research communications
Crystal structures and hydrogen bonding in the isotypic series of hydrated alkali metal (K, Rb and Cs) complexes with 4-aminophenylarsonic acid
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: gsmith@bigpond.com
The structures of the alkali metal (K, Rb and Cs) complex salts with 4-aminophenylarsonic acid (p-arsanilic acid) manifest an isotypic series with the general formula [M2(C6H7AsNO3)2(H2O)3], with M = K {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dipotassium], [K2(C6H7AsNO3)2(H2O)3], (I)}, Rb {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dirubidium], [Rb2(C6H7AsNO3)2(H2O)3], (II)}, and Cs {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dirubidium], [Cs2(C6H7AsNO3)2(H2O)3], (III)}, in which the repeating structural units lie across crystallographic mirror planes containing two independent and different metal cations and a bridging water molecule, with the two hydrogen p-arsanilate ligands and the second water molecule lying outside the mirror plane. The bonding about the two metal cations in all complexes is similar, one five-coordinate, the other progressing from five-coordinate in (I) to eight-coordinate in both (II) and (III), with overall M—O bond-length ranges of 2.694 (5)–3.009 (7) (K), 2.818 (4)–3.246 (4) (Rb) and 2.961 (9)–3.400 (10) Å (Cs). The additional three bonds in (II) and (III) are the result of inter-metal bridging through the water ligands. Two-dimensional coordination polymeric structures with the layers lying parallel to (100) are generated through a number of bridging bonds involving the water molecules (including hydrogen-bonding interactions), as well as through the arsanilate O atoms. These layers are linked across [100] through amine N—H⋯O hydrogen bonds to arsonate and water O-atom acceptors, giving overall three-dimensional network structures.
1. Chemical context
Arsenical 4-aminophenylarsonic acid (p-arsanilic acid) has biological significance as an anti-helminth in veterinary applications (Steverding, 2010; O'Neil, 2001) and as a hydrated sodium salt (atoxyl) that had early usage as an anti-syphilitic (Ehrlich & Bertheim, 1907; Bosch & Rosich, 2008). The of this salt has been determined together with the NH4+ salt (Smith & Wermuth, 2014); the structure of the parent p-arsanilic acid, which exists as a zwitterion, is also known (Shimada, 1961; Nuttall & Hunter, 1996). We have also determined the structures of the alkaline earth metal (Mg, Ca, Sr, Ba) salts of the acid (Smith & Wermuth, 2017). However, simple p-arsanilate single-metal complex structures are not common in the Cambridge Structure Database (Groom et al., 2016), examples being with AgI (three forms), Zn, Pb and Cd (Lesikar-Parrish et al., 2013; Xiao et al., 2015); Zn (Lin et al., 2012); Cd (Liu et al., 2010); SnIV (Xie et al., 2008); VIV and VV (Breen et al., 2012; Chen et al., 2012; Khan et al., 1992); UO2 (Adelani et al., 2012). Mixed-metal and/or mixed-ligand complexes are common, e.g. CoII/Mo=O, NiII/Mo=O, CuII/Mo=O and Zn/Mo=O with p-arsanilate and ligands such as 2,2′-bipyridine, 4,4′-bipyridine and 1,10-phenanthroline (Smith et al., 2013).
In an attempt to complete the structures of the alkali metal series of p-arsanilate salts, our reaction of the acid with potassium carbonate, rubidium carbonate and caesium carbonate in ethanol/water resulted in the formation of the crystalline hydrated salts with general formula [M+2(C6H7AsNO3)−2·3H2O]. Compounds (I) (M = K), (II) (Rb) and (III) (Cs) and their crystal structures are reported herein. However, suitable crystals of the Li analogue were not obtained to allow its determination.
2. Structural commentary
The structures of the three title compounds [(I), (II) and (III)] form an isotypic series, with the asymmetric units in each comprising two independent and different metal complex cations (M1 and M2), which lie on crystallographic mirror planes that also contain one of the coordinating water molecules (O2W), with the hydrogen p-arsanilate ligands and the second water molecules (OW1, O1Wii) [symmetry code: (ii) −x + 1, −y, z] lying across the mirror plane (Figs. 1, 2 and 3, respectively). In all three examples, the M2 cation is five-coordinate, while with M1, the coordination spheres progress from five-coordinate in (I) to eight-coordinate in (II) and (III). The overall M—O bond length ranges are 2.694 (5)–3.009 (7) Å (K) (Table 1), 2.818 (4)–3.246 (4) Å (Rb) (Table 2) and 2.961 (9)–3.400 (10) Å (Cs) (Table 2). The amine N atom is not involved in bonding to the metal, as is the case in a number of other p-arsanilate complexes, e.g. with Zn (Lin et al., 2012). The M1O5 polyhedra in all three structures comprise four bridging arsonate O atoms and the μ2 bridging water molecule (O2W) (Tables 1, 2 and 3). The second M2O5 polyhedron in (I) comprises the bridging O11 and O11ii donors, the μ2-O2Wi [symmetry code: (i) −x + 1, −y + 2, z + ] donor and two monodentate water molecules (O1W and O1Wi) (Table 1).
|
|
With (II) and (III), the irregular M2O8 coordination sphere comprises all bonds mentioned in the description of the K complex (I), and in addition, the Rb and Cs bond length expansion allows further coordination sites through additional bridging bonds to both of the water molecules (two through O1W and one through O2W), (Tables 2 and 3). The M1⋯M2 separations are 4.139 (3) Å [for (I)], 4.2500 (11) Å [for (II)] and 4.3498 (15) Å [for (III)]. There are also slightly shorter M1⋯M1i separations in all structures: 4.079 (3) Å (I), 4.1953 (13) Å (II) and 4.3127 (16) Å (III). Relatively short M2⋯As1 separations are present within the repeat unit in all three structures: 3.6369 (19) Å (I), 3.7796 (8) Å (II) and 3.9488 (14) Å (III).
In all structures, two-dimensional coordination polymeric complex structures are generated, with the layers lying in the mirror planes parallel to (100). Fig. 4 shows the basic makeup of the layer in (I) while those for (II) or (III) are shown in Fig. 5. The water molecule O2W provides hydrogen-bonding links across the mirror plane to arsonate O13 acceptors (Tables 4, 5 and 6).
|
|
|
3. Supramolecular features
In the crystals of all three compounds, similar overall packing modes are observed, with the coordination polymeric layers lying along the mirror planes inter-linked across [100] through amine N4—H⋯O hydrogen bonds to arsonate O13 and water O1W acceptors (Tables 4, 5 and 6). In this respect, they resemble the crystal packing of the Na p-arsanilate analogue (Smith & Wermuth, 2014) but the structure of that compound (a trihydrate) differs from the current isotypic set in having significantly different coordination spheres, also lacking the mirror symmetry of the primary polymeric layers in (I)–(III). With these, the N4 amino group acts as an acceptor to an O1W hydrogen bond. The water molecule O1W also forms a hydrogen bond with O11vi [symmetry code: (vi) x, −y + 2, z + ] in (I), but not in (II) or (III). The protonated p-arsanilate O atom (O12) forms an intra-layer hydrogen bond with an O11 acceptor, giving overall three-dimensional network structures in all cases (Figs. 6 and 7). No π–π associations are present in the structures.
