research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ6-chlorido-nona­kis­(μ-4-chloro­pyrazolato)bis-μ3-methoxo-hexa­copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
*Correspondence e-mail: raphael.raptis@fiu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 December 2016; accepted 23 January 2017; online 27 January 2017)

The hexa­nuclear title compound, [{Cu3(μ3-OCH3)(μ-C3H2ClN2)3}2(μ-C3H2ClN2)3(μ6-Cl)] or [Cu6(C3H2ClN2)9(CH3O)2Cl], crystallizes in the space group Pbcn, with individual mol­ecules being located on a twofold rotation axis. The mol­ecule adopts a trigonal prismatic shape, with two trinuclear units linked by three 4-chloro­pyrazolate ligand bridges by encapsulating a Cl anion in a μ6-coordination mode. In the crystal, individual mol­ecules are stacked into rods parallel to [1-10] that are arranged in a pseudo-hexa­gonal packing. Cohesion between mol­ecules is accomplished through weak C—H⋯Cl inter­actions.

1. Chemical context

Multinuclear transition metal ion complexes often have inter­esting properties, such as magnetic, electrochemical, and catalytic functions. N-donor ligands have coordination plast­icity and large affinity for transition metals, and their employment has provided structures of various nuclearities and dimensionalities, which have been shown to be of inter­est in catalysis, bio-inorganic chemistry and mol­ecular magnetism. There have been several reports concerning multinuclear copper(II) complexes supported by pyrazolato (pz) bridging ligands. In this context, we have investigated a family of redox-active Cu6-pyrazolato complexes with trigonal prismatic shapes (Mezei et al., 2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]; Zueva et al., 2009[Zueva, E. M., Petrova, M. M., Herchel, R., Trávníček, Z., Raptis, R. G., Mathivathanan, L. & McGrady, J. E. (2009). Dalton Trans. pp. 5924-5932.]), including one with a μ6-F central ligand (Mathivathanan et al., 2015[Mathivathanan, L., Al-Ameed, K., Lazarou, K., Trávníček, Z., Sanakis, Y., Herchel, R., McGrady, J. E. & Raptis, R. G. (2015). Dalton Trans. 44, 20685-20691.]). In connection with our earlier work, the title compound, [{Cu3(μ3-OCH3)(μ-C3H2N2Cl)3}2((μ-C3H2N2Cl)3(μ6-Cl)], has been prepared recently; it contains an encapsulated μ6-Cl ligand at the center of the hexa­nuclear complex.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound (Fig. 1[link]) consists of two trinuclear [Cu3(μ3-OMe)(μ-4-Cl-pz)3]2+ (OMe is a methoxide, 4-Cl-pz a 4-chloro­pyrazolato ligand) units bridged by three μ-4-Cl-pz ligands; the complete mol­ecule adopts .2. point group symmetry. The six CuII ions form a trigonal prismatic array and a chloride ion is located at the center of the cage, coordinating to the two {Cu}3 units in a μ6 mode. All six CuII atoms are five-coordinate with distorted square-pyramidal N3OCl coordination sets with the Cl atom occupying the apical position. Each Cu3 triangle is capped by an OMe group with the O atom 0.8472 (1) Å above the Cu3 plane, a somewhat smaller deviation from the Cu3 plane than the one found in the previously reported structure of [{Cu3(μ3-OMe)(μ-pz)3}2(μ-pz)3(μ6-Cl)], where μ3-bridging meth­oxy groups are located ca 1.0 Å above this plane (Kamiyama et al., 2002[Kamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980-981.]). The distance between two Cu3 planes is 3.3858 (2) Å. The six Cu—O bond lengths range from 2.033 (2)–2.044 (2) Å, while the Cu—O—Cu angles are in the 102.70 (10)–105.62 (10)° range. The Cu⋯Cu distances within each triangle, 3.1801 (9)–3.2526 (9) Å, are slightly shorter than those between the triangles, 3.356 (2)–3.401 (2) Å). The μ6-Cl ligand is located close to the center of the trigonal prism defined by the six Cu atoms and non-equidistant from the three pairs of CuII ions. The longest Cu—Cl distance of 2.6222 (13) Å (Cu2) is longer than the sum of the ionic radii (2.38 Å), indicating that the two [Cu3(μ3-OMe)(μ-4-Cl-pz)3]2+ units are not templated by the encapsulated chloride. The other two Cu—Cl bond lengths are 2.424 (2) (Cu1) and 2.4859 (13) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. H atoms are not shown for clarity. Displacement ellipsoids are drawn at the 40% probability level. Non-labeled atoms are related to the labeled atoms by the symmetry operation (−x, y, −z + [{1\over 2}]).

Differences in structural parameters between the four known {Cu6-pyrazolato} complexes with trigonal prismatic shape are compiled in Table 1[link]. The inter-trimer and intra-trimer Cu⋯Cu distances are shorter in the title compound than those in the [Cu6Cl] compound reported earlier with 4-H-pz as a ligand (Kamiyama et al., 2002[Kamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980-981.]), indicating the effect of electron-withdrawing Cl-substitution of the pyrazolato ligands. The Cu—N distances of the pyrazolato ligands connecting the two trimers are longer compared to those in {Cu6-μ6-F} (Mathivathanan et al., 2015[Mathivathanan, L., Al-Ameed, K., Lazarou, K., Trávníček, Z., Sanakis, Y., Herchel, R., McGrady, J. E. & Raptis, R. G. (2015). Dalton Trans. 44, 20685-20691.]) or {Cu6-μ6-Cl} (Kamiyama et al., 2002[Kamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980-981.]). However, the Cu—N distances are similar to those in the empty Cu6-pyrazolato cage (Mezei et al., 2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]).

Table 1
Comparison of selected structural parameters (Å)

  {Cu6}, PPNa {Cu6Cl}b {Cu6Cl}c {Cu6F}d
Cu⋯Cu (inter-trimer) 2.975 (3), 2.999, 3.028 (3) 3.3557 (10)–3.4005 (10) 3.621 (1), 3.675 (1) 3.281 (2), 3.335 (2), 3.289 (2)
Cu⋯Cu (intra-trimer) 3.206 (4)–3.279 (5) 3.1801 (9)–3.2526 (9) 3.209 (1), 3.233 (1) 3.234 (2)–3.289 (2)
Cu⋯X 2.424 (2), 2.4858 (14), 2.6221 (13) (X = Cl) 2.604 (1), 2.623 (2) (X = Cl) 2.383 (5)–2.605 (5) (X = F)
Cu⋯(μ3-OR) 1.883 (1)–1.894 (5) 2.003 (2)–2.044 (2) 2.083 (4), 2.085 (6) (R = Me) 2.048 (3)–2.096 (5) (R = H)
Cu—N (inter-trimer) 2.003 (7)–2.056 (6) 2.003 (3)–2.004 (3) 1.990 (5)–1.992 (7) 2.018 (6)–2.047 (6)
Cu—N (intra-trimer) 1.934 (7)–1.964 (7) 1.923 (3)–1.954 (3) 1.931 (5)–1.941 (5) 1.942 (5)–1.979 (6)
Notes: (a) Mezei et al. (2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]); (b) this work; (c) Kamiyama et al. (2002[Kamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980-981.]); (d) Mathivathanan et al. (2015[Mathivathanan, L., Al-Ameed, K., Lazarou, K., Trávníček, Z., Sanakis, Y., Herchel, R., McGrady, J. E. & Raptis, R. G. (2015). Dalton Trans. 44, 20685-20691.]).

3. Supra­molecular features

In the trigonal prismatic mol­ecules, the six pyrazolato ligands of the eclipsed {Cu3-pyrazolato} trimers exhibit weak ππ stacking inter­actions, with centroid-to-centroid distances of 3.8489 (6) and 3.6059 (6) Å. These distances are comparable to the ones found in the Cu6-pyrazolato complex with no encapsulated anion, where the pyrazolato ring centroids are 3.741 (6), 3.700 (6) and 3.680 (6) Å apart (Mezei et al., 2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]).

