—Rb1—O11iv—Rb226.37 (9)C6—C1—C2—C32.0 (7)
O2W—Rb2—O11—Rb181.20 (11)As1—C1—C6—C5174.4 (4)
O2W—Rb2—O11—As1144.19 (15)C2—C1—C6—C52.4 (7)
O11iv—Rb2—O11—Rb126.79 (9)C1—C2—C3—C40.0 (8)
O11iv—Rb2—O11—As1107.83 (17)C2—C3—C4—N4179.3 (5)
O12vii—Rb2—O11—Rb1156.43 (10)C2—C3—C4—C51.6 (8)
O12vii—Rb2—O11—As168.96 (17)N4—C4—C5—C6179.0 (5)
O11—Rb2—O11iv—Rb126.79 (9)C3—C4—C5—C61.3 (8)
O12—As1—O11—Rb1109.8 (2)C4—C5—C6—C10.8 (8)
O12—As1—O11—Rb24.6 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+2, z1/2; (iii) x+1, y+2, z+1/2; (iv) x+1, y, z; (v) x, y+2, z1/2; (vi) x+1, y+1, z1/2; (vii) x, y+1, z1/2; (viii) x, y, z1; (ix) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···N4x0.89 (5)2.04 (4)2.923 (6)176 (5)
O2W—H21W···O13viii0.88 (4)1.97 (4)2.852 (5)173 (5)
O12—H12···O13vii0.86 (3)1.73 (4)2.552 (5)158 (5)
N4—H41···O13xi0.86 (5)2.18 (4)3.022 (5)167 (4)
N4—H42···O1Wxii0.88 (4)2.13 (4)3.005 (6)176 (4)
Symmetry codes: (vii) x, y+1, z1/2; (viii) x, y, z1; (x) x+3/2, y+3/2, z+1/2; (xi) x+3/2, y+3/2, z1/2; (xii) x+3/2, y1/2, z.
(III) Poly[di-µ3-4-aminophenylarsonato-tri-µ2-aqua-dicaesium] top
Crystal data top
[Cs2(C6H7AsNO3)2(H2O)3]F(000) = 1416
Mr = 751.96Dx = 2.311 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1999 reflections
a = 24.650 (3) Åθ = 4.0–28.9°
b = 10.4373 (9) ŵ = 6.46 mm1
c = 8.3992 (7) ÅT = 200 K
V = 2160.9 (4) Å3Prism, colourless
Z = 40.40 × 0.22 × 0.10 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1883 independent reflections
Radiation source: Enhance Mo X-ray source1787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.077 pixels mm-1θmax = 29.3°, θmin = 3.2°
ω scansh = 3329
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1413
Tmin = 0.217, Tmax = 0.980l = 116
4941 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.1178P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
1883 reflectionsΔρmax = 1.69 e Å3
145 parametersΔρmin = 1.00 e Å3
8 restraintsAbsolute structure: Flack (1983), 1405 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (4)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.500000.95299 (7)0.67229 (13)0.0217 (2)
Cs20.500000.62982 (10)0.99928 (13)0.0311 (3)
As10.61041 (4)0.63299 (7)0.65867 (12)0.0166 (3)
O1W0.5936 (4)1.0619 (7)0.4690 (11)0.026 (3)
O2W0.500000.7680 (11)0.3558 (16)0.027 (3)
O110.5799 (3)0.7443 (8)0.7661 (11)0.028 (3)
O120.5841 (4)0.4827 (8)0.7086 (11)0.036 (3)
O130.5962 (3)0.6457 (7)0.4668 (11)0.024 (2)
N40.8542 (4)0.6351 (9)0.7686 (14)0.025 (3)
C10.6861 (5)0.6283 (7)0.6996 (13)0.016 (3)
C20.7088 (5)0.7189 (9)0.7999 (14)0.022 (3)
C30.7634 (5)0.7201 (9)0.8256 (18)0.025 (3)
C40.7983 (5)0.6344 (9)0.7490 (14)0.022 (3)
C50.7752 (5)0.5399 (9)0.6487 (19)0.031 (4)