4. Database survey
Three-dimensional supramolecular structures involving complexes of hydrogen p-arsanilate and mixed metal types, as distinct from those involving uni-metal types, such as in (I)–(III) and in those examples which have been previously mentioned in the Chemical context section of this article, are worthy of noting here. Mixed-metal-ligand examples (Smith et al., 2013) as well as mixed–metal structures add to the complexity of the coordination polymeric structures commonly generated, e.g. in the Mo/Ag, Mo/Cu and W/Na polyoxidometallate compounds (Johnson et al., 2002), the Mo/V cage structure (Onet et al., 2011) or the V/Na structure (Breen & Schmitt, 2008).
5. Synthesis and crystallization
Compounds (I)–(III) were synthesized by heating together for 5 min, 1 mmol quantities of 4-aminophenylarsonic acid and 0.5 mmol of either K2CO3 [for (I)], Rb2CO3 [for (II)] or Cs2CO3 [for (III)], in 20 ml of 50% ethanol/water (v/v). Room temperature evaporation of the solutions gave colourless crystal plates of the title compounds from which specimens were cleaved for the X-ray analyses.
6. details
Crystal data, data collection and structure . Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods but their positional parameters were restrained in the with N—H = 0.88 Å and O—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included in the at calculated positions, C—H = 0.95 Å, and treated as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 7
|
Supporting information
https://doi.org/10.1107/S2056989017000445/wm5350sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017000445/wm5350Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017000445/wm5350IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989017000445/wm5350IIIsup4.hkl
For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[K2(C6H7AsNO3)2(H2O)3] | F(000) = 1128 |
Mr = 564.34 | Dx = 1.886 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 1421 reflections |
a = 24.3426 (18) Å | θ = 4.1–28.7° |
b = 10.4266 (7) Å | µ = 3.83 mm−1 |
c = 7.8315 (6) Å | T = 200 K |
V = 1987.7 (3) Å3 | Prism, colourless |
Z = 4 | 0.35 × 0.22 × 0.11 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1834 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1710 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 16.077 pixels mm-1 | θmax = 29.3°, θmin = 3.2° |
ω scans | h = −32→17 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −13→13 |
Tmin = 0.650, Tmax = 0.980 | l = −9→10 |
2874 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0744P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max = 0.001 |
1834 reflections | Δρmax = 0.50 e Å−3 |
145 parameters | Δρmin = −0.84 e Å−3 |
8 restraints | Absolute structure: Flack (1983), 1281 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (2) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
As1 | 0.60155 (2) | 0.63813 (4) | 0.55509 (10) | 0.0164 (2) | |
K1 | 0.50000 | 0.94523 (15) | 0.5457 (3) | 0.0224 (4) | |
K2 | 0.50000 | 0.63621 (19) | 0.2140 (3) | 0.0279 (6) | |
O1W | 0.5845 (2) | 1.0465 (4) | 0.7396 (6) | 0.0260 (12) | |
O2W | 0.50000 | 0.7951 (6) | −0.1067 (9) | 0.0263 (19) | |
O11 | 0.57103 (16) | 0.7477 (4) | 0.4358 (6) | 0.0227 (12) | |
O12 | 0.5720 (2) | 0.4898 (4) | 0.5138 (6) | 0.0333 (16) | |
O13 | 0.59063 (19) | 0.6581 (4) | 0.7630 (7) | 0.0247 (14) | |
N4 | 0.8483 (2) | 0.6311 (5) | 0.4372 (8) | 0.0243 (17) | |
C1 | 0.6778 (3) | 0.6280 (5) | 0.5052 (8) | 0.0197 (16) | |
C2 | 0.7027 (3) | 0.7225 (5) | 0.4072 (8) | 0.0203 (16) | |
C3 | 0.7583 (3) | 0.7230 (5) | 0.3828 (8) | 0.0230 (17) | |
C4 | 0.7918 (3) | 0.6313 (5) | 0.4615 (7) | 0.0170 (17) | |
C5 | 0.7669 (2) | 0.5344 (4) | 0.5574 (10) | 0.0203 (14) | |
C6 | 0.7104 (2) | 0.5332 (5) | 0.5803 (8) | 0.0197 (16) | |
H2 | 0.68080 | 0.78760 | 0.35650 | 0.0240* | |
H3 | 0.77440 | 0.78640 | 0.31150 | 0.0270* | |
H5 | 0.78880 | 0.46900 | 0.60720 | 0.0240* | |
H6 | 0.69380 | 0.46780 | 0.64730 | 0.0240* | |
H11W | 0.608 (2) | 0.998 (6) | 0.795 (9) | 0.0300* | |
H12 | 0.585 (3) | 0.450 (6) | 0.425 (6) | 0.0300* | |
H12W | 0.582 (3) | 1.116 (4) | 0.806 (8) | 0.0300* | |
H21W | 0.525 (2) | 0.781 (7) | −0.181 (7) | 0.0300* | |
H41 | 0.866 (3) | 0.622 (5) | 0.532 (5) | 0.0240* | |
H42 | 0.863 (3) | 0.683 (6) | 0.363 (7) | 0.0240* |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1 | 0.0178 (3) | 0.0148 (3) | 0.0167 (3) | −0.0020 (2) | 0.0030 (3) | −0.0007 (3) |
K1 | 0.0198 (7) | 0.0217 (7) | 0.0256 (8) | 0.0000 | 0.0000 | −0.0055 (9) |
K2 | 0.0186 (9) | 0.0387 (11) | 0.0264 (10) | 0.0000 | 0.0000 | −0.0114 (8) |
O1W | 0.028 (2) | 0.023 (2) | 0.027 (2) | 0.0021 (19) | −0.006 (2) | −0.001 (2) |
O2W | 0.018 (3) | 0.027 (3) | 0.034 (4) | 0.0000 | 0.0000 | −0.003 (3) |
O11 | 0.019 (2) | 0.026 (2) | 0.023 (2) | −0.0026 (17) | 0.0023 (18) | 0.0053 (18) |
O12 | 0.037 (3) | 0.022 (2) | 0.041 (3) | −0.0120 (19) | 0.022 (2) | −0.014 (2) |
O13 | 0.023 (2) | 0.024 (2) | 0.027 (3) | 0.0033 (19) | 0.008 (2) | 0.004 (2) |
N4 | 0.019 (3) | 0.024 (3) | 0.030 (3) | 0.002 (2) | −0.001 (2) | 0.002 (2) |
C1 | 0.022 (3) | 0.015 (2) | 0.022 (3) | −0.001 (2) | 0.001 (2) | −0.002 (2) |
C2 | 0.022 (3) | 0.017 (2) | 0.022 (3) | 0.007 (2) | −0.001 (2) | 0.000 (2) |
C3 | 0.026 (3) | 0.018 (3) | 0.025 (3) | −0.003 (2) | 0.006 (2) | 0.011 (3) |
C4 | 0.025 (3) | 0.021 (3) | 0.005 (3) | 0.005 (2) | 0.005 (2) | −0.0027 (19) |
C5 | 0.025 (2) | 0.013 (2) | 0.023 (3) | 0.0061 (18) | −0.002 (3) | 0.003 (3) |
C6 | 0.024 (3) | 0.016 (2) | 0.019 (3) | 0.0002 (19) | 0.007 (2) | 0.001 (2) |
K1—O1W | 2.766 (5) | O2W—H21W | 0.86 (5) |
K1—O11 | 2.824 (4) | O2W—H21Wii | 0.86 (5) |
K1—O2Wi | 2.959 (7) | O12—H12 | 0.87 (6) |
K1—O1Wii | 2.766 (5) | N4—C4 | 1.389 (9) |
K1—O11ii | 2.824 (4) | N4—H41 | 0.86 (5) |
K2—O2W | 3.009 (7) | N4—H42 | 0.87 (6) |
K2—O11 | 2.713 (5) | C1—C2 | 1.388 (8) |
K2—O12iii | 2.694 (5) | C1—C6 | 1.397 (8) |
K2—O11ii | 2.713 (5) | C2—C3 | 1.367 (10) |
K2—O12iv | 2.694 (5) | C3—C4 | 1.400 (9) |
As1—O11 | 1.652 (4) | C4—C5 | 1.397 (8) |
As1—O12 | 1.736 (4) | C5—C6 | 1.387 (7) |
As1—O13 | 1.663 (5) | C2—H2 | 0.9500 |
As1—C1 | 1.900 (7) | C3—H3 | 0.9500 |
O1W—H11W | 0.88 (6) | C5—H5 | 0.9500 |
O1W—H12W | 0.89 (5) | C6—H6 | 0.9500 |
O11—As1—O12 | 108.9 (2) | K1—O1W—H12W | 125 (5) |
O11—As1—O13 | 113.3 (2) | H11W—O1W—H12W | 103 (6) |
O11—As1—C1 | 111.2 (2) | K1v—O2W—H21W | 116 (5) |
O12—As1—O13 | 103.2 (2) | H21W—O2W—H21Wii | 91 (5) |
O12—As1—C1 | 108.5 (2) | K1v—O2W—H21Wii | 116 (5) |
O13—As1—C1 | 111.4 (3) | K2—O2W—H21W | 118 (4) |
O1W—K1—O11 | 89.45 (13) | K2—O2W—H21Wii | 118 (4) |
O1W—K1—O2Wi | 82.66 (13) | K2vi—O12—H12 | 118 (4) |
O1W—K1—O1Wii | 96.08 (15) | As1—O12—H12 | 115 (4) |
O1W—K1—O11ii | 154.31 (14) | C4—N4—H41 | 112 (4) |
O2Wi—K1—O11 | 122.99 (14) | H41—N4—H42 | 116 (6) |
O1Wii—K1—O11 | 154.31 (14) | C4—N4—H42 | 120 (5) |
O11—K1—O11ii | 75.52 (12) | As1—C1—C6 | 120.5 (4) |
O1Wii—K1—O2Wi | 82.66 (13) | As1—C1—C2 | 120.1 (5) |
O2Wi—K1—O11ii | 122.99 (14) | C2—C1—C6 | 119.1 (6) |
O1Wii—K1—O11ii | 89.45 (13) | C1—C2—C3 | 120.8 (6) |
O2W—K2—O11 | 107.37 (14) | C2—C3—C4 | 120.9 (6) |
O2W—K2—O12iii | 77.45 (14) | C3—C4—C5 | 118.6 (6) |
O2W—K2—O11ii | 107.37 (14) | N4—C4—C3 | 121.2 (5) |
O2W—K2—O12iv | 77.45 (14) | N4—C4—C5 | 120.2 (5) |
O11—K2—O12iii | 175.18 (16) | C4—C5—C6 | 120.4 (5) |
O11—K2—O11ii | 79.20 (14) | C1—C6—C5 | 120.2 (5) |
O11—K2—O12iv | 99.61 (13) | C1—C2—H2 | 120.00 |
O11ii—K2—O12iii | 99.61 (13) | C3—C2—H2 | 120.00 |
O12iii—K2—O12iv | 81.18 (15) | C2—C3—H3 | 120.00 |
O11ii—K2—O12iv | 175.18 (16) | C4—C3—H3 | 120.00 |
K1v—O2W—K2 | 99.6 (2) | C4—C5—H5 | 120.00 |
K1—O11—K2 | 96.75 (13) | C6—C5—H5 | 120.00 |
As1—O12—K2vi | 126.6 (2) | C1—C6—H6 | 120.00 |
K1—O1W—H11W | 122 (4) | C5—C6—H6 | 120.00 |
O12—As1—O11—K1 | 109.9 (3) | O11ii—K1—O11—K2 | 25.38 (14) |
O12—As1—O11—K2 | −6.6 (3) | O1W—K1—O11ii—K2 | −81.4 (4) |
O13—As1—O11—K1 | −4.3 (3) | O11—K1—O11ii—K2 | −25.38 (14) |
O13—As1—O11—K2 | −120.8 (2) | O2W—K2—O11—As1 | −146.8 (2) |
C1—As1—O11—K1 | −130.6 (3) | O2W—K2—O11—K1 | 78.91 (15) |
C1—As1—O11—K2 | 112.9 (2) | O11ii—K2—O11—As1 | 108.2 (2) |
O11—As1—O12—K2vi | −103.8 (3) | O11ii—K2—O11—K1 | −26.09 (14) |
O13—As1—O12—K2vi | 16.9 (3) | O12iv—K2—O11—As1 | −67.1 (2) |
C1—As1—O12—K2vi | 135.1 (3) | O12iv—K2—O11—K1 | 158.66 (14) |
O11—As1—C1—C2 | 12.4 (6) | O11—K2—O11ii—K1 | 26.09 (14) |
O11—As1—C1—C6 | −174.0 (5) | As1—C1—C2—C3 | 174.1 (5) |
O12—As1—C1—C2 | 132.2 (5) | C6—C1—C2—C3 | 0.5 (9) |
O12—As1—C1—C6 | −54.3 (5) | As1—C1—C6—C5 | −173.3 (5) |
O13—As1—C1—C2 | −114.9 (5) | C2—C1—C6—C5 | 0.3 (9) |
O13—As1—C1—C6 | 58.6 (5) | C1—C2—C3—C4 | −2.6 (9) |
O1W—K1—O11—As1 | 61.8 (3) | C2—C3—C4—N4 | 179.9 (6) |
O1W—K1—O11—K2 | −175.68 (15) | C2—C3—C4—C5 | 3.8 (9) |
O2Wi—K1—O11—As1 | 142.7 (2) | N4—C4—C5—C6 | −179.2 (6) |
O1Wii—K1—O11—As1 | −41.1 (5) | C3—C4—C5—C6 | −3.0 (9) |
O1Wii—K1—O11—K2 | 81.4 (4) | C4—C5—C6—C1 | 1.0 (9) |
O11ii—K1—O11—As1 | −97.1 (3) |
Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) −x+1, y, z; (iii) −x+1, −y+1, z−1/2; (iv) x, −y+1, z−1/2; (v) −x+1, −y+2, z−1/2; (vi) −x+1, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···N4vii | 0.88 (6) | 2.05 (6) | 2.915 (7) | 171 (5) |
O1W—H12W···O11viii | 0.89 (5) | 1.77 (5) | 2.660 (6) | 175 (7) |
O2W—H21W···O13ix | 0.86 (5) | 2.09 (6) | 2.819 (6) | 142 (6) |
O12—H12···O13iv | 0.87 (6) | 1.70 (6) | 2.538 (7) | 160 (7) |
N4—H41···O1Wx | 0.86 (5) | 2.17 (5) | 3.010 (7) | 164 (5) |
N4—H42···O13xi | 0.87 (6) | 2.15 (6) | 2.984 (7) | 160 (5) |
Symmetry codes: (iv) x, −y+1, z−1/2; (vii) −x+3/2, −y+3/2, z+1/2; (viii) x, −y+2, z+1/2; (ix) x, y, z−1; (x) −x+3/2, y−1/2, z; (xi) −x+3/2, −y+3/2, z−1/2. |
[Rb2(C6H7AsNO3)2(H2O)3] | F(000) = 1272 |
Mr = 657.08 | Dx = 2.105 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 1374 reflections |
a = 24.4783 (19) Å | θ = 4.0–28.7° |
b = 10.4577 (9) Å | µ = 7.94 mm−1 |
c = 8.0978 (7) Å | T = 200 K |
V = 2072.9 (3) Å3 | Prism, colourless |
Z = 4 | 0.35 × 0.20 × 0.12 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2093 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1899 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.077 pixels mm-1 | θmax = 29.0°, θmin = 3.9° |
ω scans | h = −33→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −14→13 |
Tmin = 0.375, Tmax = 0.980 | l = −10→10 |
3623 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0392P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.072 | (Δ/σ)max = 0.003 |
S = 1.03 | Δρmax = 0.70 e Å−3 |
2093 reflections | Δρmin = −0.46 e Å−3 |
146 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
8 restraints | Extinction coefficient: 0.00306 (19) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1309 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.008 (12) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rb1 | 0.50000 | 0.94747 (5) | 0.57916 (11) | 0.0264 (2) | |
Rb2 | 0.50000 | 0.63207 (8) | 0.24818 (10) | 0.0376 (3) | |
As1 | 0.60556 (2) | 0.63552 (4) | 0.58879 (6) | 0.0200 (1) | |
O1W | 0.58793 (16) | 1.0545 (3) | 0.7791 (5) | 0.0333 (11) | |
O2W | 0.50000 | 0.7864 (5) | −0.0920 (7) | 0.0337 (17) | |
O11 | 0.57535 (14) | 0.7458 (3) | 0.4753 (4) | 0.0302 (11) | |
O12 | 0.57765 (17) | 0.4882 (3) | 0.5436 (5) | 0.0404 (13) | |
O13 | 0.59344 (15) | 0.6516 (3) | 0.7898 (4) | 0.0275 (11) | |
N4 | 0.85111 (17) | 0.6329 (4) | 0.4734 (6) | 0.0287 (16) | |
C1 | 0.68166 (19) | 0.6279 (4) | 0.5443 (6) | 0.0200 (14) | |
C2 | 0.7060 (2) | 0.7197 (5) | 0.4430 (6) | 0.0250 (16) | |
C3 | 0.7614 (2) | 0.7222 (5) | 0.4197 (7) | 0.0270 (17) | |
C4 | 0.7946 (2) | 0.6315 (4) | 0.4982 (6) | 0.0230 (16) | |
C5 | 0.77044 (19) | 0.5380 (4) | 0.5957 (8) | 0.0270 (14) | |
C6 | 0.7146 (2) | 0.5357 (4) | 0.6178 (6) | 0.0260 (16) | |
H2 | 0.68380 | 0.78150 | 0.38940 | 0.0300* | |
H3 | 0.77730 | 0.78530 | 0.35030 | 0.0320* | |
H5 | 0.79260 | 0.47510 | 0.64760 | 0.0320* | |
H6 | 0.69850 | 0.47060 | 0.68370 | 0.0310* | |
H11W | 0.6067 (19) | 1.001 (4) | 0.842 (6) | 0.0370* | |
H12 | 0.582 (2) | 0.459 (5) | 0.445 (3) | 0.0370* | |
H12W | 0.589 (3) | 1.127 (3) | 0.833 (6) | 0.0370* | |
H21W | 0.5290 (15) | 0.741 (4) | −0.120 (7) | 0.0370* | |
H41 | 0.864 (2) | 0.689 (4) | 0.407 (6) | 0.0300* | |
H42 | 0.8680 (19) | 0.613 (4) | 0.566 (4) | 0.0300* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0241 (3) | 0.0282 (3) | 0.0268 (3) | 0.0000 | 0.0000 | −0.0051 (4) |
Rb2 | 0.0227 (4) | 0.0597 (5) | 0.0304 (4) | 0.0000 | 0.0000 | −0.0179 (4) |
As1 | 0.0210 (2) | 0.0183 (2) | 0.0206 (2) | −0.0019 (2) | 0.0036 (2) | −0.0007 (3) |
O1W | 0.032 (2) | 0.0309 (19) | 0.037 (2) | −0.0008 (16) | −0.0036 (19) | −0.0005 (18) |
O2W | 0.032 (3) | 0.027 (3) | 0.042 (3) | 0.0000 | 0.0000 | −0.006 (2) |
O11 | 0.0206 (19) | 0.037 (2) | 0.033 (2) | −0.0005 (16) | −0.0041 (16) | 0.0069 (16) |
O12 | 0.046 (2) | 0.0303 (18) | 0.045 (3) | −0.0176 (17) | 0.0261 (19) | −0.0182 (19) |
O13 | 0.036 (2) | 0.0257 (18) | 0.0207 (18) | 0.0053 (15) | 0.0064 (16) | 0.0031 (15) |