While conventional hydrogen bonds are absent in the structure, there are three weak inter­molecular C—H⋯Cl inter­actions observed in the crystal structure (Fig. 2[link] and Table 2[link]). Individual {Cu6-μ6-Cl}-mol­ecules are stacked in rods parallel to [1[\overline{1}]0] that, in turn, are arranged in a pseudo-hexa­gonal packing (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl4i 0.93 2.75 3.586 (4) 149
C6—H6⋯Cl3ii 0.93 2.81 3.466 (4) 129
C15—H15A⋯Cl3iii 0.96 2.82 3.651 (4) 146
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing diagram viewed along [001], showing hydrogen bonds as blue dashed lines.
[Figure 3]
Figure 3
Crystal packing diagram viewed along [1[\overline{1}]0], highlighting the pseudo-hexa­gonal rod packing of {Cu6} mol­ecules.

4. Database survey

Polynuclear complexes with a μ6-coordinating halide anion are not uncommon. However, they are rarely encountered in a trigonal prismatic environment. According to the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), only three hexa­nuclear Cu6-cages with a μ6-coordinating halide anion have been reported in the literature: [{Cu3(μ3-OMe)(μ-pz)3}2(μ-pz)3(μ6-Cl)] (pz = pyrazole; Kamiyama et al., 2002[Kamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980-981.]), [{Cu3(μ3-OMe)(μ-3,5-Me2pz)3}2(μ6-F)(μ2-OH)] (3,5-Me2pz =3,5-di­methyl­pyrazolato; Cañon-Mancisidor et al., 2014[Cañon-Mancisidor, W., Gómez-García, C. J., Espallargas, G. M., Vega, A., Spodine, E., Venegas-Yazigi, D. & Coronado, E. (2014). Chem. Sci. 5, 324-332.]) and [{Cu3(μ3-OH)(μ-pz)3}2(μ-3,5-Ph2pz)3(μ6-F)] (Mathivathanan et al., 2015[Mathivathanan, L., Al-Ameed, K., Lazarou, K., Trávníček, Z., Sanakis, Y., Herchel, R., McGrady, J. E. & Raptis, R. G. (2015). Dalton Trans. 44, 20685-20691.]).

5. Synthesis and crystallization

The complex was formed in an one-pot reaction when CuCl2·2H2O (0.06 mmol, 10.2 mg), 4-Cl-pzH (0.09 mmol, 8.9 mg) and ethyl­amine (0.08 mmol, 11.3 µl) were stirred in 10 ml CH2Cl2 for 24 h at ambient temperature. The green solution was transferred to a test tube after filtration. A 4 ml 1:1 mixture of CH2Cl2:MeOH (v/v) was layered over the CH2Cl2 layer, 1,2-di(4-pyrid­yl)ethyl­ene (1,2-bpe) (0.01mmol, 1.9 mg) in 4 ml MeOH was added as the third layer on top of the lower two. Suitable crystals for X-ray diffraction were obtained one week later. Yield: 29%. Analysis calculated/found for C29H24Cl10Cu6N18O2: C, 25.15/25.22; H,1.75/1.76; N, 18.22/18.17.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were placed in geometrically calculated positions and refined with a riding model. Structure refinement indicates a minimum (−1.56 e Å−3) near the μ6-Cl atom (Cl6), which decreases if the structure is refined with a free site-occupation factor for this atom. This can be explained if some of the Cu6-cages (< 10%) are vacant. Such a discrepancy is within the experimental error of the CHN elemental analysis, and we decided to refine the model with full occupancy for this Cl atom. In the final cycles, restraints were applied to obtain acceptable Uij parameters for Cl6.

Table 3
Experimental details

Crystal data
Chemical formula [Cu6(C3H2ClN2)9(CH3O)2Cl]
Mr 1392.40
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 299
a, b, c (Å) 16.565 (3), 18.474 (4), 14.606 (3)
V3) 4470.1 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.46
Crystal size (mm) 0.21 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SAINT, SADABS and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.671, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 63202, 5726, 4647
Rint 0.026
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.08
No. of reflections 5726
No. of parameters 296
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −1.59
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). SAINT, SADABS and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

µ6-Chlorido-nonakis(µ-4-chloropyrazolato)bis-µ3-methoxo-hexacopper(II) top
Crystal data top
[Cu6(C3H2ClN2)9(CH3O)2Cl]Dx = 2.069 Mg m3
Mr = 1392.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9133 reflections
a = 16.565 (3) Åθ = 3.0–28.6°
b = 18.474 (4) ŵ = 3.46 mm1
c = 14.606 (3) ÅT = 299 K
V = 4470.1 (15) Å3Cuboctahedron, green
Z = 40.21 × 0.20 × 0.16 mm
F(000) = 2736
Data collection top
Bruker D8 Quest CMOS
diffractometer
4647 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 28.6°, θmin = 2.9°
Tmin = 0.671, Tmax = 0.745h = 2222
63202 measured reflectionsk = 2424
5726 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.052P)2 + 10.494P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5726 reflectionsΔρmax = 0.75 e Å3
296 parametersΔρmin = 1.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.04492 (3)0.32824 (2)0.35296 (3)0.03365 (12)
Cu20.03799 (2)0.17979 (2)0.41047 (3)0.03405 (12)
Cu30.13100 (3)0.17948 (2)0.29708 (3)0.03369 (12)
O10.07222 (13)0.22859 (12)0.40330 (15)0.0298 (5)
Cl10.04787 (7)0.11802 (5)0.36907 (8)0.0538 (3)
Cl40.36310 (7)0.07485 (7)0.03389 (9)0.0601 (3)
Cl20.22199 (7)0.40543 (7)0.58300 (9)0.0641 (3)
Cl30.32409 (9)0.41018 (7)0.15094 (10)0.0758 (4)
Cl50.0000000.62857 (8)0.2500000.0824 (6)
Cl60.0000000.23354 (16)0.2500000.1040 (8)
C50.0483 (2)0.02467 (18)0.3635 (2)0.0358 (7)
N30.01229 (17)0.08926 (15)0.3792 (2)0.0345 (6)
N40.08520 (17)0.08802 (15)0.3377 (2)0.0349 (6)
N10.04891 (18)0.33017 (16)0.4322 (2)0.0370 (6)
N50.1870 (2)0.27052 (16)0.2727 (2)0.0441 (8)
C20.1503 (2)0.3569 (2)0.5233 (3)0.0428 (8)
N70.0146 (2)0.42174 (15)0.2927 (2)0.0382 (7)
C120.2735 (2)0.10042 (19)0.0850 (3)0.0383 (8)
C40.0109 (2)0.02073 (18)0.3944 (3)0.0382 (8)
H40.0591530.0064710.4213730.046*
N80.18357 (18)0.13431 (16)0.1875 (2)0.0362 (6)
C10.0924 (2)0.3849 (2)0.4661 (3)0.0447 (9)
H10.0847590.4337180.4530800.054*
N60.1507 (2)0.33235 (16)0.2976 (2)0.0419 (7)
C140.0000000.5358 (3)0.2500000.0471 (13)
C80.2558 (3)0.3612 (2)0.2127 (3)0.0469 (9)
C60.1075 (2)0.01918 (19)0.3278 (3)0.0399 (8)
H60.1552410.0033670.3009860.048*
N20.07882 (19)0.26795 (16)0.4663 (2)0.0415 (7)
C110.2026 (2)0.1179 (2)0.0414 (3)0.0439 (9)
H110.1936860.1157490.0213880.053*
C30.1403 (2)0.2838 (2)0.5216 (3)0.0515 (10)
H30.1712200.2504240.5538410.062*
C90.1920 (3)0.3877 (2)0.2616 (3)0.0504 (10)
H90.1793110.4364150.2686810.060*
C100.2602 (2)0.1112 (2)0.1762 (3)0.0427 (8)
H100.2976650.1038410.2227170.051*
C130.0244 (3)0.4907 (2)0.3198 (3)0.0478 (9)
H130.0443510.5055430.3762430.057*
C70.2509 (3)0.2874 (2)0.2207 (3)0.0587 (12)
H70.2862690.2543390.1942520.070*
N90.14862 (17)0.13828 (17)0.1038 (2)0.0385 (7)
C150.1151 (3)0.2292 (2)0.4877 (3)0.0468 (9)
H15A0.1256020.1802970.5065990.070*
H15B0.0833280.2531860.5334590.070*
H15C0.1653020.2543660.4798510.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0352 (2)0.0261 (2)0.0396 (2)0.00276 (15)0.00961 (17)0.00267 (16)
Cu20.0268 (2)0.0284 (2)0.0470 (3)0.00146 (15)0.00342 (17)0.00153 (17)
Cu30.0340 (2)0.0270 (2)0.0401 (2)0.00140 (15)0.00890 (17)0.00296 (16)
O10.0276 (10)0.0284 (11)0.0336 (12)0.0001 (9)0.0001 (9)0.0004 (9)
Cl10.0662 (7)0.0266 (4)0.0688 (7)0.0019 (4)0.0117 (5)0.0007 (4)
Cl40.0496 (6)0.0620 (7)0.0687 (7)0.0247 (5)0.0180 (5)0.0044 (5)
Cl20.0610 (7)0.0633 (7)0.0681 (7)0.0130 (5)0.0296 (6)0.0109 (6)
Cl30.0879 (9)0.0632 (7)0.0764 (8)0.0382 (7)0.0455 (7)0.0182 (6)
Cl50.1185 (17)0.0253 (7)0.1034 (15)0.0000.0028 (13)0.000
Cl60.113 (2)0.1012 (18)0.0981 (17)0.0000.0218 (16)0.000
C50.0441 (19)0.0259 (15)0.0375 (18)0.0039 (13)0.0094 (15)0.0016 (13)
N30.0322 (14)0.0303 (13)0.0410 (16)0.0029 (11)0.0011 (12)0.0011 (12)
N40.0333 (14)0.0302 (14)0.0414 (16)0.0020 (11)0.0024 (12)0.0034 (12)
N10.0376 (15)0.0319 (14)0.0415 (16)0.0044 (11)0.0089 (13)0.0007 (12)
N50.0413 (16)0.0302 (14)0.061 (2)0.0016 (13)0.0199 (15)0.0056 (14)
C20.0399 (19)0.045 (2)0.043 (2)0.0057 (16)0.0091 (16)0.0078 (16)
N70.0451 (17)0.0255 (13)0.0439 (16)0.0009 (12)0.0064 (14)0.0003 (12)
C120.0344 (17)0.0342 (17)0.046 (2)0.0086 (14)0.0083 (15)0.0036 (15)
C40.0390 (18)0.0315 (17)0.044 (2)0.0054 (14)0.0022 (15)0.0031 (14)
N80.0358 (15)0.0314 (14)0.0415 (16)0.0033 (12)0.0056 (13)0.0024 (12)
C10.048 (2)0.0345 (18)0.051 (2)0.0058 (16)0.0153 (18)0.0011 (16)
N60.0426 (17)0.0305 (15)0.0526 (19)0.0034 (12)0.0162 (15)0.0010 (13)
C140.057 (3)0.023 (2)0.061 (4)0.0000.008 (3)0.000
C80.049 (2)0.042 (2)0.049 (2)0.0180 (17)0.0173 (18)0.0066 (17)
C60.0395 (18)0.0318 (17)0.048 (2)0.0013 (14)0.0001 (16)0.0071 (15)
N20.0365 (15)0.0312 (14)0.0569 (19)0.0008 (12)0.0148 (14)0.0003 (13)
C110.0415 (19)0.049 (2)0.0410 (19)0.0118 (16)0.0019 (16)0.0047 (17)
C30.043 (2)0.043 (2)0.068 (3)0.0017 (17)0.024 (2)0.0012 (19)