C60.7202 (5)0.5380 (8)0.6236 (15)0.023 (3)
H20.686200.780200.851000.0260*
H30.778200.781000.897600.0300*
H50.797700.478000.598800.0370*
H60.704800.475500.554800.0270*
H11W0.624 (3)1.039 (12)0.420 (15)0.0340*
H120.578 (7)0.493 (15)0.811 (5)0.0340*
H12W0.589 (4)1.126 (12)0.400 (12)0.0340*
H21W0.529 (4)0.773 (13)0.418 (16)0.0340*
H410.865 (6)0.602 (12)0.685 (18)0.0270*
H420.870 (6)0.706 (11)0.81 (2)0.0270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0185 (4)0.0261 (4)0.0204 (4)0.00000.00000.0024 (4)
Cs20.0174 (5)0.0525 (6)0.0233 (5)0.00000.00000.0136 (5)
As10.0146 (5)0.0182 (4)0.0169 (5)0.0016 (3)0.0029 (5)0.0004 (4)
O1W0.017 (4)0.035 (4)0.026 (5)0.000 (3)0.009 (4)0.002 (4)
O2W0.020 (6)0.031 (5)0.030 (7)0.00000.00000.002 (5)
O110.020 (4)0.032 (4)0.031 (5)0.002 (3)0.007 (4)0.005 (3)
O120.042 (5)0.033 (4)0.032 (5)0.021 (4)0.024 (4)0.007 (4)
O130.019 (4)0.029 (4)0.025 (4)0.005 (3)0.000 (4)0.001 (3)
N40.020 (5)0.026 (4)0.030 (5)0.003 (3)0.015 (5)0.004 (4)
C10.019 (5)0.015 (4)0.014 (4)0.000 (3)0.004 (4)0.001 (3)
C20.027 (6)0.020 (4)0.019 (5)0.006 (4)0.009 (4)0.011 (4)
C30.022 (5)0.024 (4)0.030 (6)0.003 (4)0.006 (6)0.002 (5)
C40.021 (6)0.021 (4)0.023 (6)0.004 (4)0.002 (5)0.006 (4)
C50.028 (6)0.024 (4)0.041 (8)0.006 (4)0.005 (6)0.013 (5)
C60.020 (5)0.020 (4)0.029 (6)0.003 (3)0.005 (5)0.002 (4)
Geometric parameters (Å, º) top
Cs1—O1W3.087 (9)O1W—H12W0.89 (12)
Cs1—O2W3.286 (13)O2W—H21W0.89 (12)
Cs1—O113.040 (8)O2W—H21Wii0.89 (12)
Cs1—O1Wi3.400 (10)O12—H120.88 (5)
Cs1—O2Wi3.295 (12)N4—C41.388 (16)
Cs1—O1Wii3.087 (9)N4—H410.83 (14)
Cs1—O11ii3.040 (8)N4—H420.91 (14)
Cs1—O1Wiii3.400 (10)C1—C21.385 (15)
Cs2—O113.024 (8)C1—C61.415 (15)
Cs2—O2Wiv3.324 (13)C2—C31.363 (17)
Cs2—O12v2.961 (9)C3—C41.398 (16)
Cs2—O11ii3.024 (8)C4—C51.417 (17)
Cs2—O12vi2.961 (9)C5—C61.372 (18)
As1—O111.652 (9)C2—H20.9500
As1—O121.748 (9)C3—H30.9500
As1—O131.655 (9)C5—H50.9500
As1—C11.898 (12)C6—H60.9500
O1W—H11W0.89 (9)
O1W—Cs1—O2W76.6 (2)Cs1—O1W—Cs1vii83.2 (2)
O1W—Cs1—O1185.6 (2)Cs1—O2W—Cs2viii169.7 (4)
O1W—Cs1—O1Wi158.4 (2)Cs1—O2W—Cs1vii81.9 (3)
O1W—Cs1—O2Wi86.2 (2)Cs1vii—O2W—Cs2viii87.8 (3)
O1W—Cs1—O1Wii96.7 (2)Cs1—O11—Cs291.7 (2)
O1W—Cs1—O11ii153.0 (2)Cs1—O11—As1131.1 (4)
O1W—Cs1—O1Wiii85.1 (2)Cs2—O11—As1111.9 (4)
O2W—Cs1—O1177.8 (2)Cs2ix—O12—As1118.2 (4)
O1Wi—Cs1—O2W124.49 (19)Cs1vii—O1W—H12W58 (7)
O2W—Cs1—O2Wi153.9 (3)Cs1—O1W—H12W123 (7)
O1Wii—Cs1—O2W76.6 (2)H11W—O1W—H12W91 (11)
O2W—Cs1—O11ii77.8 (2)Cs1—O1W—H11W142 (8)
O1Wiii—Cs1—O2W124.49 (19)Cs1vii—O1W—H11W103 (8)
O1Wi—Cs1—O11102.5 (2)Cs1—O2W—H21Wii59 (8)
O2Wi—Cs1—O11120.8 (2)Cs2viii—O2W—H21W124 (7)
O1Wii—Cs1—O11153.0 (2)Cs1—O2W—H21W59 (8)
O11—Cs1—O11ii80.8 (2)H21W—O2W—H21Wii107 (11)
O1Wiii—Cs1—O1148.5 (2)Cs2viii—O2W—H21Wii124 (8)
O1Wi—Cs1—O2Wi72.4 (2)Cs1vii—O2W—H21W103 (8)
O1Wi—Cs1—O1Wii85.1 (2)Cs1vii—O2W—H21Wii103 (9)
O1Wi—Cs1—O11ii48.5 (2)Cs2ix—O12—H12121 (11)
O1Wi—Cs1—O1Wiii85.5 (2)As1—O12—H12101 (10)
O1Wii—Cs1—O2Wi86.2 (2)C4—N4—H41103 (10)
O2Wi—Cs1—O11ii120.8 (2)C4—N4—H42119 (8)
O1Wiii—Cs1—O2Wi72.4 (2)H41—N4—H42122 (13)
O1Wii—Cs1—O11ii85.6 (2)C2—C1—C6119.3 (11)
O1Wii—Cs1—O1Wiii158.4 (2)As1—C1—C2119.3 (8)
O1Wiii—Cs1—O11ii102.5 (2)As1—C1—C6121.3 (8)
O2Wiv—Cs2—O11114.3 (2)C1—C2—C3120.1 (11)
O11—Cs2—O12v175.8 (2)C2—C3—C4121.9 (11)
O11—Cs2—O11ii81.3 (2)N4—C4—C5118.3 (10)
O11—Cs2—O12vi94.9 (2)N4—C4—C3123.6 (10)
O2Wiv—Cs2—O12v68.7 (2)C3—C4—C5118.2 (11)
O2Wiv—Cs2—O11ii114.3 (2)C4—C5—C6119.9 (11)
O2Wiv—Cs2—O12vi68.7 (2)C1—C6—C5120.5 (10)
O11ii—Cs2—O12v94.9 (2)C1—C2—H2120.00
O12v—Cs2—O12vi88.9 (3)C3—C2—H2120.00
O11ii—Cs2—O12vi175.8 (2)C2—C3—H3119.00
O11—As1—O12109.3 (4)C4—C3—H3119.00
O11—As1—O13112.3 (4)C4—C5—H5120.00
O11—As1—C1111.5 (4)C6—C5—H5120.00
O12—As1—O13103.1 (4)C1—C6—H6120.00
O12—As1—C1107.3 (4)C5—C6—H6120.00
O13—As1—C1112.8 (4)
O11—Cs1—O1W—Cs1vii126.4 (2)O13—As1—O11—Cs13.5 (6)
O1W—Cs1—O11—Cs2175.0 (2)O13—As1—O11—Cs2116.5 (4)
O1W—Cs1—O11—As163.7 (5)C1—As1—O11—Cs1131.1 (5)
O2W—Cs1—O11—Cs2107.8 (2)C1—As1—O11—Cs2115.8 (4)
O2W—Cs1—O11—As113.5 (5)O11—As1—O12—Cs2ix98.9 (5)
O1Wi—Cs1—O11—Cs215.3 (3)O13—As1—O12—Cs2ix20.8 (5)
O1Wi—Cs1—O11—As1136.6 (5)C1—As1—O12—Cs2ix140.0 (5)
O2Wi—Cs1—O11—As1146.6 (5)O11—As1—C1—C24.7 (10)
O1Wii—Cs1—O11—Cs288.9 (5)O11—As1—C1—C6178.4 (8)
O1Wii—Cs1—O11—As132.4 (9)O12—As1—C1—C2124.4 (8)
O11ii—Cs1—O11—Cs228.4 (2)O12—As1—C1—C658.7 (9)
O11ii—Cs1—O11—As193.0 (5)O13—As1—C1—C2122.7 (8)
O1Wiii—Cs1—O11—Cs287.6 (3)O13—As1—C1—C654.2 (9)
O1Wiii—Cs1—O11—As1151.1 (6)As1—C1—C2—C3177.4 (9)
O1W—Cs1—O11ii—Cs288.9 (5)C6—C1—C2—C30.5 (16)
O11—Cs1—O11ii—Cs228.4 (2)As1—C1—C6—C5176.9 (9)
O2Wiv—Cs2—O11—As1139.6 (4)C2—C1—C6—C50.0 (16)
O11ii—Cs2—O11—Cs128.5 (2)C1—C2—C3—C42.2 (18)
O11ii—Cs2—O11—As1107.6 (4)C2—C3—C4—N4178.1 (11)
O12vi—Cs2—O11—Cs1153.2 (2)C2—C3—C4—C53.4 (18)
O12vi—Cs2—O11—As170.7 (4)N4—C4—C5—C6178.5 (11)
O11—Cs2—O11ii—Cs128.5 (2)C3—C4—C5—C62.9 (18)
O12—As1—O11—Cs1110.3 (5)C4—C5—C6—C11.2 (18)
O12—As1—O11—Cs22.7 (5)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y, z; (iii) x, y+2, z+1/2; (iv) x, y, z+1; (v) x+1, y+1, z+1/2; (vi) x, y+1, z+1/2; (vii) x+1, y+2, z1/2; (viii) x, y, z1; (ix) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···N4x0.89 (9)2.28 (13)2.952 (13)132 (10)
O2W—H21W···O130.89 (12)2.16 (12)2.850 (10)134 (12)
O12—H12···O13vi0.88 (5)2.00 (12)2.567 (13)121 (12)
N4—H41···O1Wxi0.83 (14)2.12 (15)2.928 (15)164 (9)
N4—H42···O13xii0.91 (14)2.20 (14)3.082 (13)166 (15)
Symmetry codes: (vi) x, y+1, z+1/2; (x) x+3/2, y+3/2, z1/2; (xi) x+3/2, y1/2, z; (xii) x+3/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology and from Griffith University.

References

First citationAdelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). Inorg. Chem. 51, 12032–12040.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBosch, F. & Rosich, L. (2008). Pharmacology, 82, 171–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBreen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904–6908.  Web of Science CSD CrossRef CAS Google Scholar
First citationBreen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19–21.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, B., Wang, B., Lin, Z., Fan, L., Gao, Y., Chi, Y. & Hu, C. (2012). Dalton Trans. 41, 6910–6913.  Web of Science CSD CrossRef CAS Google Scholar
First citationEhrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292–3297.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, B. J. S., Schroden, R. C., Zhu, C., Young, V. G. Jr & Stein, A. (2002). Inorg. Chem. 41, 2213–2218.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M. I., Chang, Y., Chen, Q., Hope, H., Parking, S., Goshorn, D. P. & Zubieta, J. (1992). Angew. Chem. Int. Ed. Engl. 31, 1197–1200.  CSD CrossRef Web of Science Google Scholar
First citationLesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432.  CAS Google Scholar
First citationLin, W.-Z., Liu, Z.-Q., Huang, X.-H., Li, H.-H., Wu, S.-T. & Huang, C.-C. (2012). Chin. J. Struct. Chem. 31, 1301–1308.  CAS Google Scholar
First citationLiu, Z.-Q., Zhao, Y.-F., Huang, X.-H., Li, H.-H. & Huang, C.-C. (2010). Chin. J. Struct. Chem. 29, 1724–1730.  CAS Google Scholar
First citationNuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 243. Whitehouse Station, NJ: Merck and Co., Inc.  Google Scholar
First citationOnet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. M. & Schmitt, W. (2011). Inorg. Chem. 50, 604–613.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643.  CrossRef CAS Web of Science Google Scholar
First citationSmith, T. M., Strauskulage, L., Perrin, K. A. & Zubieta, J. (2013). Inorg. Chim. Acta, 407, 48–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2017). Acta Cryst. C73, 61–67.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteverding, D. (2010). Parasites & Vectors, 3, 15.  Web of Science CrossRef Google Scholar
First citationXiao, Z.-P., Wen, M., Wang, C.-Y. & Huang, X.-H. (2015). Acta Cryst. C71, 258–261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093–4103.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds