research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­[(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bi­cyclo­[8.8.8]hexa­cosane-κ8N2,O6)rubidium] rubidium nona­stannide

CROSSMARK_Color_square_no_text.svg

aTechnische Universität München, Department of Chemistry, Lichtenbergstr. 4, 85747 Garching, Germany
*Correspondence e-mail: thomas.faessler@lrz.tum.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 December 2016; accepted 4 January 2017; online 13 January 2017)

The crystal structure of the title compound, [Rb(C18H36N2O6)]3RbSn9, consists of deltahedral [Sn9]4– cluster anions, Rb+ cations and cryptand mol­ecules, which partially sequester the cations. Those cations, which are not coordinated by cryptand mol­ecules, are neighboured directly to the [Sn9]4– clusters and inter­connect them to form 1[RbSn9]3– chains. These chains extend parallel to [001] and are arranged in a pseudo-hexa­gonal rod packing, separated by the Rb-cryptand complex cations.

1. Chemical context

The dissolution of elemental tin in alkali metal ammonia solutions was reported first by Joannis (1891[Joannis, A. (1891). C. R. Hebd. Seances Acad. Sci. 113, 795-798.]). Since then Zintl compounds containing tetrel elements, particularly the remarkably stable nine-membered cluster compounds, have been studied intensively. Plenty of chemical reactions such as reduction, oligomerization, functionalization, and even filling of the nine-membered clusters with transition metal atoms, have been investigated (Scharfe et al., 2011[Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. (2011). Angew. Chem. Int. Ed. 50, 3630-3670.]). For enabling this extended variety of chemical reactions, dissolution of solid Zintl cluster compounds in organic solvents is often helpful or even necessary. To achieve this, the addition of sequestering agents like crown ethers or cryptands has been successfully applied (Corbett & Edwards, 1975[Corbett, J. D. & Edwards, P. A. (1975). J. Chem. Soc. Chem. Commun. pp. 984-985.]). During our experiments including the Zintl cluster compound Rb4Sn9 in ethyl­enedi­amine in the presence of 2.2.2-cryptand, single crystals of the title compound, [Rb(2.2.2)-crypt]3RbSn9, have been obtained.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in space group P[\overline{1}] with all atoms at general sites except for Rb1 and Rb2, which are located on inversion centres (Wyckoff sites 1a and 1b). The crystal structure consists of five rubidium cations, partially sequestered by cryptand-[2.2.2], and nine-atomic Sn clusters, see Fig. 1[link]. The composition of four Rb+ cations per Sn9 cluster anion indicate a fourfold negative charge and, thus, 22 skeleton electrons for [Sn9]. According to the Wade–Mingos electron-counting rules, the shape of such a [Sn9]4– anion is predicted to be a nido cage, a mono-capped square anti­prism with C4v symmetry (Fässler, 2001[Fässler, T. F. (2001). Coord. Chem. Rev. 215, 347-377.]). Indeed, the cluster Sn atoms form an almost C4v symmetric mono-capped square anti­prism, as indicated e.g. by the planarity and equal diagonal lengths of the square formed by atoms Sn1, Sn2, Sn3, and Sn4 [ratio of diagonals 1.03, dihedral angle between the two triangle halves of the square 3.59 (3)°]. However, larger devi­ations from the ideal C4v symmetry are frequent, e.g. in the closely related compound [K(2.2.2)-crypt][K(18-crown-6)]2KSn9 (He et al., 2014a[He, H., Klein, W. & Fässler, T. F. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 407-410.]) where the [Sn9]4– cluster exhibits a shape close to D3h symmetry. The Sn9 clusters are capped by two crystallographically independent rubidium cations (Rb1 and Rb2) with Sn—Rb distances in the range between 3.5976 (10) Å and 3.8357 (10) Å; for both cations a third longer distance of more than 4 Å indicates an inter­mediate between edge-coordination and face-coordination at two opposite sites (Fig. 1[link]). Both the cations are located at special crystallographic sites, Rb1 at 1a and Rb2 at 1b, so their surroundings, although irregular, are centrosymmetric. The title compound represents the fourth member of this structure type; however, it is the first one to contain Rb. The same type of ion packing has been found in the isotypic crystal structures of [K(2.2.2)-crypt]3KSn9 (Burns & Corbett, 1985[Burns, R. C. & Corbett, J. D. (1985). Inorg. Chem. 24, 1489-1492.]), [K(2.2.2)-crypt]3K[Co0.68@Sn9] (He et al., 2014b[He, H., Klein, W., Jantke, L.-A. & Fässler, T. F. (2014b). Z. Anorg. Allg. Chem. 640, 2864-2870.]), and [K(2.2.2)-crypt]3K[Ni@Sn9] (Gillett-Kunnath et al., 2011[Gillett-Kunnath, M. M., Paik, J. I., Jensen, S. M., Taylor, J. D. & Sevov, S. C. (2011). Inorg. Chem. 50, 11695-11701.]). This structure type includes both empty Sn9 clusters and Sn9 clusters partly or completely filled with Co and Ni, respectively. As expected, the Sn—Sn bond lengths of the title compound are shorter than those in the filled cluster compounds. However, they are even slightly shorter than those of the empty [Sn9]4– clusters in the potassium analogue [K(2.2.2)-crypt]3KSn9. A similar effect, namely decreasing homoatomic bond lengths with increasing size of the counter-cations, has been found for other homoatomic anions, e.g. [Sn4]4– (Baitinger et al., 1999a[Baitinger, M., Grin, Yu., von Schnering, H. G. & Kniep, R. (1999a). Z. Kristallogr. New Cryst. Struct. 214, 457-458.],b[Baitinger, M., von Schnering, H. G., Grin, Yu. & Kniep, R. (1999b). Z. Kristallogr. New Cryst. Struct. 214, 453-454.]) and [O3] (Klein & Jansen, 2000[Klein, W. & Jansen, M. (2000). Z. Anorg. Allg. Chem. 626, 136-140.]). In the present case, this effect compensates the increase of inter­atomic distances resulting from the larger ionic radius of Rb+ compared to that of K+, so the unit-cell volume does even decrease slightly from 4186 Å3 (K+; Burns & Corbett, 1985[Burns, R. C. & Corbett, J. D. (1985). Inorg. Chem. 24, 1489-1492.]) to 4166 Å3 (Rb+; title compound).

[Figure 1]
Figure 1
The main structural components of the title compound, showing a section of the 1[RbSn9]3− chain. Anisotropic displacement ellipsoids are drawn at the 50% probability level. H atoms of the cryptand mol­ecules have been omitted; labelled sections represent the asymmetric unit.

3. Supra­molecular features

The [Sn9]4– cluster anions are linked by rubidium cations formally into infinite 1[RbSn9]3− chains parallel to [001]. The shortest distances between Rb+ cations and Sn9 clusters are similar to those for related compounds, e.g. [Rb(18-crown-6)]2Rb2Sn9·1.5C2N2H8 (3.679 Å; Hauptmann & Fässler, 2002[Hauptmann, R. & Fässler, T. F. (2002). Z. Anorg. Allg. Chem. 628, 1500-1504.]), [Rb(2.2.2)-crypt][Rb(18-crown-6)]Rb2Sn9·2NH3 (3.708 Å; Gaertner & Korber, 2011[Gaertner, S. & Korber, N. (2011). Acta Cryst. E67, m613-m614.]) or Rb12Sn17 (3.582 Å; Hoch et al., 2003[Hoch, C., Wendorff, M. & Röhr, C. (2003). J. Alloys Compd. 361, 206-221.]). The dimensionality of structural entities is influenced by the ratio of sequestered to unsequestered cations, and the formation of one-dimensional strands in Zintl phases of nine-atomic clusters with three sequestered cations has been observed previously (Fässler & Hoffmann, 1999[Fässler, T. F. & Hoffmann, R. (1999). Angew. Chem. Int. Ed. 38, 543-546.]; He et al., 2014a[He, H., Klein, W. & Fässler, T. F. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 407-410.]), while a lower content of sequestering agents promotes the formation of double strands (Gaertner & Korber, 2011[Gaertner, S. & Korber, N. (2011). Acta Cryst. E67, m613-m614.]), or of a layered arrangement (Hauptmann & Fässler, 2002[Hauptmann, R. & Fässler, T. F. (2002). Z. Anorg. Allg. Chem. 628, 1500-1504.], 2003a[Hauptmann, R. & Fässler, T. F. (2003a). Z. Kristallogr. New Cryst. Struct. 218, 455-457.],b[Hauptmann, R. & Fässler, T. F. (2003b). Z. Kristallogr. New Cryst. Struct. 218, 458-460.]) or double layers (Hauptmann et al., 2001[Hauptmann, R., Hoffmann, R. & Fässler, T. F. (2001). Z. Anorg. Allg. Chem. 627, 2220-2224.]). A complete coordination of all the cations finally leads to isolated clusters without direct contacts between clusters and cations. In the title compound, the chains form a pseudo-hexa­gonal rod packing separated by the [Rb(2.2.2)-crypt]+ complexes, as can be seen in Fig. 2[link]b.

[Figure 2]
Figure 2
Crystal structure of the title compound: (a) in a view along [110]; (b) in a view along [001]. [Sn9]4– clusters are drawn as polyhedra and Rb+ cations as grey spheres. H atoms of the cryptand mol­ecules have been omitted for clarity.

4. Database survey

Nine-atomic Zintl cluster compounds and their chemistry have been reviewed by Fässler (2001[Fässler, T. F. (2001). Coord. Chem. Rev. 215, 347-377.]) and by Scharfe et al. (2011[Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. (2011). Angew. Chem. Int. Ed. 50, 3630-3670.]). Rb4Sn9 has been crystallized in the presence of sequestering agents previously by Hauptmann & Fässler (2002[Hauptmann, R. & Fässler, T. F. (2002). Z. Anorg. Allg. Chem. 628, 1500-1504.]) and Gaertner & Korber (2011[Gaertner, S. & Korber, N. (2011). Acta Cryst. E67, m613-m614.]). Binary phases of the elements Rb and Sn are known as the Zintl phases including [Sn4]4– clusters, Rb4Sn4 (Baitinger et al., 1999b[Baitinger, M., von Schnering, H. G., Grin, Yu. & Kniep, R. (1999b). Z. Kristallogr. New Cryst. Struct. 214, 453-454.]) and Rb12Sn17 (Hoch et al., 2003[Hoch, C., Wendorff, M. & Röhr, C. (2003). J. Alloys Compd. 361, 206-221.]), as well as the clathrate Rb8Sn44 (Dubois & Fässler, 2005[Dubois, F. & Fässler, T. F. (2005). J. Am. Chem. Soc. 127, 3264-3265.]). The structure type of the title compound has been reported previously by Burns & Corbett (1985[Burns, R. C. & Corbett, J. D. (1985). Inorg. Chem. 24, 1489-1492.]), Gillett-Kunnath et al. (2011[Gillett-Kunnath, M. M., Paik, J. I., Jensen, S. M., Taylor, J. D. & Sevov, S. C. (2011). Inorg. Chem. 50, 11695-11701.]) and He et al. (2014b[He, H., Klein, W., Jantke, L.-A. & Fässler, T. F. (2014b). Z. Anorg. Allg. Chem. 640, 2864-2870.]).

5. Synthesis and crystallization

All manipulations were carried out under anhydrous and oxygen-free conditions using a glove-box or a Schlenk line. Ethyl­enedi­amine (Alfa–Aesar, 99%) and toluene were distilled over CaH2 and stored in a gas-tight Schlenk tube. Cryptand-[2.2.2] (4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]-hexa­cosane, Acros, 98%) was dried under vacuum for 8 h. Rb4Sn9 was obtained from a stoichiometric mixture of the elements in a steel container, which was held at 823 K for 3 d under argon in a corundum tube. Rb4Sn9 (65 mg, 0.046 mmol) and cryptand-[2.2.2] (50 mg, 0.13 mmol) were dissolved in 1.5 ml ethyl­enedi­amine in a Schlenk tube. The brown solution was stirred at ambient temperature for 1 h, then filtered and layered with 3.5 ml toluene. The solution was warmed in an oil bath to 323 K for 1 h, then stored at room temperature for crystallization. After 3 d, dark-brown plate-shaped crystals together with a small amount of elemental tin were found on the wall of the glass tube.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were included in calculated positions and treated as riding atoms with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C). The anisotropic displacement parameters of nine C atoms (C5, C8, C26, C29, C33, C45, C48, C50, C53) had to be restrained using the ISOR option (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 1
Experimental details

Crystal data
Chemical formula [Rb(C18H36N2O6)]3RbSn9
Mr 2539.55
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 15.7287 (8), 16.153 (1), 20.2896 (8)
α, β, γ (°) 98.782 (4), 104.350 (4), 118.407 (6)
V3) 4165.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.03
Crystal size (mm) 0.15 × 0.12 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.832, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29013, 15902, 4724
Rint 0.112
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.094, 0.62
No. of reflections 15902
No. of parameters 823
No. of restraints 60
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.85, −2.19
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris[(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ8N2,O6)rubidium] rubidium nonastannide top
Crystal data top
[Rb(C18H36N2O6)]3RbSn9Z = 2
Mr = 2539.55F(000) = 2432
Triclinic, P1Dx = 2.025 Mg m3
a = 15.7287 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.153 (1) ÅCell parameters from 2671 reflections
c = 20.2896 (8) Åθ = 2.9–32.9°
α = 98.782 (4)°µ = 5.03 mm1
β = 104.350 (4)°T = 123 K
γ = 118.407 (6)°Plate, brown
V = 4165.4 (4) Å30.15 × 0.12 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
15902 independent reflections
Radiation source: fine-focus sealed tube4724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
Detector resolution: 16.0238 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω and π scansh = 1719
Absorption correction: multi-scan
(CrysAlisRED; Oxford Diffraction, 2009)
k = 1919
Tmin = 0.832, Tmax = 1.000l = 2025
29013 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.62 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
15902 reflections(Δ/σ)max = 0.001
823 parametersΔρmax = 2.85 e Å3
60 restraintsΔρmin = 2.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.08357 (8)0.16103 (7)0.39428 (5)0.0410 (3)
Sn20.16023 (7)0.25708 (7)0.29264 (5)0.0299 (3)
Sn30.12360 (7)0.07394 (7)0.20224 (5)0.0328 (3)
Sn40.05539 (8)0.02245 (8)0.30783 (5)0.0416 (3)
Sn50.04374 (7)0.21046 (7)0.29624 (5)0.0355 (3)
Sn60.01767 (8)0.14432 (7)0.15343 (5)0.0343 (3)
Sn70.09899 (8)0.07686 (7)0.16271 (5)0.0386 (3)
Sn80.12916 (8)0.01594 (7)0.30748 (5)0.0419 (3)
Sn90.20912 (8)0.02659 (8)0.17892 (5)0.0430 (3)
Rb10.00000.00000.00000.0586 (7)
Rb20.00000.00000.50000.1214 (13)
Rb30.61092 (10)0.39675 (10)0.17403 (7)0.0318 (4)
N10.4557 (8)0.2336 (7)0.0330 (5)0.028 (3)
N20.7700 (9)0.5604 (9)0.3164 (6)0.039 (3)
O10.5734 (7)0.4486 (7)0.0473 (4)0.039 (3)
O20.7466 (7)0.5961 (6)0.1754 (5)0.042 (3)
O30.3993 (6)0.2728 (6)0.1544 (4)0.031 (2)
O40.5387 (8)0.4516 (7)0.2800 (5)0.042 (3)
O50.6478 (7)0.2466 (7)0.1151 (5)0.043 (3)
O60.7708 (7)0.3809 (7)0.2619 (5)0.042 (3)
C10.4354 (9)0.2790 (9)0.0236 (6)0.032 (4)
H1A0.38450.29670.01850.039*
H1B0.40450.22960.07160.039*
C20.5381 (11)0.3749 (11)0.0178 (7)0.053 (5)
H2A0.59190.35960.01850.063*
H2B0.52390.39880.05880.063*
C30.6589 (10)0.5372 (10)0.0478 (7)0.035 (4)
H3A0.63630.55820.00700.042*
H3B0.71400.52590.04310.042*
C40.7011 (11)0.6183 (10)0.1191 (7)0.048 (4)
H4A0.75310.68330.11740.058*
H4B0.64350.62310.12660.058*
C50.7826 (11)0.6677 (10)0.2414 (8)0.057 (5)
H5A0.72280.66740.24940.068*
H5B0.83050.73430.23970.068*
C60.8390 (11)0.6477 (10)0.3040 (8)0.056 (5)
H6A0.89380.64060.29340.067*
H6B0.87320.70510.34800.067*
C70.3610 (10)0.1695 (10)0.0410 (7)0.047 (4)
H7A0.37010.12420.06560.057*
H7B0.30610.12840.00720.057*
C80.3253 (10)0.2235 (10)0.0829 (7)0.041 (4)
H8A0.32000.27230.06090.049*
H8B0.25600.17580.08270.049*
C90.3669 (10)0.3255 (10)0.1942 (7)0.041 (4)
H9A0.29500.27970.19070.049*
H9B0.36840.37850.17460.049*
C100.4416 (11)0.3711 (11)0.2729 (8)0.047 (4)
H10A0.41190.39420.30340.056*
H10B0.45100.32020.28920.056*
C110.6091 (12)0.4900 (11)0.3483 (7)0.044 (4)
H11A0.62280.43930.36030.053*
H11B0.57970.50720.38200.053*
C120.7103 (12)0.5817 (11)0.3572 (8)0.062 (5)
H12A0.69510.62950.34050.074*
H12B0.75460.61360.40880.074*
C130.4980 (10)0.1743 (10)0.0100 (7)0.046 (5)
H13A0.44020.10990.02600.055*
H13B0.54660.20990.01320.055*
C140.5522 (10)0.1562 (10)0.0701 (7)0.039 (4)
H14A0.50780.13050.09820.047*
H14B0.56660.10570.05190.047*
C150.7082 (11)0.2306 (10)0.1697 (7)0.049 (5)
H15A0.73270.19110.14820.059*
H15B0.66520.19290.19540.059*
C160.8002 (11)0.3285 (10)0.2217 (7)0.041 (4)
H16A0.84820.31660.25460.049*
H16B0.83790.36920.19480.049*
C170.8587 (11)0.4697 (12)0.3131 (7)0.057 (5)
H17A0.89940.51250.28850.068*
H17B0.90390.45440.34540.068*
C180.8242 (10)0.5226 (11)0.3557 (7)0.043 (4)
H18A0.77840.47650.37620.052*
H18B0.88610.57860.39630.052*
Rb40.63019 (10)0.24191 (10)0.48979 (7)0.0307 (4)
N30.4697 (9)0.2786 (8)0.5135 (6)0.035 (3)
N40.7945 (9)0.2050 (8)0.4680 (5)0.034 (3)
O70.4670 (7)0.2095 (7)0.3686 (4)0.034 (2)
O80.5935 (7)0.1347 (6)0.3462 (4)0.038 (3)
O90.6892 (7)0.4381 (6)0.5596 (4)0.035 (3)
O100.8322 (6)0.4092 (6)0.5085 (4)0.036 (3)
O110.5135 (7)0.1394 (6)0.5733 (5)0.040 (3)
O120.6924 (7)0.1374 (6)0.5723 (4)0.032 (2)
C190.4044 (9)0.2752 (10)0.4456 (6)0.036 (4)
H19A0.44230.33880.43620.043*
H19B0.34000.26730.45020.043*
C200.3762 (11)0.1911 (10)0.3831 (6)0.039 (4)
H20A0.34540.12810.39440.047*
H20B0.32400.18460.34020.047*
C210.4405 (9)0.1419 (9)0.3066 (6)0.031 (4)
H21A0.39620.14800.26600.038*
H21B0.40060.07400.30930.038*
C220.5395 (10)0.1599 (9)0.2945 (7)0.034 (4)
H22A0.52120.11890.24570.040*
H22B0.58440.23060.29890.040*
C230.6872 (10)0.1476 (10)0.3405 (7)0.042 (4)
H23A0.73160.21600.34010.050*
H23B0.67010.10120.29440.050*
C240.7461 (10)0.1303 (9)0.3996 (6)0.031 (4)
H24A0.69840.06560.40400.037*
H24B0.80070.12540.38670.037*
C250.5207 (11)0.3747 (10)0.5659 (7)0.044 (4)
H25A0.54860.37060.61390.053*
H25B0.46840.39210.56650.053*
C260.6076 (10)0.4564 (10)0.5531 (7)0.037 (4)
H26A0.58180.45980.50450.045*
H26B0.63440.52080.58850.045*
C270.7740 (12)0.5146 (10)0.5454 (7)0.051 (5)
H27A0.79950.58090.57750.061*
H27B0.74920.51330.49520.061*
C280.8625 (10)0.4949 (11)0.5584 (7)0.043 (4)
H28A0.92430.55130.55560.051*
H28B0.88190.48940.60710.051*
C290.9102 (10)0.3877 (10)0.5277 (6)0.034 (4)
H29A0.91710.37510.57440.041*
H29B0.97780.44510.53260.041*
C300.8821 (10)0.2979 (10)0.4711 (7)0.043 (4)
H30A0.86570.30820.42380.052*
H30B0.94340.29210.47960.052*
C310.4037 (10)0.2025 (11)0.5402 (7)0.046 (4)
H31A0.35600.13960.49990.055*
H31B0.36060.22300.55710.055*
C320.4622 (11)0.1839 (11)0.5995 (7)0.039 (4)
H32A0.51450.24730.63850.046*
H32B0.41370.13900.61920.046*
C330.5677 (11)0.1164 (10)0.6260 (7)0.040 (4)
H33A0.51830.06880.64380.048*
H33B0.61990.17750.66700.048*
C340.6205 (10)0.0730 (10)0.5979 (7)0.035 (4)
H34A0.65710.05750.63650.042*
H34B0.56800.01010.55850.042*
C350.7387 (12)0.0917 (11)0.5435 (7)0.050 (5)
H35A0.68560.03410.50030.060*
H35B0.76770.06750.57930.060*
C360.8262 (10)0.1680 (10)0.5237 (7)0.036 (4)
H36A0.87740.22530.56750.044*
H36B0.86240.13710.50830.044*
Rb50.76177 (10)0.32954 (9)0.86626 (7)0.0300 (4)
N50.7359 (9)0.1513 (8)0.9045 (6)0.041 (3)
N60.7851 (8)0.5051 (8)0.8284 (6)0.031 (3)
O130.8244 (7)0.2143 (6)0.7948 (5)0.037 (3)
O140.8891 (6)0.4026 (6)0.7829 (5)0.033 (2)
O150.5564 (6)0.1735 (6)0.8469 (4)0.033 (2)
O160.5787 (6)0.3200 (6)0.7796 (4)0.034 (2)
O170.8618 (7)0.3529 (7)1.0154 (4)0.036 (3)
O180.8401 (6)0.5092 (6)0.9782 (4)0.032 (2)
C370.7556 (11)0.0977 (10)0.8552 (7)0.040 (4)
H37A0.69080.05510.81240.048*
H37B0.77030.05290.87730.048*
C380.8434 (12)0.1553 (10)0.8296 (8)0.049 (5)
H38A0.90990.19690.87120.058*
H38B0.84970.10820.79680.058*
C390.8988 (11)0.2580 (10)0.7645 (7)0.041 (4)
H39A0.89230.20600.72690.049*
H39B0.96940.29320.80190.049*
C400.8837 (10)0.3292 (10)0.7326 (6)0.035 (4)
H40A0.93770.36090.71220.041*
H40B0.81510.29260.69300.041*
C410.8807 (10)0.4729 (11)0.7549 (7)0.043 (4)
H41A0.81690.43880.71130.051*
H41B0.94100.50930.74090.051*
C420.8769 (10)0.5446 (10)0.8074 (7)0.039 (4)
H42A0.93980.57580.85130.047*
H42B0.88080.59770.78710.047*
C430.6326 (10)0.0921 (9)0.9057 (6)0.033 (4)
H43A0.63090.12350.95090.039*
H43B0.61870.02560.90590.039*
C440.5489 (10)0.0800 (10)0.8449 (7)0.036 (4)
H44A0.55270.05260.79940.043*
H44B0.48070.03200.84620.043*
C450.4793 (10)0.1614 (9)0.7896 (7)0.037 (4)
H45A0.41090.11430.79100.044*
H45B0.48330.13240.74460.044*
C460.4873 (9)0.2567 (9)0.7893 (6)0.030 (4)
H46A0.42640.24420.75020.036*
H46B0.48780.28820.83540.036*
C470.5921 (10)0.4135 (9)0.7803 (6)0.028 (4)
H47A0.59510.44680.82680.034*
H47B0.53300.40450.74150.034*
C480.6920 (9)0.4754 (9)0.7695 (6)0.027 (3)
H48A0.69040.43740.72550.032*
H48B0.69590.53580.76140.032*
C490.8130 (10)0.1830 (11)0.9768 (8)0.044 (4)
H49A0.79330.12450.99370.053*
H49B0.88150.20530.97270.053*
C500.8251 (11)0.2625 (10)1.0317 (7)0.044 (4)
H50A0.75720.24101.03660.052*
H50B0.87460.27401.07840.052*
C510.8655 (11)0.4296 (11)1.0631 (7)0.050 (5)
H51A0.90810.44171.11270.060*
H51B0.79420.40771.06120.060*
C520.9099 (11)0.5238 (10)1.0454 (8)0.049 (5)
H52A0.91970.57761.08330.058*
H52B0.97850.54321.04260.058*
C530.8794 (10)0.5975 (8)0.9598 (6)0.027 (3)
H53A0.94730.61720.95560.033*
H53B0.88990.65170.99780.033*
C540.8060 (10)0.5816 (10)0.8918 (7)0.040 (4)
H54A0.83250.64550.88150.048*
H54B0.73910.56300.89750.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0433 (7)0.0303 (7)0.0357 (6)0.0122 (6)0.0073 (5)0.0139 (5)
Sn20.0253 (6)0.0228 (6)0.0318 (6)0.0083 (5)0.0088 (5)0.0032 (5)
Sn30.0321 (7)0.0283 (6)0.0368 (6)0.0170 (5)0.0111 (5)0.0071 (5)
Sn40.0408 (7)0.0433 (7)0.0478 (7)0.0261 (6)0.0149 (6)0.0223 (6)
Sn50.0318 (7)0.0330 (7)0.0396 (7)0.0195 (6)0.0094 (5)0.0050 (5)
Sn60.0375 (7)0.0319 (6)0.0299 (6)0.0185 (6)0.0077 (5)0.0088 (5)
Sn70.0331 (7)0.0208 (6)0.0463 (7)0.0102 (5)0.0050 (5)0.0025 (5)
Sn80.0334 (7)0.0333 (7)0.0536 (7)0.0129 (6)0.0171 (6)0.0161 (6)
Sn90.0251 (6)0.0373 (7)0.0527 (7)0.0137 (6)0.0043 (5)0.0069 (6)
Rb10.0697 (18)0.0670 (17)0.0312 (13)0.0357 (15)0.0161 (12)0.0037 (12)
Rb20.095 (2)0.167 (3)0.126 (3)0.064 (2)0.052 (2)0.112 (2)
Rb30.0273 (9)0.0260 (8)0.0358 (9)0.0116 (7)0.0087 (7)0.0083 (7)
N10.033 (8)0.014 (7)0.030 (7)0.010 (6)0.013 (6)0.001 (6)
N20.022 (8)0.045 (9)0.036 (8)0.008 (7)0.012 (6)0.010 (7)
O10.051 (7)0.040 (7)0.025 (6)0.020 (6)0.022 (5)0.011 (5)
O20.037 (6)0.035 (6)0.031 (6)0.008 (5)0.004 (5)0.010 (5)
O30.041 (6)0.029 (6)0.029 (6)0.026 (5)0.009 (5)0.000 (5)
O40.047 (7)0.053 (7)0.026 (6)0.027 (6)0.008 (5)0.017 (5)
O50.042 (7)0.041 (7)0.033 (6)0.014 (6)0.010 (5)0.011 (5)
O60.033 (6)0.056 (7)0.034 (6)0.029 (6)0.006 (5)0.003 (6)
C10.013 (8)0.017 (8)0.035 (9)0.009 (7)0.001 (7)0.003 (7)
C20.062 (12)0.068 (13)0.038 (10)0.042 (11)0.023 (9)0.007 (10)
C30.048 (10)0.034 (9)0.045 (10)0.028 (9)0.023 (8)0.034 (8)
C40.045 (11)0.035 (10)0.055 (11)0.017 (9)0.013 (9)0.018 (9)
C50.058 (8)0.030 (7)0.064 (8)0.012 (6)0.016 (7)0.017 (7)
C60.036 (11)0.036 (10)0.062 (12)0.003 (9)0.012 (9)0.017 (9)
C70.029 (10)0.033 (10)0.043 (10)0.003 (8)0.008 (8)0.006 (8)
C80.023 (7)0.037 (7)0.047 (8)0.011 (6)0.006 (6)0.007 (6)
C90.037 (10)0.029 (9)0.047 (10)0.012 (8)0.003 (8)0.026 (8)
C100.055 (12)0.051 (11)0.070 (12)0.044 (10)0.045 (10)0.021 (10)
C110.076 (13)0.060 (12)0.040 (10)0.062 (11)0.026 (10)0.026 (9)
C120.053 (13)0.045 (12)0.063 (12)0.021 (11)0.005 (10)0.019 (10)
C130.020 (9)0.030 (10)0.054 (11)0.005 (8)0.000 (8)0.018 (9)
C140.046 (11)0.036 (10)0.037 (9)0.020 (9)0.027 (8)0.007 (8)
C150.047 (11)0.050 (11)0.048 (10)0.019 (9)0.017 (9)0.034 (9)
C160.044 (11)0.037 (10)0.032 (9)0.011 (9)0.018 (8)0.018 (8)
C170.049 (12)0.071 (13)0.044 (11)0.044 (11)0.012 (9)0.010 (10)
C180.030 (10)0.052 (11)0.036 (10)0.020 (9)0.001 (8)0.012 (9)
Rb40.0284 (9)0.0277 (9)0.0312 (8)0.0145 (7)0.0075 (7)0.0053 (7)
N30.051 (9)0.028 (7)0.040 (8)0.028 (7)0.018 (7)0.021 (7)
N40.058 (9)0.025 (7)0.020 (7)0.018 (7)0.022 (6)0.012 (6)
O70.038 (7)0.045 (7)0.021 (6)0.025 (6)0.010 (5)0.008 (5)
O80.053 (7)0.037 (6)0.036 (6)0.033 (6)0.014 (5)0.015 (5)
O90.030 (6)0.019 (6)0.046 (6)0.009 (5)0.007 (5)0.005 (5)
O100.025 (6)0.019 (6)0.032 (6)0.001 (5)0.005 (5)0.006 (5)
O110.040 (7)0.031 (6)0.036 (6)0.011 (5)0.014 (5)0.005 (5)
O120.033 (6)0.022 (6)0.038 (6)0.007 (5)0.017 (5)0.016 (5)
C190.018 (8)0.056 (11)0.026 (8)0.020 (8)0.003 (7)0.001 (8)
C200.045 (11)0.044 (10)0.023 (9)0.030 (9)0.001 (8)0.001 (8)
C210.027 (9)0.022 (8)0.024 (8)0.000 (7)0.011 (7)0.001 (7)
C220.029 (9)0.019 (8)0.046 (10)0.013 (7)0.008 (8)0.003 (8)
C230.028 (10)0.037 (10)0.064 (11)0.012 (8)0.036 (9)0.016 (9)
C240.035 (9)0.031 (9)0.035 (9)0.020 (8)0.015 (7)0.019 (8)
C250.051 (11)0.042 (10)0.039 (9)0.034 (10)0.005 (8)0.004 (9)
C260.043 (8)0.033 (7)0.041 (7)0.032 (6)0.005 (6)0.001 (6)
C270.066 (13)0.016 (9)0.035 (9)0.015 (9)0.014 (9)0.003 (8)
C280.023 (9)0.039 (10)0.046 (10)0.007 (8)0.005 (8)0.011 (9)
C290.041 (8)0.034 (7)0.024 (7)0.012 (6)0.017 (6)0.020 (6)
C300.042 (10)0.042 (10)0.056 (11)0.017 (9)0.037 (9)0.032 (9)
C310.031 (10)0.056 (11)0.039 (10)0.019 (9)0.011 (8)0.000 (9)
C320.046 (10)0.048 (11)0.032 (9)0.025 (9)0.028 (8)0.016 (8)
C330.041 (8)0.044 (8)0.019 (7)0.012 (6)0.016 (6)0.005 (6)
C340.024 (9)0.036 (10)0.041 (9)0.015 (8)0.007 (7)0.014 (8)
C350.082 (14)0.049 (11)0.039 (10)0.046 (11)0.027 (9)0.017 (9)
C360.053 (11)0.037 (10)0.043 (10)0.039 (9)0.022 (8)0.015 (8)
Rb50.0317 (9)0.0231 (8)0.0315 (8)0.0122 (7)0.0120 (7)0.0075 (7)
N50.037 (8)0.023 (7)0.035 (8)0.007 (7)0.001 (7)0.007 (6)
N60.029 (8)0.032 (8)0.045 (8)0.024 (6)0.014 (6)0.021 (7)
O130.037 (6)0.019 (6)0.056 (7)0.013 (5)0.025 (5)0.010 (5)
O140.039 (6)0.024 (6)0.048 (6)0.028 (5)0.011 (5)0.010 (5)
O150.017 (5)0.038 (6)0.030 (6)0.010 (5)0.000 (4)0.008 (5)
O160.027 (6)0.028 (6)0.042 (6)0.015 (5)0.011 (5)0.007 (5)
O170.048 (7)0.039 (6)0.017 (5)0.024 (6)0.010 (5)0.000 (5)
O180.041 (6)0.019 (6)0.026 (6)0.013 (5)0.004 (5)0.004 (5)
C370.053 (11)0.037 (10)0.053 (11)0.035 (9)0.034 (9)0.013 (9)
C380.073 (13)0.026 (10)0.057 (11)0.038 (10)0.022 (10)0.001 (9)
C390.041 (10)0.023 (9)0.042 (10)0.007 (8)0.017 (8)0.001 (8)
C400.042 (10)0.029 (9)0.024 (8)0.012 (8)0.016 (7)0.006 (7)
C410.040 (10)0.065 (12)0.042 (10)0.041 (10)0.016 (8)0.018 (9)
C420.018 (9)0.031 (9)0.060 (11)0.013 (8)0.002 (8)0.015 (8)
C430.042 (10)0.022 (8)0.014 (8)0.002 (8)0.007 (7)0.009 (7)
C440.055 (11)0.033 (9)0.043 (10)0.031 (9)0.034 (9)0.021 (8)
C450.031 (7)0.017 (7)0.052 (8)0.002 (5)0.023 (6)0.007 (6)
C460.009 (8)0.039 (10)0.022 (8)0.001 (7)0.002 (6)0.011 (7)
C470.035 (9)0.016 (8)0.029 (8)0.014 (7)0.007 (7)0.003 (7)
C480.032 (7)0.023 (7)0.033 (7)0.023 (6)0.005 (5)0.011 (5)
C490.039 (10)0.061 (12)0.076 (12)0.040 (9)0.042 (9)0.050 (10)
C500.052 (8)0.028 (7)0.055 (8)0.026 (6)0.010 (6)0.024 (6)
C510.029 (10)0.084 (14)0.025 (9)0.023 (10)0.007 (8)0.022 (10)
C520.055 (11)0.025 (9)0.063 (12)0.014 (9)0.026 (10)0.027 (9)
C530.036 (7)0.010 (6)0.029 (7)0.006 (5)0.017 (6)0.003 (5)
C540.033 (10)0.036 (10)0.050 (10)0.016 (8)0.010 (8)0.029 (9)
Geometric parameters (Å, º) top
Sn1—Sn22.9229 (14)O11—C331.407 (14)
Sn1—Sn52.9387 (14)O11—C321.448 (14)
Sn1—Sn42.9724 (15)O12—C341.403 (14)
Sn1—Sn82.9850 (14)O12—C351.416 (15)
Sn1—Rb23.5976 (10)C19—C201.508 (15)
Sn1—Sn34.2360 (14)C19—H19A0.9900
Sn2—Sn32.9404 (14)C19—H19B0.9900
Sn2—Sn52.9493 (14)C20—H20A0.9900
Sn2—Sn62.9644 (13)C20—H20B0.9900
Sn2—Sn44.0981 (14)C21—C221.533 (16)
Sn3—Sn72.9549 (14)C21—H21A0.9900
Sn3—Sn42.9552 (14)C21—H21B0.9900
Sn3—Sn62.9777 (14)C22—H22A0.9900
Sn3—Rb13.7925 (9)C22—H22B0.9900
Sn4—Sn82.9527 (15)C23—C241.472 (15)
Sn4—Sn72.9957 (14)C23—H23A0.9900
Sn4—Rb24.2008 (11)C23—H23B0.9900
Sn5—Sn92.9453 (14)C24—H24A0.9900
Sn5—Sn63.1249 (14)C24—H24B0.9900
Sn5—Sn83.3110 (15)C25—C261.496 (17)
Sn6—Sn92.9283 (15)C25—H25A0.9900
Sn6—Sn73.2267 (14)C25—H25B0.9900
Sn6—Rb13.7460 (10)C26—H26A0.9900
Sn7—Sn92.9613 (15)C26—H26B0.9900
Sn7—Sn83.1741 (15)C27—C281.540 (17)
Sn7—Rb14.1017 (11)C27—H27A0.9900
Sn8—Sn92.9327 (14)C27—H27B0.9900
Sn8—Rb23.8357 (10)C28—H28A0.9900
Rb3—O32.830 (9)C28—H28B0.9900
Rb3—O12.834 (8)C29—C301.499 (16)
Rb3—O62.847 (9)C29—H29A0.9900
Rb3—O42.877 (9)C29—H29B0.9900
Rb3—O22.886 (9)C30—H30A0.9900
Rb3—O52.907 (10)C30—H30B0.9900
Rb3—N13.034 (10)C31—C321.487 (16)
Rb3—N23.063 (11)C31—H31A0.9900
N1—C71.422 (15)C31—H31B0.9900
N1—C131.483 (16)C32—H32A0.9900
N1—C11.502 (14)C32—H32B0.9900
N2—C61.420 (15)C33—C341.474 (17)
N2—C181.430 (15)C33—H33A0.9900
N2—C121.514 (18)C33—H33B0.9900
O1—C21.413 (14)C34—H34A0.9900
O1—C31.420 (13)C34—H34B0.9900
O2—C41.382 (13)C35—C361.545 (17)
O2—C51.407 (14)C35—H35A0.9900
O3—C81.423 (12)C35—H35B0.9900
O3—C91.429 (15)C36—H36A0.9900
O4—C111.362 (13)C36—H36B0.9900
O4—C101.411 (15)Rb5—O132.858 (9)
O5—C151.411 (13)Rb5—O152.875 (8)
O5—C141.432 (13)Rb5—O182.880 (8)
O6—C161.392 (15)Rb5—O142.882 (9)
O6—C171.412 (15)Rb5—O162.897 (8)
C1—C21.579 (16)Rb5—O172.915 (8)
C1—H1A0.9900Rb5—N62.929 (10)
C1—H1B0.9900Rb5—N52.963 (11)
C2—H2A0.9900N5—C371.411 (14)
C2—H2B0.9900N5—C431.451 (15)
C3—C41.539 (16)N5—C491.477 (14)
C3—H3A0.9900N6—C481.446 (13)
C3—H3B0.9900N6—C421.479 (15)
C4—H4A0.9900N6—C541.487 (15)
C4—H4B0.9900O13—C381.367 (14)
C5—C61.532 (16)O13—C391.396 (14)
C5—H5A0.9900O14—C411.389 (14)
C5—H5B0.9900O14—C401.396 (13)
C6—H6A0.9900O15—C451.366 (13)
C6—H6B0.9900O15—C441.452 (13)
C7—C81.508 (17)O16—C461.398 (13)
C7—H7A0.9900O16—C471.419 (13)
C7—H7B0.9900O17—C511.419 (15)
C8—H8A0.9900O17—C501.420 (14)
C8—H8B0.9900O18—C531.412 (13)
C9—C101.537 (15)O18—C521.427 (13)
C9—H9A0.9900C37—C381.524 (17)
C9—H9B0.9900C37—H37A0.9900
C10—H10A0.9900C37—H37B0.9900
C10—H10B0.9900C38—H38A0.9900
C11—C121.514 (18)C38—H38B0.9900
C11—H11A0.9900C39—C401.486 (16)
C11—H11B0.9900C39—H39A0.9900
C12—H12A0.9900C39—H39B0.9900
C12—H12B0.9900C40—H40A0.9900
C13—C141.460 (15)C40—H40B0.9900
C13—H13A0.9900C41—C421.483 (16)
C13—H13B0.9900C41—H41A0.9900
C14—H14A0.9900C41—H41B0.9900
C14—H14B0.9900C42—H42A0.9900
C15—C161.504 (16)C42—H42B0.9900
C15—H15A0.9900C43—C441.472 (15)
C15—H15B0.9900C43—H43A0.9900
C16—H16A0.9900C43—H43B0.9900
C16—H16B0.9900C44—H44A0.9900
C17—C181.492 (17)C44—H44B0.9900
C17—H17A0.9900C45—C461.484 (16)
C17—H17B0.9900C45—H45A0.9900
C18—H18A0.9900C45—H45B0.9900
C18—H18B0.9900C46—H46A0.9900
Rb4—O92.845 (8)C46—H46B0.9900
Rb4—O72.848 (8)C47—C481.504 (15)
Rb4—O122.869 (8)C47—H47A0.9900
Rb4—O102.909 (8)C47—H47B0.9900
Rb4—O112.914 (9)C48—H48A0.9900
Rb4—O82.914 (9)C48—H48B0.9900
Rb4—N32.983 (11)C49—C501.466 (16)
Rb4—N43.030 (12)C49—H49A0.9900
N3—C251.440 (14)C49—H49B0.9900
N3—C311.465 (15)C50—H50A0.9900
N3—C191.476 (13)C50—H50B0.9900
N4—C241.433 (14)C51—C521.488 (17)
N4—C361.447 (13)C51—H51A0.9900
N4—C301.455 (14)C51—H51B0.9900
O7—C211.355 (12)C52—H52A0.9900
O7—C201.431 (15)C52—H52B0.9900
O8—C221.415 (13)C53—C541.457 (14)
O8—C231.425 (14)C53—H53A0.9900
O9—C261.428 (13)C53—H53B0.9900
O9—C271.456 (15)C54—H54A0.9900
O10—C281.370 (14)C54—H54B0.9900
O10—C291.411 (14)
Sn2—Sn1—Sn560.42 (3)O9—Rb4—O8135.0 (3)
Sn2—Sn1—Sn488.07 (4)O7—Rb4—O859.5 (3)
Sn5—Sn1—Sn4106.08 (4)O12—Rb4—O8100.6 (2)
Sn2—Sn1—Sn8105.93 (4)O10—Rb4—O894.1 (3)
Sn5—Sn1—Sn867.96 (3)O11—Rb4—O8120.8 (2)
Sn4—Sn1—Sn859.42 (3)O9—Rb4—N360.5 (3)
Sn2—Sn1—Rb2166.42 (4)O7—Rb4—N361.1 (3)
Sn5—Sn1—Rb2126.75 (4)O12—Rb4—N3118.4 (3)
Sn4—Sn1—Rb278.86 (3)O10—Rb4—N3119.4 (3)
Sn8—Sn1—Rb270.58 (3)O11—Rb4—N360.7 (3)
Sn2—Sn1—Sn343.91 (3)O8—Rb4—N3119.3 (3)
Sn5—Sn1—Sn379.76 (3)O9—Rb4—N4119.3 (3)
Sn4—Sn1—Sn344.23 (3)O7—Rb4—N4119.7 (3)
Sn8—Sn1—Sn379.25 (3)O12—Rb4—N461.0 (3)
Rb2—Sn1—Sn3123.08 (3)O10—Rb4—N460.6 (3)
Sn1—Sn2—Sn392.51 (4)O11—Rb4—N4118.7 (3)
Sn1—Sn2—Sn560.06 (3)O8—Rb4—N461.5 (3)
Sn3—Sn2—Sn5106.10 (4)N3—Rb4—N4179.2 (3)
Sn1—Sn2—Sn6105.01 (4)C25—N3—C31109.2 (11)
Sn3—Sn2—Sn660.57 (3)C25—N3—C19109.6 (10)
Sn5—Sn2—Sn663.80 (3)C31—N3—C19109.2 (11)
Sn1—Sn2—Sn446.46 (3)C25—N3—Rb4109.1 (8)
Sn3—Sn2—Sn446.11 (3)C31—N3—Rb4109.7 (8)
Sn5—Sn2—Sn482.44 (3)C19—N3—Rb4110.1 (8)
Sn6—Sn2—Sn481.83 (3)C24—N4—C36109.4 (10)
Sn2—Sn3—Sn7105.68 (4)C24—N4—C30112.4 (10)
Sn2—Sn3—Sn488.07 (4)C36—N4—C30110.9 (11)
Sn7—Sn3—Sn460.91 (3)C24—N4—Rb4106.5 (8)
Sn2—Sn3—Sn660.12 (3)C36—N4—Rb4108.9 (8)
Sn7—Sn3—Sn665.90 (3)C30—N4—Rb4108.5 (8)
Sn4—Sn3—Sn6104.91 (4)C21—O7—C20110.4 (9)
Sn2—Sn3—Rb1119.31 (3)C21—O7—Rb4116.7 (8)
Sn7—Sn3—Rb173.70 (3)C20—O7—Rb4113.2 (7)
Sn4—Sn3—Rb1132.27 (4)C22—O8—C23114.9 (11)
Sn6—Sn3—Rb165.91 (3)C22—O8—Rb4109.8 (7)
Sn2—Sn3—Sn143.58 (3)C23—O8—Rb4111.3 (7)
Sn7—Sn3—Sn180.14 (3)C26—O9—C27111.2 (10)
Sn4—Sn3—Sn144.55 (3)C26—O9—Rb4117.0 (7)
Sn6—Sn3—Sn178.59 (3)C27—O9—Rb4113.6 (7)
Rb1—Sn3—Sn1142.08 (3)C28—O10—C29108.5 (10)
Sn8—Sn4—Sn3105.57 (4)C28—O10—Rb4113.6 (8)
Sn8—Sn4—Sn160.50 (4)C29—O10—Rb4111.3 (7)
Sn3—Sn4—Sn191.22 (4)C33—O11—C32113.4 (10)
Sn8—Sn4—Sn764.49 (4)C33—O11—Rb4114.6 (8)
Sn3—Sn4—Sn759.54 (3)C32—O11—Rb4114.0 (8)
Sn1—Sn4—Sn7104.90 (4)C34—O12—C35110.2 (10)
Sn8—Sn4—Sn282.24 (3)C34—O12—Rb4117.2 (7)
Sn3—Sn4—Sn245.81 (3)C35—O12—Rb4116.1 (8)
Sn1—Sn4—Sn245.47 (3)N3—C19—C20111.9 (11)
Sn7—Sn4—Sn281.35 (3)N3—C19—H19A109.2
Sn8—Sn4—Rb261.98 (3)C20—C19—H19A109.2
Sn3—Sn4—Rb2148.37 (4)N3—C19—H19B109.2
Sn1—Sn4—Rb257.17 (3)C20—C19—H19B109.2
Sn7—Sn4—Rb2125.08 (4)H19A—C19—H19B107.9
Sn2—Sn4—Rb2102.56 (3)O7—C20—C19109.9 (11)
Sn1—Sn5—Sn9107.87 (4)O7—C20—H20A109.7
Sn1—Sn5—Sn259.53 (3)C19—C20—H20A109.7
Sn9—Sn5—Sn2109.20 (4)O7—C20—H20B109.7
Sn1—Sn5—Sn6100.73 (4)C19—C20—H20B109.7
Sn9—Sn5—Sn657.60 (3)H20A—C20—H20B108.2
Sn2—Sn5—Sn658.34 (3)O7—C21—C22109.2 (10)
Sn1—Sn5—Sn856.68 (3)O7—C21—H21A109.8
Sn9—Sn5—Sn855.54 (3)C22—C21—H21A109.8
Sn2—Sn5—Sn897.60 (4)O7—C21—H21B109.8
Sn6—Sn5—Sn889.13 (4)C22—C21—H21B109.8
Sn9—Sn6—Sn2109.25 (4)H21A—C21—H21B108.3
Sn9—Sn6—Sn3108.76 (4)O8—C22—C21109.2 (11)
Sn2—Sn6—Sn359.32 (3)O8—C22—H22A109.8
Sn9—Sn6—Sn558.12 (3)C21—C22—H22A109.8
Sn2—Sn6—Sn557.87 (3)O8—C22—H22B109.8
Sn3—Sn6—Sn5100.91 (4)C21—C22—H22B109.8
Sn9—Sn6—Sn757.27 (3)H22A—C22—H22B108.3
Sn2—Sn6—Sn798.65 (4)O8—C23—C24113.0 (11)
Sn3—Sn6—Sn756.71 (3)O8—C23—H23A109.0
Sn5—Sn6—Sn791.74 (4)C24—C23—H23A109.0
Sn9—Sn6—Rb1112.40 (3)O8—C23—H23B109.0
Sn2—Sn6—Rb1120.07 (4)C24—C23—H23B109.0
Sn3—Sn6—Rb167.56 (3)H23A—C23—H23B107.8
Sn5—Sn6—Rb1163.05 (4)N4—C24—C23115.1 (11)
Sn7—Sn6—Rb171.63 (3)N4—C24—H24A108.5
Sn3—Sn7—Sn9108.48 (4)C23—C24—H24A108.5
Sn3—Sn7—Sn459.55 (3)N4—C24—H24B108.5
Sn9—Sn7—Sn4107.75 (4)C23—C24—H24B108.5
Sn3—Sn7—Sn8100.23 (4)H24A—C24—H24B107.5
Sn9—Sn7—Sn856.98 (3)N3—C25—C26114.6 (12)
Sn4—Sn7—Sn857.10 (3)N3—C25—H25A108.6
Sn3—Sn7—Sn657.39 (3)C26—C25—H25A108.6
Sn9—Sn7—Sn656.29 (3)N3—C25—H25B108.6
Sn4—Sn7—Sn698.16 (4)C26—C25—H25B108.6
Sn8—Sn7—Sn689.80 (4)H25A—C25—H25B107.6
Sn3—Sn7—Rb162.56 (3)O9—C26—C25109.6 (11)
Sn9—Sn7—Rb1102.78 (3)O9—C26—H26A109.8
Sn4—Sn7—Rb1120.29 (4)C25—C26—H26A109.8
Sn8—Sn7—Rb1149.75 (4)O9—C26—H26B109.8
Sn6—Sn7—Rb160.08 (2)C25—C26—H26B109.8
Sn9—Sn8—Sn4109.68 (4)H26A—C26—H26B108.2
Sn9—Sn8—Sn1106.97 (4)O9—C27—C28108.7 (10)
Sn4—Sn8—Sn160.08 (4)O9—C27—H27A109.9
Sn9—Sn8—Sn757.85 (3)C28—C27—H27A109.9
Sn4—Sn8—Sn758.41 (3)O9—C27—H27B109.9
Sn1—Sn8—Sn7100.35 (4)C28—C27—H27B109.9
Sn9—Sn8—Sn555.90 (3)H27A—C27—H27B108.3
Sn4—Sn8—Sn597.73 (4)O10—C28—C27110.6 (11)
Sn1—Sn8—Sn555.36 (3)O10—C28—H28A109.5
Sn7—Sn8—Sn589.32 (4)C27—C28—H28A109.5
Sn9—Sn8—Rb2164.75 (4)O10—C28—H28B109.5
Sn4—Sn8—Rb275.20 (3)C27—C28—H28B109.5
Sn1—Sn8—Rb262.20 (3)H28A—C28—H28B108.1
Sn7—Sn8—Rb2132.01 (4)O10—C29—C30109.4 (11)
Sn5—Sn8—Rb2109.68 (3)O10—C29—H29A109.8
Sn6—Sn9—Sn8100.87 (4)C30—C29—H29A109.8
Sn6—Sn9—Sn564.28 (3)O10—C29—H29B109.8
Sn8—Sn9—Sn568.57 (3)C30—C29—H29B109.8
Sn6—Sn9—Sn766.44 (4)H29A—C29—H29B108.2
Sn8—Sn9—Sn765.17 (4)N4—C30—C29114.8 (11)
Sn5—Sn9—Sn7101.06 (4)N4—C30—H30A108.6
Sn6—Rb1—Sn6i180.0C29—C30—H30A108.6
Sn6—Rb1—Sn346.53 (2)N4—C30—H30B108.6
Sn6i—Rb1—Sn3133.47 (2)C29—C30—H30B108.6
Sn6—Rb1—Sn3i133.47 (2)H30A—C30—H30B107.5
Sn6i—Rb1—Sn3i46.53 (2)N3—C31—C32114.2 (11)
Sn3—Rb1—Sn3i180.0N3—C31—H31A108.7
Sn6—Rb1—Sn748.29 (2)C32—C31—H31A108.7
Sn6i—Rb1—Sn7131.71 (2)N3—C31—H31B108.7
Sn3—Rb1—Sn743.75 (2)C32—C31—H31B108.7
Sn3i—Rb1—Sn7136.26 (2)H31A—C31—H31B107.6
Sn6—Rb1—Sn7i131.71 (2)O11—C32—C31110.0 (11)
Sn6i—Rb1—Sn7i48.29 (2)O11—C32—H32A109.7
Sn3—Rb1—Sn7i136.25 (2)C31—C32—H32A109.7
Sn3i—Rb1—Sn7i43.75 (2)O11—C32—H32B109.7
Sn7—Rb1—Sn7i180.0C31—C32—H32B109.7
Sn1—Rb2—Sn1ii180.0H32A—C32—H32B108.2
Sn1—Rb2—Sn8ii132.78 (2)O11—C33—C34111.9 (11)
Sn1ii—Rb2—Sn8ii47.22 (2)O11—C33—H33A109.2
Sn1—Rb2—Sn847.22 (2)C34—C33—H33A109.2
Sn1ii—Rb2—Sn8132.78 (2)O11—C33—H33B109.2
Sn8ii—Rb2—Sn8180.0C34—C33—H33B109.2
Sn1—Rb2—Sn4ii136.03 (2)H33A—C33—H33B107.9
Sn1ii—Rb2—Sn4ii43.97 (2)O12—C34—C33112.0 (11)
Sn8ii—Rb2—Sn4ii42.81 (2)O12—C34—H34A109.2
Sn8—Rb2—Sn4ii137.19 (2)C33—C34—H34A109.2
Sn1—Rb2—Sn443.97 (2)O12—C34—H34B109.2
Sn1ii—Rb2—Sn4136.03 (2)C33—C34—H34B109.2
Sn8ii—Rb2—Sn4137.19 (2)H34A—C34—H34B107.9
Sn8—Rb2—Sn442.81 (2)O12—C35—C36109.2 (11)
Sn4ii—Rb2—Sn4180.0O12—C35—H35A109.8
O3—Rb3—O196.0 (3)C36—C35—H35A109.8
O3—Rb3—O6122.5 (3)O12—C35—H35B109.8
O1—Rb3—O6136.2 (3)C36—C35—H35B109.8
O3—Rb3—O461.8 (3)H35A—C35—H35B108.3
O1—Rb3—O4117.3 (3)N4—C36—C35116.3 (11)
O6—Rb3—O4100.2 (3)N4—C36—H36A108.2
O3—Rb3—O2137.2 (3)C35—C36—H36A108.2
O1—Rb3—O260.4 (3)N4—C36—H36B108.2
O6—Rb3—O295.8 (3)C35—C36—H36B108.2
O4—Rb3—O295.9 (3)H36A—C36—H36B107.4
O3—Rb3—O599.3 (2)O13—Rb5—O1599.4 (3)
O1—Rb3—O595.7 (3)O13—Rb5—O18143.0 (3)
O6—Rb3—O560.9 (3)O15—Rb5—O18113.2 (3)
O4—Rb3—O5142.3 (3)O13—Rb5—O1458.0 (3)
O2—Rb3—O5117.0 (3)O15—Rb5—O14139.6 (2)
O3—Rb3—N159.1 (3)O18—Rb5—O14101.6 (2)
O1—Rb3—N160.9 (3)O13—Rb5—O16115.9 (2)
O6—Rb3—N1119.4 (3)O15—Rb5—O1658.8 (2)
O4—Rb3—N1120.0 (3)O18—Rb5—O1696.4 (2)
O2—Rb3—N1120.3 (3)O14—Rb5—O1698.7 (2)
O5—Rb3—N159.7 (3)O13—Rb5—O17100.7 (3)
O3—Rb3—N2121.5 (3)O15—Rb5—O1796.8 (2)
O1—Rb3—N2119.4 (3)O18—Rb5—O1759.8 (3)
O6—Rb3—N259.8 (3)O14—Rb5—O17118.8 (2)
O4—Rb3—N260.8 (3)O16—Rb5—O17137.8 (3)
O2—Rb3—N259.8 (3)O13—Rb5—N6119.2 (3)
O5—Rb3—N2119.5 (3)O15—Rb5—N6117.9 (3)
N1—Rb3—N2179.1 (3)O18—Rb5—N660.5 (3)
C7—N1—C13108.6 (10)O14—Rb5—N662.6 (3)
C7—N1—C1109.7 (11)O16—Rb5—N660.9 (3)
C13—N1—C1108.9 (11)O17—Rb5—N6118.8 (3)
C7—N1—Rb3110.1 (7)O13—Rb5—N561.3 (3)
C13—N1—Rb3110.0 (8)O15—Rb5—N561.5 (3)
C1—N1—Rb3109.5 (7)O18—Rb5—N5119.5 (3)
C6—N2—C18111.6 (11)O14—Rb5—N5117.9 (3)
C6—N2—C12110.1 (13)O16—Rb5—N5118.5 (3)
C18—N2—C12109.3 (11)O17—Rb5—N561.4 (3)
C6—N2—Rb3110.6 (8)N6—Rb5—N5179.4 (3)
C18—N2—Rb3107.5 (8)C37—N5—C43112.2 (11)
C12—N2—Rb3107.5 (8)C37—N5—C49108.2 (12)
C2—O1—C3107.1 (10)C43—N5—C49108.6 (11)
C2—O1—Rb3116.2 (8)C37—N5—Rb5108.9 (9)
C3—O1—Rb3114.4 (7)C43—N5—Rb5109.9 (8)
C4—O2—C5111.0 (11)C49—N5—Rb5109.1 (8)
C4—O2—Rb3112.0 (7)C48—N6—C42111.3 (10)
C5—O2—Rb3112.5 (7)C48—N6—C54111.6 (10)
C8—O3—C9108.4 (10)C42—N6—C54108.7 (10)
C8—O3—Rb3117.7 (7)C48—N6—Rb5108.9 (7)
C9—O3—Rb3111.0 (7)C42—N6—Rb5105.8 (7)
C11—O4—C10111.6 (11)C54—N6—Rb5110.4 (7)
C11—O4—Rb3113.3 (8)C38—O13—C39110.0 (11)
C10—O4—Rb3110.7 (7)C38—O13—Rb5115.5 (8)
C15—O5—C14111.8 (10)C39—O13—Rb5119.9 (7)
C15—O5—Rb3111.5 (8)C41—O14—C40112.9 (10)
C14—O5—Rb3111.2 (8)C41—O14—Rb5114.4 (8)
C16—O6—C17111.1 (11)C40—O14—Rb5114.7 (7)
C16—O6—Rb3112.1 (8)C45—O15—C44111.1 (10)
C17—O6—Rb3116.7 (8)C45—O15—Rb5114.1 (7)
N1—C1—C2111.9 (10)C44—O15—Rb5112.4 (7)
N1—C1—H1A109.2C46—O16—C47112.5 (10)
C2—C1—H1A109.2C46—O16—Rb5114.6 (7)
N1—C1—H1B109.2C47—O16—Rb5114.8 (7)
C2—C1—H1B109.2C51—O17—C50115.1 (11)
H1A—C1—H1B107.9C51—O17—Rb5111.3 (7)
O1—C2—C1108.0 (11)C50—O17—Rb5114.3 (7)
O1—C2—H2A110.1C53—O18—C52110.3 (9)
C1—C2—H2A110.1C53—O18—Rb5116.3 (7)
O1—C2—H2B110.1C52—O18—Rb5115.4 (7)
C1—C2—H2B110.1N5—C37—C38118.6 (12)
H2A—C2—H2B108.4N5—C37—H37A107.7
O1—C3—C4108.4 (11)C38—C37—H37A107.7
O1—C3—H3A110.0N5—C37—H37B107.7
C4—C3—H3A110.0C38—C37—H37B107.7
O1—C3—H3B110.0H37A—C37—H37B107.1
C4—C3—H3B110.0O13—C38—C37110.4 (12)
H3A—C3—H3B108.4O13—C38—H38A109.6
O2—C4—C3110.1 (11)C37—C38—H38A109.6
O2—C4—H4A109.6O13—C38—H38B109.6
C3—C4—H4A109.6C37—C38—H38B109.6
O2—C4—H4B109.6H38A—C38—H38B108.1
C3—C4—H4B109.6O13—C39—C40109.7 (12)
H4A—C4—H4B108.2O13—C39—H39A109.7
O2—C5—C6111.6 (12)C40—C39—H39A109.7
O2—C5—H5A109.3O13—C39—H39B109.7
C6—C5—H5A109.3C40—C39—H39B109.7
O2—C5—H5B109.3H39A—C39—H39B108.2
C6—C5—H5B109.3O14—C40—C39112.2 (11)
H5A—C5—H5B108.0O14—C40—H40A109.2
N2—C6—C5111.9 (12)C39—C40—H40A109.2
N2—C6—H6A109.2O14—C40—H40B109.2
C5—C6—H6A109.2C39—C40—H40B109.2
N2—C6—H6B109.2H40A—C40—H40B107.9
C5—C6—H6B109.2O14—C41—C42111.9 (11)
H6A—C6—H6B107.9O14—C41—H41A109.2
N1—C7—C8113.7 (11)C42—C41—H41A109.2
N1—C7—H7A108.8O14—C41—H41B109.2
C8—C7—H7A108.8C42—C41—H41B109.2
N1—C7—H7B108.8H41A—C41—H41B107.9
C8—C7—H7B108.8N6—C42—C41116.9 (11)
H7A—C7—H7B107.7N6—C42—H42A108.1
O3—C8—C7108.0 (11)C41—C42—H42A108.1
O3—C8—H8A110.1N6—C42—H42B108.1
C7—C8—H8A110.1C41—C42—H42B108.1
O3—C8—H8B110.1H42A—C42—H42B107.3
C7—C8—H8B110.1N5—C43—C44114.3 (10)
H8A—C8—H8B108.4N5—C43—H43A108.7
O3—C9—C10108.2 (11)C44—C43—H43A108.7
O3—C9—H9A110.1N5—C43—H43B108.7
C10—C9—H9A110.1C44—C43—H43B108.7
O3—C9—H9B110.1H43A—C43—H43B107.6
C10—C9—H9B110.1O15—C44—C43111.7 (11)
H9A—C9—H9B108.4O15—C44—H44A109.3
O4—C10—C9109.9 (11)C43—C44—H44A109.3
O4—C10—H10A109.7O15—C44—H44B109.3
C9—C10—H10A109.7C43—C44—H44B109.3
O4—C10—H10B109.7H44A—C44—H44B107.9
C9—C10—H10B109.7O15—C45—C46112.0 (11)
H10A—C10—H10B108.2O15—C45—H45A109.2
O4—C11—C12111.4 (12)C46—C45—H45A109.2
O4—C11—H11A109.3O15—C45—H45B109.2
C12—C11—H11A109.3C46—C45—H45B109.2
O4—C11—H11B109.3H45A—C45—H45B107.9
C12—C11—H11B109.3O16—C46—C45109.7 (11)
H11A—C11—H11B108.0O16—C46—H46A109.7
N2—C12—C11113.5 (13)C45—C46—H46A109.7
N2—C12—H12A108.9O16—C46—H46B109.7
C11—C12—H12A108.9C45—C46—H46B109.7
N2—C12—H12B108.9H46A—C46—H46B108.2
C11—C12—H12B108.9O16—C47—C48108.1 (10)
H12A—C12—H12B107.7O16—C47—H47A110.1
C14—C13—N1112.1 (12)C48—C47—H47A110.1
C14—C13—H13A109.2O16—C47—H47B110.1
N1—C13—H13A109.2C48—C47—H47B110.1
C14—C13—H13B109.2H47A—C47—H47B108.4
N1—C13—H13B109.2N6—C48—C47114.7 (10)
H13A—C13—H13B107.9N6—C48—H48A108.6
O5—C14—C13109.9 (11)C47—C48—H48A108.6
O5—C14—H14A109.7N6—C48—H48B108.6
C13—C14—H14A109.7C47—C48—H48B108.6
O5—C14—H14B109.7H48A—C48—H48B107.6
C13—C14—H14B109.7C50—C49—N5116.2 (11)
H14A—C14—H14B108.2C50—C49—H49A108.2
O5—C15—C16110.0 (11)N5—C49—H49A108.2
O5—C15—H15A109.7C50—C49—H49B108.2
C16—C15—H15A109.7N5—C49—H49B108.2
O5—C15—H15B109.7H49A—C49—H49B107.4
C16—C15—H15B109.7O17—C50—C49112.7 (12)
H15A—C15—H15B108.2O17—C50—H50A109.1
O6—C16—C15112.2 (13)C49—C50—H50A109.1
O6—C16—H16A109.2O17—C50—H50B109.1
C15—C16—H16A109.2C49—C50—H50B109.1
O6—C16—H16B109.2H50A—C50—H50B107.8
C15—C16—H16B109.2O17—C51—C52112.4 (12)
H16A—C16—H16B107.9O17—C51—H51A109.1
O6—C17—C18109.4 (12)C52—C51—H51A109.1
O6—C17—H17A109.8O17—C51—H51B109.1
C18—C17—H17A109.8C52—C51—H51B109.1
O6—C17—H17B109.8H51A—C51—H51B107.9
C18—C17—H17B109.8O18—C52—C51108.6 (11)
H17A—C17—H17B108.2O18—C52—H52A110.0
N2—C18—C17114.9 (12)C51—C52—H52A110.0
N2—C18—H18A108.5O18—C52—H52B110.0
C17—C18—H18A108.5C51—C52—H52B110.0
N2—C18—H18B108.5H52A—C52—H52B108.3
C17—C18—H18B108.5O18—C53—C54109.4 (10)
H18A—C18—H18B107.5O18—C53—H53A109.8
O9—Rb4—O794.6 (3)C54—C53—H53A109.8
O9—Rb4—O12119.1 (2)O18—C53—H53B109.8
O7—Rb4—O12141.6 (2)C54—C53—H53B109.8
O9—Rb4—O1060.3 (3)H53A—C53—H53B108.2
O7—Rb4—O10112.6 (2)C53—C54—N6116.3 (11)
O12—Rb4—O10100.5 (2)C53—C54—H54A108.2
O9—Rb4—O1198.7 (3)N6—C54—H54A108.2
O7—Rb4—O11101.1 (3)C53—C54—H54B108.2
O12—Rb4—O1158.7 (3)N6—C54—H54B108.2
O10—Rb4—O11140.8 (2)H54A—C54—H54B107.4
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by the German Research Foundation (DFG) and the Technische Universität München within the funding programme Open Access Publishing.

References

First citationBaitinger, M., Grin, Yu., von Schnering, H. G. & Kniep, R. (1999a). Z. Kristallogr. New Cryst. Struct. 214, 457–458.  CAS Google Scholar
First citationBaitinger, M., von Schnering, H. G., Grin, Yu. & Kniep, R. (1999b). Z. Kristallogr. New Cryst. Struct. 214, 453–454.  Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurns, R. C. & Corbett, J. D. (1985). Inorg. Chem. 24, 1489–1492.  CSD CrossRef CAS Web of Science Google Scholar
First citationCorbett, J. D. & Edwards, P. A. (1975). J. Chem. Soc. Chem. Commun. pp. 984–985.  CrossRef Web of Science Google Scholar
First citationDubois, F. & Fässler, T. F. (2005). J. Am. Chem. Soc. 127, 3264–3265.  Web of Science CrossRef CAS Google Scholar
First citationFässler, T. F. (2001). Coord. Chem. Rev. 215, 347–377.  Google Scholar
First citationFässler, T. F. & Hoffmann, R. (1999). Angew. Chem. Int. Ed. 38, 543–546.  Google Scholar
First citationGaertner, S. & Korber, N. (2011). Acta Cryst. E67, m613–m614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGillett-Kunnath, M. M., Paik, J. I., Jensen, S. M., Taylor, J. D. & Sevov, S. C. (2011). Inorg. Chem. 50, 11695–11701.  CAS Google Scholar
First citationHauptmann, R. & Fässler, T. F. (2002). Z. Anorg. Allg. Chem. 628, 1500–1504.  Web of Science CSD CrossRef CAS Google Scholar
First citationHauptmann, R. & Fässler, T. F. (2003a). Z. Kristallogr. New Cryst. Struct. 218, 455–457.  CAS Google Scholar
First citationHauptmann, R. & Fässler, T. F. (2003b). Z. Kristallogr. New Cryst. Struct. 218, 458–460.  CAS Google Scholar
First citationHauptmann, R., Hoffmann, R. & Fässler, T. F. (2001). Z. Anorg. Allg. Chem. 627, 2220–2224.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, H., Klein, W. & Fässler, T. F. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 407–410.  CAS Google Scholar
First citationHe, H., Klein, W., Jantke, L.-A. & Fässler, T. F. (2014b). Z. Anorg. Allg. Chem. 640, 2864–2870.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoch, C., Wendorff, M. & Röhr, C. (2003). J. Alloys Compd. 361, 206–221.  Web of Science CrossRef CAS Google Scholar
First citationJoannis, A. (1891). C. R. Hebd. Seances Acad. Sci. 113, 795–798.  Google Scholar
First citationKlein, W. & Jansen, M. (2000). Z. Anorg. Allg. Chem. 626, 136–140.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. (2011). Angew. Chem. Int. Ed. 50, 3630–3670.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds