research communications
μ6-chlorido-nonakis(μ-4-chloropyrazolato)bis-μ3-methoxo-hexacopper(II)
ofaDepartment of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
*Correspondence e-mail: raphael.raptis@fiu.edu
The hexanuclear title compound, [{Cu3(μ3-OCH3)(μ-C3H2ClN2)3}2(μ-C3H2ClN2)3(μ6-Cl)] or [Cu6(C3H2ClN2)9(CH3O)2Cl], crystallizes in the Pbcn, with individual molecules being located on a twofold rotation axis. The molecule adopts a trigonal prismatic shape, with two trinuclear units linked by three 4-chloropyrazolate ligand bridges by encapsulating a Cl− anion in a μ6-coordination mode. In the crystal, individual molecules are stacked into rods parallel to [1-10] that are arranged in a pseudo-hexagonal packing. Cohesion between molecules is accomplished through weak C—H⋯Cl interactions.
Keywords: crystal structure; trigonal prismatic hexanuclear copper pyrazolate; μ6-Cl coordination; chloride encapsulation.
CCDC reference: 1529271
1. Chemical context
Multinuclear transition metal ion complexes often have interesting properties, such as magnetic, electrochemical, and catalytic functions. N-donor ligands have coordination plasticity and large affinity for transition metals, and their employment has provided structures of various nuclearities and dimensionalities, which have been shown to be of interest in catalysis, bio-inorganic chemistry and molecular magnetism. There have been several reports concerning multinuclear copper(II) complexes supported by pyrazolato (pz−) bridging ligands. In this context, we have investigated a family of redox-active Cu6-pyrazolato complexes with trigonal prismatic shapes (Mezei et al., 2007; Zueva et al., 2009), including one with a μ6-F central ligand (Mathivathanan et al., 2015). In connection with our earlier work, the title compound, [{Cu3(μ3-OCH3)(μ-C3H2N2Cl)3}2((μ-C3H2N2Cl)3(μ6-Cl)], has been prepared recently; it contains an encapsulated μ6-Cl ligand at the center of the hexanuclear complex.
2. Structural commentary
The ) consists of two trinuclear [Cu3(μ3-OMe)(μ-4-Cl-pz)3]2+ (OMe is a methoxide, 4-Cl-pz a 4-chloropyrazolato ligand) units bridged by three μ-4-Cl-pz− ligands; the complete molecule adopts .2. symmetry. The six CuII ions form a trigonal prismatic array and a chloride ion is located at the center of the cage, coordinating to the two {Cu}3 units in a μ6 mode. All six CuII atoms are five-coordinate with distorted square-pyramidal N3OCl coordination sets with the Cl atom occupying the apical position. Each Cu3 triangle is capped by an OMe group with the O atom 0.8472 (1) Å above the Cu3 plane, a somewhat smaller deviation from the Cu3 plane than the one found in the previously reported structure of [{Cu3(μ3-OMe)(μ-pz)3}2(μ-pz)3(μ6-Cl)], where μ3-bridging methoxy groups are located ca 1.0 Å above this plane (Kamiyama et al., 2002). The distance between two Cu3 planes is 3.3858 (2) Å. The six Cu—O bond lengths range from 2.033 (2)–2.044 (2) Å, while the Cu—O—Cu angles are in the 102.70 (10)–105.62 (10)° range. The Cu⋯Cu distances within each triangle, 3.1801 (9)–3.2526 (9) Å, are slightly shorter than those between the triangles, 3.356 (2)–3.401 (2) Å). The μ6-Cl ligand is located close to the center of the trigonal prism defined by the six Cu atoms and non-equidistant from the three pairs of CuII ions. The longest Cu—Cl distance of 2.6222 (13) Å (Cu2) is longer than the sum of the ionic radii (2.38 Å), indicating that the two [Cu3(μ3-OMe)(μ-4-Cl-pz)3]2+ units are not templated by the encapsulated chloride. The other two Cu—Cl bond lengths are 2.424 (2) (Cu1) and 2.4859 (13) Å.
of the title compound (Fig. 1Differences in structural parameters between the four known {Cu6-pyrazolato} complexes with trigonal prismatic shape are compiled in Table 1. The inter-trimer and intra-trimer Cu⋯Cu distances are shorter in the title compound than those in the [Cu6Cl] compound reported earlier with 4-H-pz as a ligand (Kamiyama et al., 2002), indicating the effect of electron-withdrawing Cl-substitution of the pyrazolato ligands. The Cu—N distances of the pyrazolato ligands connecting the two trimers are longer compared to those in {Cu6-μ6-F} (Mathivathanan et al., 2015) or {Cu6-μ6-Cl} (Kamiyama et al., 2002). However, the Cu—N distances are similar to those in the empty Cu6-pyrazolato cage (Mezei et al., 2007).
3. Supramolecular features
In the trigonal prismatic molecules, the six pyrazolato ligands of the eclipsed {Cu3-pyrazolato} trimers exhibit weak π–π stacking interactions, with centroid-to-centroid distances of 3.8489 (6) and 3.6059 (6) Å. These distances are comparable to the ones found in the Cu6-pyrazolato complex with no encapsulated anion, where the pyrazolato ring centroids are 3.741 (6), 3.700 (6) and 3.680 (6) Å apart (Mezei et al., 2007).
While conventional hydrogen bonds are absent in the structure, there are three weak intermolecular C—H⋯Cl interactions observed in the and Table 2). Individual {Cu6-μ6-Cl}-molecules are stacked in rods parallel to [10] that, in turn, are arranged in a pseudo-hexagonal packing (Fig. 3).
(Fig. 24. Database survey
Polynuclear complexes with a μ6-coordinating halide anion are not uncommon. However, they are rarely encountered in a trigonal prismatic environment. According to the Cambridge Structure Database (Groom et al., 2016), only three hexanuclear Cu6-cages with a μ6-coordinating halide anion have been reported in the literature: [{Cu3(μ3-OMe)(μ-pz)3}2(μ-pz)3(μ6-Cl)] (pz = pyrazole; Kamiyama et al., 2002), [{Cu3(μ3-OMe)(μ-3,5-Me2pz)3}2(μ6-F)(μ2-OH)] (3,5-Me2pz− =3,5-dimethylpyrazolato; Cañon-Mancisidor et al., 2014) and [{Cu3(μ3-OH)(μ-pz)3}2(μ-3,5-Ph2pz)3(μ6-F)] (Mathivathanan et al., 2015).
5. Synthesis and crystallization
The complex was formed in an one-pot reaction when CuCl2·2H2O (0.06 mmol, 10.2 mg), 4-Cl-pzH (0.09 mmol, 8.9 mg) and ethylamine (0.08 mmol, 11.3 µl) were stirred in 10 ml CH2Cl2 for 24 h at ambient temperature. The green solution was transferred to a test tube after filtration. A 4 ml 1:1 mixture of CH2Cl2:MeOH (v/v) was layered over the CH2Cl2 layer, 1,2-di(4-pyridyl)ethylene (1,2-bpe) (0.01mmol, 1.9 mg) in 4 ml MeOH was added as the third layer on top of the lower two. Suitable crystals for X-ray diffraction were obtained one week later. Yield: 29%. Analysis calculated/found for C29H24Cl10Cu6N18O2: C, 25.15/25.22; H,1.75/1.76; N, 18.22/18.17.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in geometrically calculated positions and refined with a riding model. Structure indicates a minimum (−1.56 e Å−3) near the μ6-Cl atom (Cl6), which decreases if the structure is refined with a free site-occupation factor for this atom. This can be explained if some of the Cu6-cages (< 10%) are vacant. Such a discrepancy is within the experimental error of the CHN elemental analysis, and we decided to refine the model with full occupancy for this Cl atom. In the final cycles, restraints were applied to obtain acceptable Uij parameters for Cl6.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1529271
https://doi.org/10.1107/S2056989017001189/wm5353sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017001189/wm5353Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017001189/wm5353Isup3.cdx
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu6(C3H2ClN2)9(CH3O)2Cl] | Dx = 2.069 Mg m−3 |
Mr = 1392.40 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 9133 reflections |
a = 16.565 (3) Å | θ = 3.0–28.6° |
b = 18.474 (4) Å | µ = 3.46 mm−1 |
c = 14.606 (3) Å | T = 299 K |
V = 4470.1 (15) Å3 | Cuboctahedron, green |
Z = 4 | 0.21 × 0.20 × 0.16 mm |
F(000) = 2736 |
Bruker D8 Quest CMOS diffractometer | 4647 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 28.6°, θmin = 2.9° |
Tmin = 0.671, Tmax = 0.745 | h = −22→22 |
63202 measured reflections | k = −24→24 |
5726 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.052P)2 + 10.494P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
5726 reflections | Δρmax = 0.75 e Å−3 |
296 parameters | Δρmin = −1.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.04492 (3) | 0.32824 (2) | 0.35296 (3) | 0.03365 (12) | |
Cu2 | −0.03799 (2) | 0.17979 (2) | 0.41047 (3) | 0.03405 (12) | |
Cu3 | 0.13100 (3) | 0.17948 (2) | 0.29708 (3) | 0.03369 (12) | |
O1 | 0.07222 (13) | 0.22859 (12) | 0.40330 (15) | 0.0298 (5) | |
Cl1 | 0.04787 (7) | −0.11802 (5) | 0.36907 (8) | 0.0538 (3) | |
Cl4 | 0.36310 (7) | 0.07485 (7) | 0.03389 (9) | 0.0601 (3) | |
Cl2 | −0.22199 (7) | 0.40543 (7) | 0.58300 (9) | 0.0641 (3) | |
Cl3 | 0.32409 (9) | 0.41018 (7) | 0.15094 (10) | 0.0758 (4) | |
Cl5 | 0.000000 | 0.62857 (8) | 0.250000 | 0.0824 (6) | |
Cl6 | 0.000000 | 0.23354 (16) | 0.250000 | 0.1040 (8) | |
C5 | 0.0483 (2) | −0.02467 (18) | 0.3635 (2) | 0.0358 (7) | |
N3 | 0.01229 (17) | 0.08926 (15) | 0.3792 (2) | 0.0345 (6) | |
N4 | 0.08520 (17) | 0.08802 (15) | 0.3377 (2) | 0.0349 (6) | |
N1 | −0.04891 (18) | 0.33017 (16) | 0.4322 (2) | 0.0370 (6) | |
N5 | 0.1870 (2) | 0.27052 (16) | 0.2727 (2) | 0.0441 (8) | |
C2 | −0.1503 (2) | 0.3569 (2) | 0.5233 (3) | 0.0428 (8) | |
N7 | 0.0146 (2) | 0.42174 (15) | 0.2927 (2) | 0.0382 (7) | |
C12 | 0.2735 (2) | 0.10042 (19) | 0.0850 (3) | 0.0383 (8) | |
C4 | −0.0109 (2) | 0.02073 (18) | 0.3944 (3) | 0.0382 (8) | |
H4 | −0.059153 | 0.006471 | 0.421373 | 0.046* | |
N8 | 0.18357 (18) | 0.13431 (16) | 0.1875 (2) | 0.0362 (6) | |
C1 | −0.0924 (2) | 0.3849 (2) | 0.4661 (3) | 0.0447 (9) | |
H1 | −0.084759 | 0.433718 | 0.453080 | 0.054* | |
N6 | 0.1507 (2) | 0.33235 (16) | 0.2976 (2) | 0.0419 (7) | |
C14 | 0.000000 | 0.5358 (3) | 0.250000 | 0.0471 (13) | |
C8 | 0.2558 (3) | 0.3612 (2) | 0.2127 (3) | 0.0469 (9) | |
C6 | 0.1075 (2) | 0.01918 (19) | 0.3278 (3) | 0.0399 (8) | |
H6 | 0.155241 | 0.003367 | 0.300986 | 0.048* | |
N2 | −0.07882 (19) | 0.26795 (16) | 0.4663 (2) | 0.0415 (7) | |
C11 | 0.2026 (2) | 0.1179 (2) | 0.0414 (3) | 0.0439 (9) | |
H11 | 0.193686 | 0.115749 | −0.021388 | 0.053* | |
C3 | −0.1403 (2) | 0.2838 (2) | 0.5216 (3) | 0.0515 (10) | |
H3 | −0.171220 | 0.250424 | 0.553841 | 0.062* | |
C9 | 0.1920 (3) | 0.3877 (2) | 0.2616 (3) | 0.0504 (10) | |
H9 | 0.179311 | 0.436415 | 0.268681 | 0.060* | |
C10 | 0.2602 (2) | 0.1112 (2) | 0.1762 (3) | 0.0427 (8) | |
H10 | 0.297665 | 0.103841 | 0.222717 | 0.051* | |
C13 | 0.0244 (3) | 0.4907 (2) | 0.3198 (3) | 0.0478 (9) | |
H13 | 0.044351 | 0.505543 | 0.376243 | 0.057* | |
C7 | 0.2509 (3) | 0.2874 (2) | 0.2207 (3) | 0.0587 (12) | |
H7 | 0.286269 | 0.254339 | 0.194252 | 0.070* | |
N9 | 0.14862 (17) | 0.13828 (17) | 0.1038 (2) | 0.0385 (7) | |
C15 | 0.1151 (3) | 0.2292 (2) | 0.4877 (3) | 0.0468 (9) | |
H15A | 0.125602 | 0.180297 | 0.506599 | 0.070* | |
H15B | 0.083328 | 0.253186 | 0.533459 | 0.070* | |
H15C | 0.165302 | 0.254366 | 0.479851 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0352 (2) | 0.0261 (2) | 0.0396 (2) | 0.00276 (15) | 0.00961 (17) | 0.00267 (16) |
Cu2 | 0.0268 (2) | 0.0284 (2) | 0.0470 (3) | −0.00146 (15) | 0.00342 (17) | −0.00153 (17) |
Cu3 | 0.0340 (2) | 0.0270 (2) | 0.0401 (2) | −0.00140 (15) | 0.00890 (17) | −0.00296 (16) |
O1 | 0.0276 (10) | 0.0284 (11) | 0.0336 (12) | 0.0001 (9) | −0.0001 (9) | −0.0004 (9) |
Cl1 | 0.0662 (7) | 0.0266 (4) | 0.0688 (7) | −0.0019 (4) | −0.0117 (5) | 0.0007 (4) |
Cl4 | 0.0496 (6) | 0.0620 (7) | 0.0687 (7) | 0.0247 (5) | 0.0180 (5) | 0.0044 (5) |
Cl2 | 0.0610 (7) | 0.0633 (7) | 0.0681 (7) | 0.0130 (5) | 0.0296 (6) | −0.0109 (6) |
Cl3 | 0.0879 (9) | 0.0632 (7) | 0.0764 (8) | −0.0382 (7) | 0.0455 (7) | −0.0182 (6) |
Cl5 | 0.1185 (17) | 0.0253 (7) | 0.1034 (15) | 0.000 | 0.0028 (13) | 0.000 |
Cl6 | 0.113 (2) | 0.1012 (18) | 0.0981 (17) | 0.000 | −0.0218 (16) | 0.000 |
C5 | 0.0441 (19) | 0.0259 (15) | 0.0375 (18) | −0.0039 (13) | −0.0094 (15) | −0.0016 (13) |
N3 | 0.0322 (14) | 0.0303 (13) | 0.0410 (16) | −0.0029 (11) | 0.0011 (12) | 0.0011 (12) |
N4 | 0.0333 (14) | 0.0302 (14) | 0.0414 (16) | −0.0020 (11) | 0.0024 (12) | −0.0034 (12) |
N1 | 0.0376 (15) | 0.0319 (14) | 0.0415 (16) | 0.0044 (11) | 0.0089 (13) | 0.0007 (12) |
N5 | 0.0413 (16) | 0.0302 (14) | 0.061 (2) | −0.0016 (13) | 0.0199 (15) | −0.0056 (14) |
C2 | 0.0399 (19) | 0.045 (2) | 0.043 (2) | 0.0057 (16) | 0.0091 (16) | −0.0078 (16) |
N7 | 0.0451 (17) | 0.0255 (13) | 0.0439 (16) | 0.0009 (12) | 0.0064 (14) | 0.0003 (12) |
C12 | 0.0344 (17) | 0.0342 (17) | 0.046 (2) | 0.0086 (14) | 0.0083 (15) | −0.0036 (15) |
C4 | 0.0390 (18) | 0.0315 (17) | 0.044 (2) | −0.0054 (14) | −0.0022 (15) | 0.0031 (14) |
N8 | 0.0358 (15) | 0.0314 (14) | 0.0415 (16) | 0.0033 (12) | 0.0056 (13) | −0.0024 (12) |
C1 | 0.048 (2) | 0.0345 (18) | 0.051 (2) | 0.0058 (16) | 0.0153 (18) | −0.0011 (16) |
N6 | 0.0426 (17) | 0.0305 (15) | 0.0526 (19) | −0.0034 (12) | 0.0162 (15) | −0.0010 (13) |
C14 | 0.057 (3) | 0.023 (2) | 0.061 (4) | 0.000 | 0.008 (3) | 0.000 |
C8 | 0.049 (2) | 0.042 (2) | 0.049 (2) | −0.0180 (17) | 0.0173 (18) | −0.0066 (17) |
C6 | 0.0395 (18) | 0.0318 (17) | 0.048 (2) | 0.0013 (14) | 0.0001 (16) | −0.0071 (15) |
N2 | 0.0365 (15) | 0.0312 (14) | 0.0569 (19) | 0.0008 (12) | 0.0148 (14) | −0.0003 (13) |
C11 | 0.0415 (19) | 0.049 (2) | 0.0410 (19) | 0.0118 (16) | 0.0019 (16) | −0.0047 (17) |
C3 | 0.043 (2) | 0.043 (2) | 0.068 (3) | −0.0017 (17) | 0.024 (2) | 0.0012 (19) |
C9 | 0.053 (2) | 0.0336 (18) | 0.065 (3) | −0.0082 (17) | 0.020 (2) | −0.0008 (18) |
C10 | 0.0385 (19) | 0.043 (2) | 0.046 (2) | 0.0094 (15) | −0.0017 (16) | −0.0017 (16) |
C13 | 0.061 (2) | 0.0336 (19) | 0.049 (2) | −0.0001 (17) | 0.001 (2) | −0.0037 (16) |
C7 | 0.055 (2) | 0.042 (2) | 0.079 (3) | −0.0071 (19) | 0.036 (2) | −0.012 (2) |
N9 | 0.0304 (14) | 0.0407 (16) | 0.0444 (17) | 0.0036 (12) | 0.0013 (12) | −0.0019 (13) |
C15 | 0.050 (2) | 0.049 (2) | 0.041 (2) | 0.0018 (17) | −0.0091 (17) | −0.0009 (17) |
Cu1—O1 | 2.033 (2) | N5—C7 | 1.340 (5) |
Cu1—Cl6 | 2.424 (2) | C2—C1 | 1.373 (5) |
Cu1—N1 | 1.938 (3) | C2—C3 | 1.361 (6) |
Cu1—N7 | 2.003 (3) | N7—N7i | 1.337 (6) |
Cu1—N6 | 1.932 (3) | N7—C13 | 1.344 (5) |
Cu2—O1 | 2.039 (2) | C12—C11 | 1.375 (5) |
Cu2—Cl6 | 2.6222 (13) | C12—C10 | 1.365 (6) |
Cu2—N3 | 1.923 (3) | C4—H4 | 0.9300 |
Cu2—N2 | 1.943 (3) | N8—C10 | 1.350 (5) |
Cu2—N9i | 1.998 (3) | N8—N9 | 1.354 (4) |
Cu3—O1 | 2.044 (2) | C1—H1 | 0.9300 |
Cu3—Cl6 | 2.4859 (13) | N6—C9 | 1.338 (5) |
Cu3—N4 | 1.945 (3) | C14—C13 | 1.376 (5) |
Cu3—N5 | 1.954 (3) | C14—C13i | 1.376 (5) |
Cu3—N8 | 2.004 (3) | C8—C9 | 1.366 (6) |
O1—C15 | 1.422 (4) | C8—C7 | 1.370 (6) |
Cl1—C5 | 1.726 (4) | C6—H6 | 0.9300 |
Cl4—C12 | 1.726 (3) | N2—C3 | 1.333 (5) |
Cl2—C2 | 1.724 (4) | C11—H11 | 0.9300 |
Cl3—C8 | 1.707 (4) | C11—N9 | 1.331 (5) |
Cl5—C14 | 1.714 (5) | C3—H3 | 0.9300 |
C5—C4 | 1.367 (5) | C9—H9 | 0.9300 |
C5—C6 | 1.374 (5) | C10—H10 | 0.9300 |
N3—N4 | 1.352 (4) | C13—H13 | 0.9300 |
N3—C4 | 1.341 (4) | C7—H7 | 0.9300 |
N4—C6 | 1.332 (4) | C15—H15A | 0.9600 |
N1—C1 | 1.337 (5) | C15—H15B | 0.9600 |
N1—N2 | 1.347 (4) | C15—H15C | 0.9600 |
N5—N6 | 1.341 (4) | ||
O1—Cu1—Cl6 | 68.85 (8) | N6—N5—Cu3 | 118.1 (2) |
N1—Cu1—O1 | 88.80 (11) | C7—N5—Cu3 | 132.8 (3) |
N1—Cu1—Cl6 | 97.90 (10) | C7—N5—N6 | 108.0 (3) |
N1—Cu1—N7 | 92.60 (13) | C1—C2—Cl2 | 126.4 (3) |
N7—Cu1—O1 | 174.64 (11) | C3—C2—Cl2 | 127.5 (3) |
N7—Cu1—Cl6 | 105.83 (10) | C3—C2—C1 | 106.1 (3) |
N6—Cu1—O1 | 89.16 (11) | N7i—N7—Cu1 | 120.03 (9) |
N6—Cu1—Cl6 | 92.69 (10) | N7i—N7—C13 | 108.5 (2) |
N6—Cu1—N1 | 167.67 (14) | C13—N7—Cu1 | 131.2 (3) |
N6—Cu1—N7 | 90.55 (13) | C11—C12—Cl4 | 126.8 (3) |
O1—Cu2—Cl6 | 64.64 (7) | C10—C12—Cl4 | 126.9 (3) |
N3—Cu2—O1 | 89.11 (11) | C10—C12—C11 | 106.2 (3) |
N3—Cu2—Cl6 | 90.76 (11) | C5—C4—H4 | 125.7 |
N3—Cu2—N2 | 168.32 (14) | N3—C4—C5 | 108.7 (3) |
N3—Cu2—N9i | 92.22 (13) | N3—C4—H4 | 125.7 |
N2—Cu2—O1 | 87.86 (11) | C10—N8—Cu3 | 129.7 (3) |
N2—Cu2—Cl6 | 98.10 (11) | C10—N8—N9 | 108.0 (3) |
N2—Cu2—N9i | 92.65 (13) | N9—N8—Cu3 | 120.8 (2) |
N9i—Cu2—O1 | 170.36 (11) | N1—C1—C2 | 108.5 (3) |
N9i—Cu2—Cl6 | 105.78 (9) | N1—C1—H1 | 125.8 |
O1—Cu3—Cl6 | 67.41 (7) | C2—C1—H1 | 125.8 |
N4—Cu3—O1 | 88.20 (11) | N5—N6—Cu1 | 119.1 (2) |
N4—Cu3—Cl6 | 95.32 (11) | C9—N6—Cu1 | 131.2 (3) |
N4—Cu3—N5 | 171.42 (14) | C9—N6—N5 | 108.4 (3) |
N4—Cu3—N8 | 92.93 (12) | C13i—C14—Cl5 | 127.2 (2) |
N5—Cu3—O1 | 88.99 (11) | C13—C14—Cl5 | 127.2 (2) |
N5—Cu3—Cl6 | 91.07 (12) | C13i—C14—C13 | 105.6 (5) |
N5—Cu3—N8 | 90.38 (13) | C9—C8—Cl3 | 126.8 (3) |
N8—Cu3—O1 | 176.34 (11) | C9—C8—C7 | 105.5 (3) |
N8—Cu3—Cl6 | 109.00 (9) | C7—C8—Cl3 | 127.7 (3) |
Cu1—O1—Cu2 | 102.70 (10) | C5—C6—H6 | 125.5 |
Cu1—O1—Cu3 | 103.49 (10) | N4—C6—C5 | 108.9 (3) |
Cu2—O1—Cu3 | 105.62 (10) | N4—C6—H6 | 125.5 |
C15—O1—Cu1 | 114.7 (2) | N1—N2—Cu2 | 115.6 (2) |
C15—O1—Cu2 | 113.9 (2) | C3—N2—Cu2 | 134.8 (3) |
C15—O1—Cu3 | 115.0 (2) | C3—N2—N1 | 108.5 (3) |
Cu1i—Cl6—Cu1 | 87.60 (10) | C12—C11—H11 | 125.6 |
Cu1i—Cl6—Cu2 | 138.95 (6) | N9—C11—C12 | 108.9 (3) |
Cu1—Cl6—Cu2i | 138.95 (6) | N9—C11—H11 | 125.6 |
Cu1i—Cl6—Cu2i | 78.02 (2) | C2—C3—H3 | 125.6 |
Cu1—Cl6—Cu2 | 78.02 (2) | N2—C3—C2 | 108.8 (3) |
Cu1i—Cl6—Cu3i | 81.39 (2) | N2—C3—H3 | 125.6 |
Cu1—Cl6—Cu3 | 81.39 (2) | N6—C9—C8 | 109.0 (3) |
Cu1—Cl6—Cu3i | 136.85 (6) | N6—C9—H9 | 125.5 |
Cu1i—Cl6—Cu3 | 136.85 (6) | C8—C9—H9 | 125.5 |
Cu2i—Cl6—Cu2 | 135.50 (12) | C12—C10—H10 | 125.7 |
Cu3i—Cl6—Cu2 | 83.43 (5) | N8—C10—C12 | 108.5 (3) |
Cu3i—Cl6—Cu2i | 79.05 (4) | N8—C10—H10 | 125.7 |
Cu3—Cl6—Cu2i | 83.43 (5) | N7—C13—C14 | 108.7 (4) |
Cu3—Cl6—Cu2 | 79.05 (4) | N7—C13—H13 | 125.7 |
Cu3i—Cl6—Cu3 | 132.63 (12) | C14—C13—H13 | 125.7 |
C4—C5—Cl1 | 126.5 (3) | N5—C7—C8 | 109.0 (4) |
C4—C5—C6 | 106.0 (3) | N5—C7—H7 | 125.5 |
C6—C5—Cl1 | 127.6 (3) | C8—C7—H7 | 125.5 |
N4—N3—Cu2 | 120.5 (2) | N8—N9—Cu2i | 120.5 (2) |
C4—N3—Cu2 | 131.1 (3) | C11—N9—Cu2i | 130.8 (3) |
C4—N3—N4 | 108.3 (3) | C11—N9—N8 | 108.4 (3) |
N3—N4—Cu3 | 118.1 (2) | O1—C15—H15A | 109.5 |
C6—N4—Cu3 | 133.5 (3) | O1—C15—H15B | 109.5 |
C6—N4—N3 | 108.2 (3) | O1—C15—H15C | 109.5 |
C1—N1—Cu1 | 131.9 (3) | H15A—C15—H15B | 109.5 |
C1—N1—N2 | 108.1 (3) | H15A—C15—H15C | 109.5 |
N2—N1—Cu1 | 120.0 (2) | H15B—C15—H15C | 109.5 |
Cu1—N1—C1—C2 | −176.5 (3) | N4—N3—C4—C5 | 1.0 (4) |
Cu1—N1—N2—Cu2 | −12.9 (4) | N1—N2—C3—C2 | 0.1 (5) |
Cu1—N1—N2—C3 | 177.1 (3) | N5—N6—C9—C8 | 0.1 (5) |
Cu1—N7—C13—C14 | 174.5 (2) | N7i—N7—C13—C14 | 0.6 (5) |
Cu1—N6—C9—C8 | −166.4 (3) | C12—C11—N9—Cu2i | 173.2 (3) |
Cu2—N3—N4—Cu3 | −7.5 (4) | C12—C11—N9—N8 | 0.0 (4) |
Cu2—N3—N4—C6 | 177.2 (2) | C4—C5—C6—N4 | 0.7 (4) |
Cu2—N3—C4—C5 | −176.4 (3) | C4—N3—N4—Cu3 | 174.8 (2) |
Cu2—N2—C3—C2 | −167.2 (3) | C4—N3—N4—C6 | −0.5 (4) |
Cu3—N4—C6—C5 | −174.5 (3) | C1—N1—N2—Cu2 | 169.6 (3) |
Cu3—N5—N6—Cu1 | −1.4 (4) | C1—N1—N2—C3 | −0.4 (5) |
Cu3—N5—N6—C9 | −169.8 (3) | C1—C2—C3—N2 | 0.3 (5) |
Cu3—N5—C7—C8 | 167.7 (3) | N6—N5—C7—C8 | 0.4 (5) |
Cu3—N8—C10—C12 | −165.8 (3) | C6—C5—C4—N3 | −1.0 (4) |
Cu3—N8—N9—Cu2i | −6.7 (4) | N2—N1—C1—C2 | 0.6 (5) |
Cu3—N8—N9—C11 | 167.3 (3) | C11—C12—C10—N8 | 0.1 (5) |
Cl1—C5—C4—N3 | 178.9 (3) | C3—C2—C1—N1 | −0.6 (5) |
Cl1—C5—C6—N4 | −179.2 (3) | C9—C8—C7—N5 | −0.4 (6) |
Cl4—C12—C11—N9 | −176.8 (3) | C10—C12—C11—N9 | 0.0 (5) |
Cl4—C12—C10—N8 | 176.9 (3) | C10—N8—N9—Cu2i | −173.9 (3) |
Cl2—C2—C1—N1 | −179.4 (3) | C10—N8—N9—C11 | 0.1 (4) |
Cl2—C2—C3—N2 | 179.1 (3) | C13i—C14—C13—N7 | −0.24 (19) |
Cl3—C8—C9—N6 | 177.6 (3) | C7—N5—N6—Cu1 | 168.1 (3) |
Cl3—C8—C7—N5 | −177.8 (4) | C7—N5—N6—C9 | −0.3 (5) |
Cl5—C14—C13—N7 | 179.76 (19) | C7—C8—C9—N6 | 0.2 (6) |
N3—N4—C6—C5 | −0.1 (4) | N9—N8—C10—C12 | −0.1 (4) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl4ii | 0.93 | 2.75 | 3.586 (4) | 149 |
C6—H6···Cl3iii | 0.93 | 2.81 | 3.466 (4) | 129 |
C15—H15A···Cl3iv | 0.96 | 2.82 | 3.651 (4) | 146 |
Symmetry codes: (ii) x−1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, z; (iv) −x+1/2, −y+1/2, z+1/2. |
{Cu6}, PPNa | {Cu6Cl}b | {Cu6Cl}c | {Cu6F}d | |
Cu···Cu (inter-trimer) | 2.975 (3), 2.999, 3.028 (3) | 3.3557 (10)–3.4005 (10) | 3.621 (1), 3.675 (1) | 3.281 (2), 3.335 (2), 3.289 (2) |
Cu···Cu (intra-trimer) | 3.206 (4)–3.279 (5) | 3.1801 (9)–3.2526 (9) | 3.209 (1), 3.233 (1) | 3.234 (2)–3.289 (2) |
Cu···X | – | 2.424 (2), 2.4858 (14), 2.6221 (13) X = Cl | 2.604 (1), 2.623 (2) (X = Cl) | 2.383 (5)–2.605 (5) (X = F) |
Cu···(µ3-OR) | 1.883 (1)–1.894 (5) | 2.003 (2)–2.044 (2) | 2.083 (4), 2.085 (6) (R = Me) | 2.048 (3)–2.096 (5) (R = H) |
Cu—N (inter-trimer) | 2.003 (7)–2.056 (6) | 2.003 (3)–2.004 (3) | 1.990 (5)–1.992 (7) | 2.018 (6)–2.047 (6) |
Cu—N (intra-trimer) | 1.934 (7)–1.964 (7) | 1.923 (3)–1.954 (3) | 1.931 (5)–1.941 (5) | 1.942 (5)–1.979 (6) |
Notes: (a) Mezei et al. (2007); (b) this work; (c) Kamiyama et al. (2002); (d) Mathivathanan et al. (2015). . |
Acknowledgements
SK and LM thank NASA and the NSF, respectively, for financial assistance.
Funding information
Funding for this research was provided by: National Science Foundationhttps://doi.org/10.13039/100000001 (award No. CHE 1213683); National Aeronautics and Space Administrationhttps://doi.org/10.13039/100000104 (award No. NNX09AV05A).
References
Bruker (2015). SAINT, SADABS and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cañon-Mancisidor, W., Gómez-García, C. J., Espallargas, G. M., Vega, A., Spodine, E., Venegas-Yazigi, D. & Coronado, E. (2014). Chem. Sci. 5, 324–332. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980–981. CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mathivathanan, L., Al-Ameed, K., Lazarou, K., Trávníček, Z., Sanakis, Y., Herchel, R., McGrady, J. E. & Raptis, R. G. (2015). Dalton Trans. 44, 20685–20691. CSD CrossRef CAS Google Scholar
Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zueva, E. M., Petrova, M. M., Herchel, R., Trávníček, Z., Raptis, R. G., Mathivathanan, L. & McGrady, J. E. (2009). Dalton Trans. pp. 5924–5932. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.