N4 | 0.019 (2) | 0.035 (3) | 0.032 (3) | 0.0024 (18) | 0.0042 (19) | 0.006 (2) |
C1 | 0.019 (2) | 0.021 (2) | 0.020 (3) | 0.0003 (17) | 0.0009 (18) | −0.0017 (18) |
C2 | 0.025 (3) | 0.021 (2) | 0.029 (3) | 0.001 (2) | 0.002 (2) | 0.005 (2) |
C3 | 0.023 (3) | 0.025 (3) | 0.033 (3) | 0.001 (2) | 0.006 (2) | 0.009 (2) |
C4 | 0.025 (3) | 0.021 (2) | 0.023 (3) | 0.0018 (19) | 0.004 (2) | −0.0043 (19) |
C5 | 0.031 (2) | 0.020 (2) | 0.030 (3) | 0.0078 (17) | 0.003 (3) | 0.003 (3) |
C6 | 0.036 (3) | 0.018 (2) | 0.024 (3) | −0.0023 (19) | 0.006 (2) | 0.0040 (19) |
Rb1—O1W | 2.917 (4) | O1W—H12W | 0.88 (4) |
Rb1—O11 | 2.925 (3) | O2W—H21W | 0.88 (4) |
Rb1—O2Wi | 3.151 (6) | O2W—H21Wiv | 0.88 (4) |
Rb1—O1Wii | 3.246 (4) | O12—H12 | 0.86 (3) |
Rb1—O2Wiii | 3.109 (5) | N4—C4 | 1.398 (6) |
Rb1—O1Wiv | 2.917 (4) | N4—H41 | 0.86 (5) |
Rb1—O11iv | 2.925 (3) | N4—H42 | 0.88 (4) |
Rb1—O1Wv | 3.246 (4) | C1—C2 | 1.396 (7) |
Rb2—O2W | 3.193 (6) | C1—C6 | 1.391 (6) |
Rb2—O11 | 2.863 (3) | C2—C3 | 1.369 (7) |
Rb2—O12vi | 2.818 (4) | C3—C4 | 1.402 (7) |
Rb2—O11iv | 2.863 (3) | C4—C5 | 1.389 (7) |
Rb2—O12vii | 2.818 (4) | C5—C6 | 1.379 (7) |
As1—O11 | 1.650 (3) | C2—H2 | 0.9500 |
As1—O12 | 1.725 (3) | C3—H3 | 0.9500 |
As1—O13 | 1.663 (3) | C5—H5 | 0.9500 |
As1—C1 | 1.899 (5) | C6—H6 | 0.9500 |
O1W—H11W | 0.89 (5) | ||
O1W—Rb1—O11 | 88.34 (10) | Rb1—O1W—Rb1iii | 85.63 (10) |
O1W—Rb1—O2Wi | 74.69 (10) | Rb1viii—O2W—Rb2 | 178.05 (19) |
O1W—Rb1—O1Wii | 155.13 (9) | Rb1ii—O2W—Rb2 | 93.89 (15) |
O1W—Rb1—O2Wiii | 84.49 (10) | Rb1viii—O2W—Rb1ii | 84.16 (13) |
O1W—Rb1—O1Wiv | 95.12 (11) | Rb1—O11—Rb2 | 94.47 (10) |
O1W—Rb1—O11iv | 154.37 (10) | Rb1—O11—As1 | 128.79 (16) |
O1W—Rb1—O1Wv | 85.91 (10) | Rb2—O11—As1 | 110.86 (15) |
O2Wi—Rb1—O11 | 81.81 (10) | Rb2ix—O12—As1 | 122.77 (19) |
O1Wii—Rb1—O11 | 101.44 (9) | Rb1iii—O1W—H12W | 70 (4) |
O2Wiii—Rb1—O11 | 121.14 (10) | Rb1—O1W—H12W | 129 (5) |
O1Wiv—Rb1—O11 | 154.37 (10) | H11W—O1W—H12W | 104 (5) |
O11—Rb1—O11iv | 78.18 (9) | Rb1—O1W—H11W | 117 (3) |
O1Wv—Rb1—O11 | 50.37 (9) | Rb1iii—O1W—H11W | 85 (3) |
O1Wii—Rb1—O2Wi | 128.99 (8) | Rb2—O2W—H21Wiv | 87 (4) |
O2Wi—Rb1—O2Wiii | 148.79 (14) | Rb1viii—O2W—H21W | 94 (4) |
O1Wiv—Rb1—O2Wi | 74.69 (10) | Rb2—O2W—H21W | 87 (4) |
O2Wi—Rb1—O11iv | 81.81 (10) | H21W—O2W—H21Wiv | 107 (4) |
O1Wv—Rb1—O2Wi | 128.99 (8) | Rb1viii—O2W—H21Wiv | 94 (4) |
O1Wii—Rb1—O2Wiii | 70.85 (9) | Rb1ii—O2W—H21W | 127 (3) |
O1Wii—Rb1—O1Wiv | 85.91 (10) | Rb1ii—O2W—H21Wiv | 127 (3) |
O1Wii—Rb1—O11iv | 50.37 (9) | Rb2ix—O12—H12 | 118 (3) |
O1Wii—Rb1—O1Wv | 83.07 (10) | As1—O12—H12 | 118 (3) |
O1Wiv—Rb1—O2Wiii | 84.49 (10) | C4—N4—H41 | 118 (3) |
O2Wiii—Rb1—O11iv | 121.14 (10) | C4—N4—H42 | 110 (3) |
O1Wv—Rb1—O2Wiii | 70.85 (9) | H41—N4—H42 | 122 (4) |
O1Wiv—Rb1—O11iv | 88.34 (10) | C2—C1—C6 | 118.7 (4) |
O1Wiv—Rb1—O1Wv | 155.13 (9) | As1—C1—C2 | 120.1 (3) |
O1Wv—Rb1—O11iv | 101.44 (9) | As1—C1—C6 | 121.1 (3) |
O2W—Rb2—O11 | 110.13 (10) | C1—C2—C3 | 121.1 (5) |
O2W—Rb2—O12vi | 73.64 (10) | C2—C3—C4 | 119.9 (5) |
O2W—Rb2—O11iv | 110.13 (10) | N4—C4—C5 | 120.7 (4) |
O2W—Rb2—O12vii | 73.64 (10) | N4—C4—C3 | 120.1 (4) |
O11—Rb2—O12vi | 176.01 (11) | C3—C4—C5 | 119.2 (4) |
O11—Rb2—O11iv | 80.20 (10) | C4—C5—C6 | 120.5 (4) |
O11—Rb2—O12vii | 97.38 (11) | C1—C6—C5 | 120.5 (4) |
O11iv—Rb2—O12vi | 97.38 (11) | C1—C2—H2 | 119.00 |
O12vi—Rb2—O12vii | 84.84 (12) | C3—C2—H2 | 119.00 |
O11iv—Rb2—O12vii | 176.01 (11) | C2—C3—H3 | 120.00 |
O11—As1—O12 | 109.20 (17) | C4—C3—H3 | 120.00 |
O11—As1—O13 | 113.24 (16) | C4—C5—H5 | 120.00 |
O11—As1—C1 | 111.30 (18) | C6—C5—H5 | 120.00 |
O12—As1—O13 | 103.14 (18) | C1—C6—H6 | 120.00 |
O12—As1—C1 | 108.11 (19) | C5—C6—H6 | 120.00 |
O13—As1—C1 | 111.40 (19) | ||
O11—Rb1—O1W—Rb1iii | −128.95 (9) | O13—As1—O11—Rb1 | −4.5 (3) |
O1W—Rb1—O11—Rb2 | −175.57 (10) | O13—As1—O11—Rb2 | −118.92 (17) |
O1W—Rb1—O11—As1 | 63.0 (2) | C1—As1—O11—Rb1 | −130.9 (2) |
O2Wi—Rb1—O11—As1 | −11.8 (2) | C1—As1—O11—Rb2 | 114.66 (18) |
O1Wii—Rb1—O11—Rb2 | −18.62 (11) | O11—As1—O12—Rb2ix | −101.6 (2) |
O1Wii—Rb1—O11—As1 | −140.0 (2) | O13—As1—O12—Rb2ix | 19.1 (2) |
O2Wiii—Rb1—O11—As1 | 145.56 (19) | C1—As1—O12—Rb2ix | 137.2 (2) |
O1Wiv—Rb1—O11—Rb2 | 86.1 (2) | O11—As1—C1—C2 | 7.8 (4) |
O1Wiv—Rb1—O11—As1 | −35.4 (4) | O11—As1—C1—C6 | −175.6 (4) |
O11iv—Rb1—O11—Rb2 | 26.37 (9) | O12—As1—C1—C2 | 127.7 (4) |
O11iv—Rb1—O11—As1 | −95.1 (2) | O12—As1—C1—C6 | −55.6 (4) |
O1Wv—Rb1—O11—Rb2 | −89.51 (13) | O13—As1—C1—C2 | −119.7 (4) |
O1Wv—Rb1—O11—As1 | 149.1 (3) | O13—As1—C1—C6 | 57.0 (4) |
O1W—Rb1—O11iv—Rb2 | −86.1 (2) | As1—C1—C2—C3 | 174.8 (4) |
O11—Rb1—O11iv—Rb2 | −26.37 (9) | C6—C1—C2—C3 | −2.0 (7) |
O2W—Rb2—O11—Rb1 | 81.20 (11) | As1—C1—C6—C5 | −174.4 (4) |
O2W—Rb2—O11—As1 | −144.19 (15) | C2—C1—C6—C5 | 2.4 (7) |
O11iv—Rb2—O11—Rb1 | −26.79 (9) | C1—C2—C3—C4 | 0.0 (8) |
O11iv—Rb2—O11—As1 | 107.83 (17) | C2—C3—C4—N4 | 179.3 (5) |
O12vii—Rb2—O11—Rb1 | 156.43 (10) | C2—C3—C4—C5 | 1.6 (8) |
O12vii—Rb2—O11—As1 | −68.96 (17) | N4—C4—C5—C6 | −179.0 (5) |
O11—Rb2—O11iv—Rb1 | 26.79 (9) | C3—C4—C5—C6 | −1.3 (8) |
O12—As1—O11—Rb1 | 109.8 (2) | C4—C5—C6—C1 | −0.8 (8) |
O12—As1—O11—Rb2 | −4.6 (2) |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+2, z−1/2; (iii) −x+1, −y+2, z+1/2; (iv) −x+1, y, z; (v) x, −y+2, z−1/2; (vi) −x+1, −y+1, z−1/2; (vii) x, −y+1, z−1/2; (viii) x, y, z−1; (ix) −x+1, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···N4x | 0.89 (5) | 2.04 (4) | 2.923 (6) | 176 (5) |
O2W—H21W···O13viii | 0.88 (4) | 1.97 (4) | 2.852 (5) | 173 (5) |
O12—H12···O13vii | 0.86 (3) | 1.73 (4) | 2.552 (5) | 158 (5) |
N4—H41···O13xi | 0.86 (5) | 2.18 (4) | 3.022 (5) | 167 (4) |
N4—H42···O1Wxii | 0.88 (4) | 2.13 (4) | 3.005 (6) | 176 (4) |
Symmetry codes: (vii) x, −y+1, z−1/2; (viii) x, y, z−1; (x) −x+3/2, −y+3/2, z+1/2; (xi) −x+3/2, −y+3/2, z−1/2; (xii) −x+3/2, y−1/2, z. |
[Cs2(C6H7AsNO3)2(H2O)3] | F(000) = 1416 |
Mr = 751.96 | Dx = 2.311 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 1999 reflections |
a = 24.650 (3) Å | θ = 4.0–28.9° |
b = 10.4373 (9) Å | µ = 6.46 mm−1 |
c = 8.3992 (7) Å | T = 200 K |
V = 2160.9 (4) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.22 × 0.10 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1883 independent reflections |
Radiation source: Enhance Mo X-ray source | 1787 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16.077 pixels mm-1 | θmax = 29.3°, θmin = 3.2° |
ω scans | h = −33→29 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −14→13 |
Tmin = 0.217, Tmax = 0.980 | l = −11→6 |
4941 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.160 | w = 1/[σ2(Fo2) + (0.1178P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max = 0.001 |
1883 reflections | Δρmax = 1.69 e Å−3 |
145 parameters | Δρmin = −1.00 e Å−3 |
8 restraints | Absolute structure: Flack (1983), 1405 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.10 (4) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.50000 | 0.95299 (7) | 0.67229 (13) | 0.0217 (2) | |
Cs2 | 0.50000 | 0.62982 (10) | 0.99928 (13) | 0.0311 (3) | |
As1 | 0.61041 (4) | 0.63299 (7) | 0.65867 (12) | 0.0166 (3) | |
O1W | 0.5936 (4) | 1.0619 (7) | 0.4690 (11) | 0.026 (3) | |
O2W | 0.50000 | 0.7680 (11) | 0.3558 (16) | 0.027 (3) | |
O11 | 0.5799 (3) | 0.7443 (8) | 0.7661 (11) | 0.028 (3) | |
O12 | 0.5841 (4) | 0.4827 (8) | 0.7086 (11) | 0.036 (3) | |
O13 | 0.5962 (3) | 0.6457 (7) | 0.4668 (11) | 0.024 (2) | |
N4 | 0.8542 (4) | 0.6351 (9) | 0.7686 (14) | 0.025 (3) | |
C1 | 0.6861 (5) | 0.6283 (7) | 0.6996 (13) | 0.016 (3) | |
C2 | 0.7088 (5) | 0.7189 (9) | 0.7999 (14) | 0.022 (3) | |
C3 | 0.7634 (5) | 0.7201 (9) | 0.8256 (18) | 0.025 (3) | |
C4 | 0.7983 (5) | 0.6344 (9) | 0.7490 (14) | 0.022 (3) | |
C5 | 0.7752 (5) | 0.5399 (9) | 0.6487 (19) | 0.031 (4) | |
C6 | 0.7202 (5) | 0.5380 (8) | 0.6236 (15) | 0.023 (3) | |
H2 | 0.68620 | 0.78020 | 0.85100 | 0.0260* | |
H3 | 0.77820 | 0.78100 | 0.89760 | 0.0300* | |
H5 | 0.79770 | 0.47800 | 0.59880 | 0.0370* | |
H6 | 0.70480 | 0.47550 | 0.55480 | 0.0270* | |
H11W | 0.624 (3) | 1.039 (12) | 0.420 (15) | 0.0340* | |
H12 | 0.578 (7) | 0.493 (15) | 0.811 (5) | 0.0340* | |
H12W | 0.589 (4) | 1.126 (12) | 0.400 (12) | 0.0340* | |
H21W | 0.529 (4) | 0.773 (13) | 0.418 (16) | 0.0340* | |
H41 | 0.865 (6) | 0.602 (12) | 0.685 (18) | 0.0270* | |
H42 | 0.870 (6) | 0.706 (11) | 0.81 (2) | 0.0270* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0185 (4) | 0.0261 (4) | 0.0204 (4) | 0.0000 | 0.0000 | 0.0024 (4) |
Cs2 | 0.0174 (5) | 0.0525 (6) | 0.0233 (5) | 0.0000 | 0.0000 | 0.0136 (5) |
As1 | 0.0146 (5) | 0.0182 (4) | 0.0169 (5) | −0.0016 (3) | −0.0029 (5) | 0.0004 (4) |
O1W | 0.017 (4) | 0.035 (4) | 0.026 (5) | 0.000 (3) | 0.009 (4) | 0.002 (4) |
O2W | 0.020 (6) | 0.031 (5) | 0.030 (7) | 0.0000 | 0.0000 | 0.002 (5) |
O11 | 0.020 (4) | 0.032 (4) | 0.031 (5) | −0.002 (3) | 0.007 (4) | −0.005 (3) |
O12 | 0.042 (5) | 0.033 (4) | 0.032 (5) | −0.021 (4) | −0.024 (4) | 0.007 (4) |
O13 | 0.019 (4) | 0.029 (4) | 0.025 (4) | 0.005 (3) | 0.000 (4) | 0.001 (3) |
N4 | 0.020 (5) | 0.026 (4) | 0.030 (5) | 0.003 (3) | −0.015 (5) | −0.004 (4) |
C1 | 0.019 (5) | 0.015 (4) | 0.014 (4) | 0.000 (3) | −0.004 (4) | 0.001 (3) |
C2 | 0.027 (6) | 0.020 (4) | 0.019 (5) | 0.006 (4) | −0.009 (4) | −0.011 (4) |
C3 | 0.022 (5) | 0.024 (4) | 0.030 (6) | 0.003 (4) | 0.006 (6) | −0.002 (5) |
C4 | 0.021 (6) | 0.021 (4) | 0.023 (6) | 0.004 (4) | 0.002 (5) | 0.006 (4) |
C5 | 0.028 (6) | 0.024 (4) | 0.041 (8) | 0.006 (4) | −0.005 (6) | −0.013 (5) |
C6 | 0.020 (5) | 0.020 (4) | 0.029 (6) | −0.003 (3) | −0.005 (5) | −0.002 (4) |
Cs1—O1W | 3.087 (9) | O1W—H12W | 0.89 (12) |
Cs1—O2W | 3.286 (13) | O2W—H21W | 0.89 (12) |
Cs1—O11 | 3.040 (8) | O2W—H21Wii | 0.89 (12) |
Cs1—O1Wi | 3.400 (10) | O12—H12 | 0.88 (5) |
Cs1—O2Wi | 3.295 (12) | N4—C4 | 1.388 (16) |
Cs1—O1Wii | 3.087 (9) | N4—H41 | 0.83 (14) |
Cs1—O11ii | 3.040 (8) | N4—H42 | 0.91 (14) |
Cs1—O1Wiii | 3.400 (10) | C1—C2 | 1.385 (15) |
Cs2—O11 | 3.024 (8) | C1—C6 | 1.415 (15) |
Cs2—O2Wiv | 3.324 (13) | C2—C3 | 1.363 (17) |
Cs2—O12v | 2.961 (9) | C3—C4 | 1.398 (16) |
Cs2—O11ii | 3.024 (8) | C4—C5 | 1.417 (17) |
Cs2—O12vi | 2.961 (9) | C5—C6 | 1.372 (18) |
As1—O11 | 1.652 (9) | C2—H2 | 0.9500 |
As1—O12 | 1.748 (9) | C3—H3 | 0.9500 |
As1—O13 | 1.655 (9) | C5—H5 | 0.9500 |
As1—C1 | 1.898 (12) | C6—H6 | 0.9500 |
O1W—H11W | 0.89 (9) | ||
O1W—Cs1—O2W | 76.6 (2) | Cs1—O1W—Cs1vii | 83.2 (2) |
O1W—Cs1—O11 | 85.6 (2) | Cs1—O2W—Cs2viii | 169.7 (4) |
O1W—Cs1—O1Wi | 158.4 (2) | Cs1—O2W—Cs1vii | 81.9 (3) |
O1W—Cs1—O2Wi | 86.2 (2) | Cs1vii—O2W—Cs2viii | 87.8 (3) |
O1W—Cs1—O1Wii | 96.7 (2) | Cs1—O11—Cs2 | 91.7 (2) |
O1W—Cs1—O11ii | 153.0 (2) | Cs1—O11—As1 | 131.1 (4) |
O1W—Cs1—O1Wiii | 85.1 (2) | Cs2—O11—As1 | 111.9 (4) |
O2W—Cs1—O11 | 77.8 (2) | Cs2ix—O12—As1 | 118.2 (4) |
O1Wi—Cs1—O2W | 124.49 (19) | Cs1vii—O1W—H12W | 58 (7) |
O2W—Cs1—O2Wi | 153.9 (3) | Cs1—O1W—H12W | 123 (7) |
O1Wii—Cs1—O2W | 76.6 (2) | H11W—O1W—H12W | 91 (11) |
O2W—Cs1—O11ii | 77.8 (2) | Cs1—O1W—H11W | 142 (8) |
O1Wiii—Cs1—O2W | 124.49 (19) | Cs1vii—O1W—H11W | 103 (8) |
O1Wi—Cs1—O11 | 102.5 (2) | Cs1—O2W—H21Wii | 59 (8) |
O2Wi—Cs1—O11 | 120.8 (2) | Cs2viii—O2W—H21W | 124 (7) |
O1Wii—Cs1—O11 | 153.0 (2) | Cs1—O2W—H21W | 59 (8) |
O11—Cs1—O11ii | 80.8 (2) | H21W—O2W—H21Wii | 107 (11) |
O1Wiii—Cs1—O11 | 48.5 (2) | Cs2viii—O2W—H21Wii | 124 (8) |
O1Wi—Cs1—O2Wi | 72.4 (2) | Cs1vii—O2W—H21W | 103 (8) |
O1Wi—Cs1—O1Wii | 85.1 (2) | Cs1vii—O2W—H21Wii | 103 (9) |
O1Wi—Cs1—O11ii | 48.5 (2) | Cs2ix—O12—H12 | 121 (11) |
O1Wi—Cs1—O1Wiii | 85.5 (2) | As1—O12—H12 | 101 (10) |
O1Wii—Cs1—O2Wi | 86.2 (2) | C4—N4—H41 | 103 (10) |
O2Wi—Cs1—O11ii | 120.8 (2) | C4—N4—H42 | 119 (8) |
O1Wiii—Cs1—O2Wi | 72.4 (2) | H41—N4—H42 | 122 (13) |
O1Wii—Cs1—O11ii | 85.6 (2) | C2—C1—C6 | 119.3 (11) |
O1Wii—Cs1—O1Wiii | 158.4 (2) | As1—C1—C2 | 119.3 (8) |
O1Wiii—Cs1—O11ii | 102.5 (2) | As1—C1—C6 | 121.3 (8) |
O2Wiv—Cs2—O11 | 114.3 (2) | C1—C2—C3 | 120.1 (11) |
O11—Cs2—O12v | 175.8 (2) | C2—C3—C4 | 121.9 (11) |
O11—Cs2—O11ii | 81.3 (2) | N4—C4—C5 | 118.3 (10) |
O11—Cs2—O12vi | 94.9 (2) | N4—C4—C3 | 123.6 (10) |
O2Wiv—Cs2—O12v | 68.7 (2) | C3—C4—C5 | 118.2 (11) |
O2Wiv—Cs2—O11ii | 114.3 (2) | C4—C5—C6 | 119.9 (11) |
O2Wiv—Cs2—O12vi | 68.7 (2) | C1—C6—C5 | 120.5 (10) |
O11ii—Cs2—O12v | 94.9 (2) | C1—C2—H2 | 120.00 |
O12v—Cs2—O12vi | 88.9 (3) | C3—C2—H2 | 120.00 |
O11ii—Cs2—O12vi | 175.8 (2) | C2—C3—H3 | 119.00 |
O11—As1—O12 | 109.3 (4) | C4—C3—H3 | 119.00 |
O11—As1—O13 | 112.3 (4) | C4—C5—H5 | 120.00 |
O11—As1—C1 | 111.5 (4) | C6—C5—H5 | 120.00 |
O12—As1—O13 | 103.1 (4) | C1—C6—H6 | 120.00 |
O12—As1—C1 | 107.3 (4) | C5—C6—H6 | 120.00 |
O13—As1—C1 | 112.8 (4) | ||
O11—Cs1—O1W—Cs1vii | 126.4 (2) | O13—As1—O11—Cs1 | 3.5 (6) |
O1W—Cs1—O11—Cs2 | 175.0 (2) | O13—As1—O11—Cs2 | 116.5 (4) |
O1W—Cs1—O11—As1 | −63.7 (5) | C1—As1—O11—Cs1 | 131.1 (5) |
O2W—Cs1—O11—Cs2 | −107.8 (2) | C1—As1—O11—Cs2 | −115.8 (4) |
O2W—Cs1—O11—As1 | 13.5 (5) | O11—As1—O12—Cs2ix | 98.9 (5) |
O1Wi—Cs1—O11—Cs2 | 15.3 (3) | O13—As1—O12—Cs2ix | −20.8 (5) |
O1Wi—Cs1—O11—As1 | 136.6 (5) | C1—As1—O12—Cs2ix | −140.0 (5) |
O2Wi—Cs1—O11—As1 | −146.6 (5) | O11—As1—C1—C2 | −4.7 (10) |
O1Wii—Cs1—O11—Cs2 | −88.9 (5) | O11—As1—C1—C6 | 178.4 (8) |
O1Wii—Cs1—O11—As1 | 32.4 (9) | O12—As1—C1—C2 | −124.4 (8) |
O11ii—Cs1—O11—Cs2 | −28.4 (2) | O12—As1—C1—C6 | 58.7 (9) |
O11ii—Cs1—O11—As1 | 93.0 (5) | O13—As1—C1—C2 | 122.7 (8) |
O1Wiii—Cs1—O11—Cs2 | 87.6 (3) | O13—As1—C1—C6 | −54.2 (9) |
O1Wiii—Cs1—O11—As1 | −151.1 (6) | As1—C1—C2—C3 | −177.4 (9) |
O1W—Cs1—O11ii—Cs2 | 88.9 (5) | C6—C1—C2—C3 | −0.5 (16) |
O11—Cs1—O11ii—Cs2 | 28.4 (2) | As1—C1—C6—C5 | 176.9 (9) |
O2Wiv—Cs2—O11—As1 | 139.6 (4) | C2—C1—C6—C5 | 0.0 (16) |
O11ii—Cs2—O11—Cs1 | 28.5 (2) | C1—C2—C3—C4 | 2.2 (18) |
O11ii—Cs2—O11—As1 | −107.6 (4) | C2—C3—C4—N4 | 178.1 (11) |
O12vi—Cs2—O11—Cs1 | −153.2 (2) | C2—C3—C4—C5 | −3.4 (18) |
O12vi—Cs2—O11—As1 | 70.7 (4) | N4—C4—C5—C6 | −178.5 (11) |
O11—Cs2—O11ii—Cs1 | −28.5 (2) | C3—C4—C5—C6 | 2.9 (18) |
O12—As1—O11—Cs1 | −110.3 (5) | C4—C5—C6—C1 | −1.2 (18) |
O12—As1—O11—Cs2 | 2.7 (5) |
Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) −x+1, y, z; (iii) x, −y+2, z+1/2; (iv) x, y, z+1; (v) −x+1, −y+1, z+1/2; (vi) x, −y+1, z+1/2; (vii) −x+1, −y+2, z−1/2; (viii) x, y, z−1; (ix) −x+1, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···N4x | 0.89 (9) | 2.28 (13) | 2.952 (13) | 132 (10) |
O2W—H21W···O13 | 0.89 (12) | 2.16 (12) | 2.850 (10) | 134 (12) |
O12—H12···O13vi | 0.88 (5) | 2.00 (12) | 2.567 (13) | 121 (12) |
N4—H41···O1Wxi | 0.83 (14) | 2.12 (15) | 2.928 (15) | 164 (9) |
N4—H42···O13xii | 0.91 (14) | 2.20 (14) | 3.082 (13) | 166 (15) |
Symmetry codes: (vi) x, −y+1, z+1/2; (x) −x+3/2, −y+3/2, z−1/2; (xi) −x+3/2, y−1/2, z; (xii) −x+3/2, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology and from Griffith University.
References
Adelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). Inorg. Chem. 51, 12032–12040. Web of Science CSD CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bosch, F. & Rosich, L. (2008). Pharmacology, 82, 171–179. Web of Science CrossRef PubMed CAS Google Scholar
Breen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904–6908. Web of Science CSD CrossRef CAS Google Scholar
Breen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19–21. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, B., Wang, B., Lin, Z., Fan, L., Gao, Y., Chi, Y. & Hu, C. (2012). Dalton Trans. 41, 6910–6913. Web of Science CSD CrossRef CAS Google Scholar
Ehrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292–3297. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Johnson, B. J. S., Schroden, R. C., Zhu, C., Young, V. G. Jr & Stein, A. (2002). Inorg. Chem. 41, 2213–2218. Web of Science CSD CrossRef CAS Google Scholar
Khan, M. I., Chang, Y., Chen, Q., Hope, H., Parking, S., Goshorn, D. P. & Zubieta, J. (1992). Angew. Chem. Int. Ed. Engl. 31, 1197–1200. CSD CrossRef Web of Science Google Scholar
Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432. CAS Google Scholar
Lin, W.-Z., Liu, Z.-Q., Huang, X.-H., Li, H.-H., Wu, S.-T. & Huang, C.-C. (2012). Chin. J. Struct. Chem. 31, 1301–1308. CAS Google Scholar
Liu, Z.-Q., Zhao, Y.-F., Huang, X.-H., Li, H.-H. & Huang, C.-C. (2010). Chin. J. Struct. Chem. 29, 1724–1730. CAS Google Scholar
Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683. CSD CrossRef CAS IUCr Journals Google Scholar
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 243. Whitehouse Station, NJ: Merck and Co., Inc. Google Scholar
Onet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. M. & Schmitt, W. (2011). Inorg. Chem. 50, 604–613. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643. CrossRef CAS Web of Science Google Scholar
Smith, T. M., Strauskulage, L., Perrin, K. A. & Zubieta, J. (2013). Inorg. Chim. Acta, 407, 48–57. Web of Science CSD CrossRef CAS Google Scholar
Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2017). Acta Cryst. C73, 61–67. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steverding, D. (2010). Parasites & Vectors, 3, 15. Web of Science CrossRef Google Scholar
Xiao, Z.-P., Wen, M., Wang, C.-Y. & Huang, X.-H. (2015). Acta Cryst. C71, 258–261. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093–4103. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.