C90.053 (2)0.0336 (18)0.065 (3)0.0082 (17)0.020 (2)0.0008 (18)
C100.0385 (19)0.043 (2)0.046 (2)0.0094 (15)0.0017 (16)0.0017 (16)
C130.061 (2)0.0336 (19)0.049 (2)0.0001 (17)0.001 (2)0.0037 (16)
C70.055 (2)0.042 (2)0.079 (3)0.0071 (19)0.036 (2)0.012 (2)
N90.0304 (14)0.0407 (16)0.0444 (17)0.0036 (12)0.0013 (12)0.0019 (13)
C150.050 (2)0.049 (2)0.041 (2)0.0018 (17)0.0091 (17)0.0009 (17)
Geometric parameters (Å, º) top
Cu1—O12.033 (2)N5—C71.340 (5)
Cu1—Cl62.424 (2)C2—C11.373 (5)
Cu1—N11.938 (3)C2—C31.361 (6)
Cu1—N72.003 (3)N7—N7i1.337 (6)
Cu1—N61.932 (3)N7—C131.344 (5)
Cu2—O12.039 (2)C12—C111.375 (5)
Cu2—Cl62.6222 (13)C12—C101.365 (6)
Cu2—N31.923 (3)C4—H40.9300
Cu2—N21.943 (3)N8—C101.350 (5)
Cu2—N9i1.998 (3)N8—N91.354 (4)
Cu3—O12.044 (2)C1—H10.9300
Cu3—Cl62.4859 (13)N6—C91.338 (5)
Cu3—N41.945 (3)C14—C131.376 (5)
Cu3—N51.954 (3)C14—C13i1.376 (5)
Cu3—N82.004 (3)C8—C91.366 (6)
O1—C151.422 (4)C8—C71.370 (6)
Cl1—C51.726 (4)C6—H60.9300
Cl4—C121.726 (3)N2—C31.333 (5)
Cl2—C21.724 (4)C11—H110.9300
Cl3—C81.707 (4)C11—N91.331 (5)
Cl5—C141.714 (5)C3—H30.9300
C5—C41.367 (5)C9—H90.9300
C5—C61.374 (5)C10—H100.9300
N3—N41.352 (4)C13—H130.9300
N3—C41.341 (4)C7—H70.9300
N4—C61.332 (4)C15—H15A0.9600
N1—C11.337 (5)C15—H15B0.9600
N1—N21.347 (4)C15—H15C0.9600
N5—N61.341 (4)
O1—Cu1—Cl668.85 (8)N6—N5—Cu3118.1 (2)
N1—Cu1—O188.80 (11)C7—N5—Cu3132.8 (3)
N1—Cu1—Cl697.90 (10)C7—N5—N6108.0 (3)
N1—Cu1—N792.60 (13)C1—C2—Cl2126.4 (3)
N7—Cu1—O1174.64 (11)C3—C2—Cl2127.5 (3)
N7—Cu1—Cl6105.83 (10)C3—C2—C1106.1 (3)
N6—Cu1—O189.16 (11)N7i—N7—Cu1120.03 (9)
N6—Cu1—Cl692.69 (10)N7i—N7—C13108.5 (2)
N6—Cu1—N1167.67 (14)C13—N7—Cu1131.2 (3)
N6—Cu1—N790.55 (13)C11—C12—Cl4126.8 (3)
O1—Cu2—Cl664.64 (7)C10—C12—Cl4126.9 (3)
N3—Cu2—O189.11 (11)C10—C12—C11106.2 (3)
N3—Cu2—Cl690.76 (11)C5—C4—H4125.7
N3—Cu2—N2168.32 (14)N3—C4—C5108.7 (3)
N3—Cu2—N9i92.22 (13)N3—C4—H4125.7
N2—Cu2—O187.86 (11)C10—N8—Cu3129.7 (3)
N2—Cu2—Cl698.10 (11)C10—N8—N9108.0 (3)
N2—Cu2—N9i92.65 (13)N9—N8—Cu3120.8 (2)
N9i—Cu2—O1170.36 (11)N1—C1—C2108.5 (3)
N9i—Cu2—Cl6105.78 (9)N1—C1—H1125.8
O1—Cu3—Cl667.41 (7)C2—C1—H1125.8
N4—Cu3—O188.20 (11)N5—N6—Cu1119.1 (2)
N4—Cu3—Cl695.32 (11)C9—N6—Cu1131.2 (3)
N4—Cu3—N5171.42 (14)C9—N6—N5108.4 (3)
N4—Cu3—N892.93 (12)C13i—C14—Cl5127.2 (2)
N5—Cu3—O188.99 (11)C13—C14—Cl5127.2 (2)
N5—Cu3—Cl691.07 (12)C13i—C14—C13105.6 (5)
N5—Cu3—N890.38 (13)C9—C8—Cl3126.8 (3)
N8—Cu3—O1176.34 (11)C9—C8—C7105.5 (3)
N8—Cu3—Cl6109.00 (9)C7—C8—Cl3127.7 (3)
Cu1—O1—Cu2102.70 (10)C5—C6—H6125.5
Cu1—O1—Cu3103.49 (10)N4—C6—C5108.9 (3)
Cu2—O1—Cu3105.62 (10)N4—C6—H6125.5
C15—O1—Cu1114.7 (2)N1—N2—Cu2115.6 (2)
C15—O1—Cu2113.9 (2)C3—N2—Cu2134.8 (3)
C15—O1—Cu3115.0 (2)C3—N2—N1108.5 (3)
Cu1i—Cl6—Cu187.60 (10)C12—C11—H11125.6
Cu1i—Cl6—Cu2138.95 (6)N9—C11—C12108.9 (3)
Cu1—Cl6—Cu2i138.95 (6)N9—C11—H11125.6
Cu1i—Cl6—Cu2i78.02 (2)C2—C3—H3125.6
Cu1—Cl6—Cu278.02 (2)N2—C3—C2108.8 (3)
Cu1i—Cl6—Cu3i81.39 (2)N2—C3—H3125.6
Cu1—Cl6—Cu381.39 (2)N6—C9—C8109.0 (3)
Cu1—Cl6—Cu3i136.85 (6)N6—C9—H9125.5
Cu1i—Cl6—Cu3136.85 (6)C8—C9—H9125.5
Cu2i—Cl6—Cu2135.50 (12)C12—C10—H10125.7
Cu3i—Cl6—Cu283.43 (5)N8—C10—C12108.5 (3)
Cu3i—Cl6—Cu2i79.05 (4)N8—C10—H10125.7
Cu3—Cl6—Cu2i83.43 (5)N7—C13—C14108.7 (4)
Cu3—Cl6—Cu279.05 (4)N7—C13—H13125.7
Cu3i—Cl6—Cu3132.63 (12)C14—C13—H13125.7
C4—C5—Cl1126.5 (3)N5—C7—C8109.0 (4)
C4—C5—C6106.0 (3)N5—C7—H7125.5
C6—C5—Cl1127.6 (3)C8—C7—H7125.5
N4—N3—Cu2120.5 (2)N8—N9—Cu2i120.5 (2)
C4—N3—Cu2131.1 (3)C11—N9—Cu2i130.8 (3)
C4—N3—N4108.3 (3)C11—N9—N8108.4 (3)
N3—N4—Cu3118.1 (2)O1—C15—H15A109.5
C6—N4—Cu3133.5 (3)O1—C15—H15B109.5
C6—N4—N3108.2 (3)O1—C15—H15C109.5
C1—N1—Cu1131.9 (3)H15A—C15—H15B109.5
C1—N1—N2108.1 (3)H15A—C15—H15C109.5
N2—N1—Cu1120.0 (2)H15B—C15—H15C109.5
Cu1—N1—C1—C2176.5 (3)N4—N3—C4—C51.0 (4)
Cu1—N1—N2—Cu212.9 (4)N1—N2—C3—C20.1 (5)
Cu1—N1—N2—C3177.1 (3)N5—N6—C9—C80.1 (5)
Cu1—N7—C13—C14174.5 (2)N7i—N7—C13—C140.6 (5)
Cu1—N6—C9—C8166.4 (3)C12—C11—N9—Cu2i173.2 (3)
Cu2—N3—N4—Cu37.5 (4)C12—C11—N9—N80.0 (4)
Cu2—N3—N4—C6177.2 (2)C4—C5—C6—N40.7 (4)
Cu2—N3—C4—C5176.4 (3)C4—N3—N4—Cu3174.8 (2)
Cu2—N2—C3—C2167.2 (3)C4—N3—N4—C60.5 (4)
Cu3—N4—C6—C5174.5 (3)C1—N1—N2—Cu2169.6 (3)
Cu3—N5—N6—Cu11.4 (4)C1—N1—N2—C30.4 (5)
Cu3—N5—N6—C9169.8 (3)C1—C2—C3—N20.3 (5)
Cu3—N5—C7—C8167.7 (3)N6—N5—C7—C80.4 (5)
Cu3—N8—C10—C12165.8 (3)C6—C5—C4—N31.0 (4)
Cu3—N8—N9—Cu2i6.7 (4)N2—N1—C1—C20.6 (5)
Cu3—N8—N9—C11167.3 (3)C11—C12—C10—N80.1 (5)
Cl1—C5—C4—N3178.9 (3)C3—C2—C1—N10.6 (5)
Cl1—C5—C6—N4179.2 (3)C9—C8—C7—N50.4 (6)
Cl4—C12—C11—N9176.8 (3)C10—C12—C11—N90.0 (5)
Cl4—C12—C10—N8176.9 (3)C10—N8—N9—Cu2i173.9 (3)
Cl2—C2—C1—N1179.4 (3)C10—N8—N9—C110.1 (4)
Cl2—C2—C3—N2179.1 (3)C13i—C14—C13—N70.24 (19)
Cl3—C8—C9—N6177.6 (3)C7—N5—N6—Cu1168.1 (3)
Cl3—C8—C7—N5177.8 (4)C7—N5—N6—C90.3 (5)
Cl5—C14—C13—N7179.76 (19)C7—C8—C9—N60.2 (6)
N3—N4—C6—C50.1 (4)N9—N8—C10—C120.1 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl4ii0.932.753.586 (4)149
C6—H6···Cl3iii0.932.813.466 (4)129
C15—H15A···Cl3iv0.962.823.651 (4)146
Symmetry codes: (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2.
Comparison of selected structural parameters (Å) top
{Cu6}, PPNa{Cu6Cl}b{Cu6Cl}c{Cu6F}d
Cu···Cu (inter-trimer)2.975 (3), 2.999, 3.028 (3)3.3557 (10)–3.4005 (10)3.621 (1), 3.675 (1)3.281 (2), 3.335 (2), 3.289 (2)
Cu···Cu (intra-trimer)3.206 (4)–3.279 (5)3.1801 (9)–3.2526 (9)3.209 (1), 3.233 (1)3.234 (2)–3.289 (2)
Cu···X2.424 (2), 2.4858 (14), 2.6221 (13) X = Cl2.604 (1), 2.623 (2) (X = Cl)2.383 (5)–2.605 (5) (X = F)
Cu···(µ3-OR)1.883 (1)–1.894 (5)2.003 (2)–2.044 (2)2.083 (4), 2.085 (6) (R = Me)2.048 (3)–2.096 (5) (R = H)
Cu—N (inter-trimer)2.003 (7)–2.056 (6)2.003 (3)–2.004 (3)1.990 (5)–1.992 (7)2.018 (6)–2.047 (6)
Cu—N (intra-trimer)1.934 (7)–1.964 (7)1.923 (3)–1.954 (3)1.931 (5)–1.941 (5)1.942 (5)–1.979 (6)
Notes: (a) Mezei et al. (2007); (b) this work; (c) Kamiyama et al. (2002); (d) Mathivathanan et al. (2015). .
 

Acknowledgements

SK and LM thank NASA and the NSF, respectively, for financial assistance.

Funding information

Funding for this research was provided by: National Science Foundation (award No. CHE 1213683); National Aeronautics and Space Administration (award No. NNX09AV05A).

References

First citationBruker (2015). SAINT, SADABS and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCañon-Mancisidor, W., Gómez-García, C. J., Espallargas, G. M., Vega, A., Spodine, E., Venegas-Yazigi, D. & Coronado, E. (2014). Chem. Sci. 5, 324–332.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamiyama, A., Kajiwara, T. & Ito, T. (2002). Chem. Lett. 31, 980–981.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathivathanan, L., Al-Ameed, K., Lazarou, K., Trávníček, Z., Sanakis, Y., Herchel, R., McGrady, J. E. & Raptis, R. G. (2015). Dalton Trans. 44, 20685–20691.  CSD CrossRef CAS Google Scholar
First citationMezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZueva, E. M., Petrova, M. M., Herchel, R., Trávníček, Z., Raptis, R. G., Mathivathanan, L. & McGrady, J. E. (2009). Dalton Trans. pp. 5924–5932.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds