research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a chloride-bridged copper(II) dimer: piperazine-1,4-dium bis­­(di-μ-chlorido-bis­[(4-carboxypyridine-2-carboxyl­ato-κ2N,O2)chlorido­cuprate(II)]

CROSSMARK_Color_square_no_text.svg

aInorganic Materials Chemistry Laboratory, Department of Pure and Applied Chemistry, University of Calabar, P.M.B. 1115-Calabar, Nigeria, and bDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
*Correspondence e-mail: ayiayi72@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 December 2016; accepted 19 January 2017; online 27 January 2017)

Crystals of a new dimeric chloride-bridged cuprate(II) derived from pyridine-2,4-di­carb­oxy­lic acid were obtained solvothermally in the presence of piperazine and hydro­chloric acid. The crystal structure determination of the title salt, (C4H12N2)[Cu2(C7H4NO4)2Cl4], revealed one of the carboxyl groups of the original pyridine-2,4-di­carb­oxy­lic acid ligand to be protonated, whereas the other is deprotonated and binds together with the pyridine N atom to the CuII atom. The coordination environment of the CuII atom is distorted square-pyramidal. One of the chloride ligands bridges two metal cations to form a centrosymmetric dimer with two different Cu—Cl distances of 2.2632 (8) and 2.7853 (8) Å, whereby the longer distance is associated with the apical ligand. The remaining chloride ligand is terminal at one of the basal positions, with a distance of 2.2272 (9) Å. In the crystal, the dimers are linked by inter­molecular O—H⋯O hydrogen bonds, together with N—H⋯O and N—H⋯Cl inter­actions involving the centrosymmetric organic cation, into a three-dimensional supra­molecular network. Further but weaker C—H⋯O and C—H⋯Cl inter­actions consolidate the packing.

1. Chemical context

In recent times, research on coordination polymers, popularly known as metal–organic frameworks (MOFs), have received great attention, not only for their potential applications in the area of gas storage, ion-exchange, non-linear optics, mol­ecular sieves, catalysis, magnetism, and mol­ecular sensing (Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]; Ockwig et al., 2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]; Wang et al., 2005[Wang, Z., Kravtsov, V. C. & Zaworotko, M. J. (2005). Angew. Chem. Int. Ed. 44, 2877-2880.]; Carlucci et al., 2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]; Hill et al., 2005[Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 335-348.]), but also for their rich structural chemistry (Li et al., 2016[Li, X., Yang, L., Zhao, L., Wang, X.-L., Shao, K.-Z. & Su, Z.-M. (2016). Crystal Growth Des., 16, 4374-4382.]; Eddaoudi et al., 2015[Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228-249.]). In the design of compounds with metal–organic frameworks, versatile carboxyl­ate ligands, derived from 1,4-benzene­dicarb­oxy­lic acid, 1,3,5-benzene­tri­carb­oxy­lic acid, 1,2,4,5-benzene­tetra­carb­oxy­lic acid or pyridine-2,4-di­carb­oxy­lic acid, have frequently been used owing to their abundant carboxyl­ate groups possessing high affinity to metal cations (Li et al., 2004[Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205-210.]; Shi et al., 2004[Shi, Z., Li, G., Wang, L., Gao, L., Chen, X., Hua, J. & Feng, S. (2004). Cryst. Growth Des. 4, 25-27.]; Gutschke et al., 2001[Gutschke, S. H., Price, D. J., Powell, A. K. & Wood, P. T. (2001). Eur. J. Inorg. Chem. pp. 2739-2741.]; Tao et al., 2000[Tao, J., Tong, M. L., Shi, J. X., Chen, X. & Ng, S. W. (2000). Chem. Commun. pp. 2043-2044.]). A number of novel metal–organic frameworks have been constructed using di- or multi­carboxyl­ate ligands as linkers. Most of the reported MOF materials have been synthesized using solvothermal or hydro­thermal synthetic conditions, often by using sealed autoclaves. These techniques have also been found to play an important role in preparing robust and stable inorganic compounds with open frameworks (Rao et al., 2001[Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. & Ayi, A. A. (2001). Acc. Chem. Res. 34, 80-87.]; Eddaoudi et al., 2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]). The fact that the solubility of the reactants increases under hydro­thermal methods makes the reaction more likely to occur at lower temperatures, with the formation of polymeric units through mol­ecular building blocks (Zhao et al., 2007[Zhao, X. X., Ma, J. P., Dong, Y. B., Huang, R. Q. & Lai, T. (2007). Cryst. Growth Des. 7, 1058-1068.]). Small changes in one or more of the reaction variables, such as temperature, time, pH or the solvent type, can have a profound influence on the product. In some cases, organic amines or alkyl­ammonium cations are used as templates and/or structure-directing agents in the crystallization process of framework solids (Jiang et al., 1998[Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998). J. Mater. Chem. 8, 733-741.]; Cheetham et al., 1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]). In the course of our investigations, we were inter­ested in using pyridine-2,4-di­carb­oxy­lic acid as a source of N- and O-donors, in synthesizing a coordination polymer in an acidic medium under solvothermal conditions and in the presence of piperazine as an organic amine. In this context we report on the synthesis and crystal structure of the title compound (C4H12N2)[Cu2(C7H4NO4)2Cl4], (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] showing the numbering scheme is presented in Fig. 1[link]. The copper(II) atom is chelated by the O atom (O3) of the deprotonated carb­oxy­lic group and the pyridine N atom (N1) of the organic ligand, forming a five-membered chelate ring Cu1–N1–C1–C6–O3. Two bridging and one terminal chlorido ligands complete the distorted square-pyramidal coordination of the metal cation. The arrangement of the chlorido ligands is such that Cl1 is doubly bridging the two metal cations into a centrosymmetric dimer through edge-sharing. The apical Cu—Cl1(−x + 2, −y + 2, −z + 1) bond length of 2.7853 (9) Å is significantly longer than the other bridging Cu—Cl bond with a length of 2.2632 (8) Å. The square plane is formed by N1 and O3, both from the pyridine-2,4-di­carboxyl­ate anion, Cl1 from the bridging chlorido ligand and Cl2 of the terminal chlorido ligand [2.2272 (9) Å]. This type of coordination has been previously described as a transition state between 4- and 5-coordinate (Qi et al., 2009[Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507-m1508.]). The distortion index (τ) assuming a square-pyramidal environment was calculated as 0.08 using the formula, τ = (β − α)/60 (α, β are the largest valence angles) proposed by Addison et al. (1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), which indicates only slight distortions from the ideal value where τ = 0. The Cu⋯Cu distance in the dimer is 3.5946 (9) Å, with an Cu—Cl—Cu bond angle of 90.19 (3)° and a Cl⋯Cl separation of 3.5831 (14) Å. The Cu—N and Cu—O bond lengths are 2.013 (2) and 1.963 (2) Å, respectively, and are in good agreement with similar compounds reported in the literature (Goddard et al., 1990[Goddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33-35.]; Tynan et al., 2005[Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90-95.]; Han et al., 2008[Han, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607-m1608.]; Liu et al., 2009[Liu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492.]; Qi et al., 2009[Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507-m1508.]). The chelate angle O3—Cu—N1 of 81.34 (9)° is, as expected, smaller than the N1—Cu—Cl1 and O3—Cu—Cl2 bond angles of 170.22 (7) and 165.23 (8)°, respectively. The inorganic anion has a charge of −2 that is compensated by the incorporation of a fully protonated piperazine mol­ecule in the structure. The latter is located about an inversion centre.

[Figure 1]
Figure 1
The mol­ecular structures of the cationic and anionic components of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. The non-labelled atoms are related to the labelled atoms by −x + 2, −y + 2, −z + 1;.

3. Supra­molecular features

The centrosymmetric dimers are linked by pairs of (carbox­yl)O1—H3⋯O4(carboxyl­ate) hydrogen bonds to form sheets parallel (100). The protonated centrosymmetric amine cations are situated between the sheets and are connected through N2—H⋯O2 inter­actions to one of the carbonyl oxygen atoms and various N—H⋯Cl inter­actions into a three-dimensional network (Table 1[link], Fig. 2[link]). The carbonyl oxygen atom O2 also acts as a hydrogen-bond acceptor from pyridyl C—H groups (C2—H2⋯O2 and C4—H12⋯O2). These inter­actions, together with C—H⋯Cl inter­actions, further stabilize the three-dimensional supra­molecular network structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H3⋯O4i 0.82 1.79 2.603 (3) 171
N2—H2A⋯Cl1ii 0.89 2.78 3.562 (3) 147
N2—H2A⋯O3ii 0.89 2.22 2.861 (3) 129
N2—H2B⋯Cl1iii 0.89 2.69 3.414 (3) 139
N2—H2B⋯Cl2iii 0.89 2.69 3.360 (3) 133
C2—H2⋯O2iv 0.93 2.49 3.402 (4) 169
C4—H12⋯O2v 0.93 2.56 3.362 (4) 145
C5—H13⋯Cl2 0.93 2.71 3.269 (3) 119
C8—H27A⋯Cl1vi 0.97 2.72 3.561 (3) 146
C8—H27B⋯Cl2vii 0.97 2.81 3.599 (3) 139
C9—H26A⋯O2viii 0.97 2.56 3.509 (4) 165
C9—H26B⋯Cl1vi 0.97 2.93 3.713 (3) 139
C9—H26B⋯Cl2iii 0.97 2.93 3.491 (4) 118
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x+2, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure of (I)[link], showing O—H⋯O, N—H⋯O and N—H⋯Cl hydrogen-bonding inter­actions as dashed lines (see Table 1[link] for numerical details).

4. Database survey

There are several copper(II) dimeric compounds in which the copper atoms are bridged by chlorido ligands (Marsh et al., 1983[Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. (1983). Inorg. Chem. 22, 511-515.]; Puschmann et al., 2001[Puschmann, H., Howard, J. A. K., Soto, B., Bonne, R. & Au-Alvarez, O. (2001). Acta Cryst. E57, m551-m552.]; Li et al., 2006[Li, S.-A., Jin, Y.-C., Xu, T.-T., Wang, D.-Q. & Gao, J. (2006). Acta Cryst. E62, m3496-m3497.]; Lee, et al., 2008[Lee, H. W., Sengottuvelan, N., Seo, H.-J., Choi, J. S., Kang, S. K. & Kim, Y.-I. (2008). Bull. Korean Chem. Soc. 29, 1711-1716.]; Han et al., 2008[Han, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607-m1608.]; Øien et al., 2013[Øien, S., Wragg, D. S., Lillerud, K. P. & Tilset, M. (2013). Acta Cryst. E69, m73-m74.]; Choubey et al., 2015[Choubey, S., Roy, S., Chattopadhayay, S., Bhar, K., Ribas, J., Monfort, M. & Ghosh, B. K. (2015). Polyhedron, 89, 39-44.]; Golchoubian & Nateghi 2016[Golchoubian, H. & Nateghi, S. (2016). J. Coord. Chem. 69, 3192-3205.]; Liu et al., 2009[Liu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492.]). A search of the Cambridge Structural Database (Version 5.38, November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), revealed numerous di-μ-chlorido bridged copper(II) compounds constructed with ligands having -N,O- donor atoms (Kapoor et al., 2002[Kapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153-6160.], 2004[Kapoor, P., Pathak, A., Kaur, P., Venugopalan, P. & Kapoor, R. (2004). Transition Met. Chem. 29, 251-258.]; Damous et al., 2013[Damous, M., Dénès, G., Bouacida, S., Hamlaoui, M., Merazig, H. & Daran, J.-C. (2013). Acta Cryst. E69, m488.]; Lumb et al., 2013[Lumb, I., Hundal, M. S., Corbella, M., Gómez, V. & Hundal, G. (2013). Eur. J. Inorg. Chem. pp. 4799-4811.]; Smolentsev et al., 2014[Smolentsev, A. I., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. & Vasilevsky, S. F. (2014). Polyhedron, 77, 81-88.]; Qureshi et al., 2016[Qureshi, N., Yufit, D. S., Steed, K. M., Howard, J. A. K. & Steed, J. W. (2016). CrystEngComm, 18, 5333-5337.]). However, the search did not reveal related complexes derived from pyridine-2,4-di­carb­oxy­lic acid and piperazine.

5. Synthesis and crystallization

The syntheses were carried out in Ace pressure tubes (15 cm3) and heated in programmable ovens. The reagents used for syntheses were obtained from Aldrich (Analar grade) and used without further purification. In a typical synthesis of (I)[link], Cu(CH3COO)2·2H2O (0.1996 g, 1.0 mmol) was stirred together with pyridine-2,4-di­carb­oxy­lic acid (0.1671 g, 1.0 mmol) in 3.3 cm3 of n-butanol. This was followed by the addition of piperazine (0.940 g, 1.0 mmol) and the pH of the solution was adjusted to 2 by dropwise addition of 0.16 cm3 of conc. HCl. The resultant mixture was homogenized for 15 min before transferring into the reaction vessel and heated in an oven at 393 K for 48 h. The product, a crop of bluish crystalline material, was washed with distilled water and air-dried.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were treated as riding atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (aliphatic), and with Uiso(H) = 1.2Ueq(C). N- and O-bound H atoms were located in difference maps and were refined with N—H distances of 0.89 Å and O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O), respectively.

Table 2
Experimental details

Crystal data
Chemical formula (C4H12N2)[Cu2(C7H4NO4)2Cl4]
Mr 689.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 11.639 (3), 9.224 (2), 11.423 (3)
β (°) 105.211 (3)
V3) 1183.4 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.30
Crystal size (mm) 0.05 × 0.02 × 0.02
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.946, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 14235, 2923, 2392
Rint 0.050
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.127, 0.86
No. of reflections 2923
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.31
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Piperazine-1,4-dium bis(di-µ-chlorido-bis[(4-carboxypyridine-2-carboxylato-κ2N,O2)chloridocuprate(II)] top
Crystal data top
(C4H12N2)[Cu2(C7H4NO4)2Cl4]F(000) = 692
Mr = 689.26Dx = 1.934 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.639 (3) ÅCell parameters from 1016 reflections
b = 9.224 (2) Åθ = 2.9–26.8°
c = 11.423 (3) ŵ = 2.30 mm1
β = 105.211 (3)°T = 298 K
V = 1183.4 (5) Å3Rod, blue
Z = 20.05 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
2392 reflections with I > 2σ(I)
ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 2.9°
Tmin = 0.946, Tmax = 0.955h = 1515
14235 measured reflectionsk = 1212
2923 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
2923 reflectionsΔρmax = 0.55 e Å3
164 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84456 (3)1.01123 (4)0.42216 (3)0.02632 (15)
Cl10.99944 (6)1.14015 (7)0.39127 (7)0.02963 (19)
Cl20.82884 (8)0.86943 (9)0.26090 (7)0.0431 (2)
O30.82154 (19)1.1592 (2)0.5374 (2)0.0326 (5)
O40.7301 (2)1.2063 (2)0.6797 (2)0.0411 (6)
N10.7122 (2)0.9149 (2)0.4767 (2)0.0244 (5)
O10.4230 (2)0.8203 (3)0.7170 (2)0.0412 (6)
H30.3793340.7765660.7506920.062*
C60.7489 (2)1.1293 (3)0.5993 (3)0.0259 (6)
N20.9556 (2)0.0777 (3)0.0881 (2)0.0358 (6)
H2A0.9595880.1694300.0652880.043*
H2B0.9267780.0773350.1529680.043*
C10.6847 (3)0.9859 (3)0.5683 (3)0.0246 (6)
O20.4234 (2)0.6091 (3)0.6208 (2)0.0468 (6)
C20.6029 (2)0.9326 (3)0.6261 (3)0.0261 (6)
H20.5845060.9837580.6889740.031*
C81.0765 (3)0.0148 (3)0.1210 (3)0.0323 (7)
H27A1.0737840.0810470.1550930.039*
H27B1.1284100.0747580.1824560.039*
C70.4583 (3)0.7319 (3)0.6429 (3)0.0310 (6)
C40.5776 (3)0.7273 (3)0.4928 (3)0.0308 (6)
H120.5425100.6385920.4657170.037*
C50.6597 (3)0.7892 (3)0.4394 (3)0.0294 (6)
H130.6786950.7412110.3753460.035*
C30.5487 (3)0.7998 (3)0.5872 (3)0.0268 (6)
C90.8733 (3)0.0041 (3)0.0119 (3)0.0367 (7)
H26A0.7967760.0444870.0348590.044*
H26B0.8610830.1007610.0160750.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0282 (2)0.0222 (2)0.0335 (2)0.00475 (12)0.01701 (17)0.00548 (13)
Cl10.0306 (4)0.0252 (3)0.0368 (4)0.0053 (3)0.0155 (3)0.0021 (3)
Cl20.0595 (5)0.0385 (4)0.0410 (5)0.0166 (4)0.0305 (4)0.0152 (3)
O30.0350 (11)0.0255 (10)0.0437 (12)0.0075 (9)0.0215 (10)0.0092 (9)
O40.0424 (13)0.0372 (12)0.0520 (14)0.0066 (10)0.0272 (11)0.0194 (10)
N10.0249 (11)0.0239 (12)0.0270 (11)0.0007 (9)0.0112 (9)0.0022 (9)
O10.0441 (14)0.0401 (13)0.0497 (14)0.0112 (11)0.0306 (12)0.0032 (11)
C60.0219 (13)0.0217 (13)0.0348 (15)0.0001 (10)0.0086 (11)0.0051 (11)
N20.0454 (15)0.0311 (14)0.0334 (13)0.0120 (12)0.0150 (12)0.0001 (11)
C10.0209 (12)0.0247 (14)0.0281 (14)0.0024 (10)0.0064 (11)0.0005 (10)
O20.0573 (16)0.0355 (12)0.0581 (16)0.0167 (11)0.0337 (13)0.0040 (11)
C20.0238 (13)0.0291 (14)0.0264 (13)0.0003 (11)0.0085 (11)0.0007 (11)
C80.0422 (18)0.0228 (14)0.0280 (15)0.0016 (12)0.0027 (14)0.0002 (11)
C70.0290 (14)0.0344 (16)0.0291 (14)0.0046 (12)0.0068 (12)0.0058 (12)
C40.0309 (15)0.0276 (14)0.0350 (15)0.0075 (12)0.0106 (13)0.0022 (12)
C50.0320 (15)0.0288 (15)0.0300 (14)0.0037 (12)0.0130 (12)0.0053 (11)
C30.0240 (13)0.0276 (14)0.0291 (14)0.0002 (11)0.0076 (11)0.0037 (11)
C90.0313 (17)0.0374 (18)0.0416 (19)0.0024 (12)0.0099 (15)0.0037 (13)
Geometric parameters (Å, º) top
Cu1—O31.963 (2)N2—H2B0.8900
Cu1—N12.013 (2)C1—C21.384 (4)
Cu1—Cl22.2272 (9)O2—C71.207 (4)
Cu1—Cl12.2632 (8)C2—C31.396 (4)
Cu1—Cl1i2.7853 (9)C2—H20.9300
O3—C61.267 (3)C8—C9ii1.512 (5)
O4—C61.225 (3)C8—H27A0.9700
N1—C51.327 (4)C8—H27B0.9700
N1—C11.343 (4)C7—C31.502 (4)
O1—C71.316 (4)C4—C31.383 (4)
O1—H30.8200C4—C51.385 (4)
C6—C11.515 (4)C4—H120.9300
N2—C81.476 (4)C5—H130.9300
N2—C91.490 (4)C9—H26A0.9700
N2—H2A0.8900C9—H26B0.9700
O3—Cu1—N181.34 (9)C3—C2—H2121.0
O3—Cu1—Cl2165.23 (8)N2—C8—C9ii111.4 (3)
N1—Cu1—Cl295.35 (7)N2—C8—H27A109.4
O3—Cu1—Cl189.63 (6)C9ii—C8—H27A109.4
N1—Cu1—Cl1170.22 (7)N2—C8—H27B109.4
Cl2—Cu1—Cl194.33 (3)C9ii—C8—H27B109.4
C6—O3—Cu1116.83 (18)H27A—C8—H27B108.0
C5—N1—C1119.5 (2)O2—C7—O1124.8 (3)
C5—N1—Cu1127.7 (2)O2—C7—C3122.5 (3)
C1—N1—Cu1112.59 (18)O1—C7—C3112.7 (3)
C7—O1—H3109.5C3—C4—C5118.7 (3)
O4—C6—O3124.7 (3)C3—C4—H12120.6
O4—C6—C1120.5 (3)C5—C4—H12120.6
O3—C6—C1114.8 (2)N1—C5—C4122.1 (3)
C8—N2—C9112.0 (2)N1—C5—H13118.9
C8—N2—H2A109.2C4—C5—H13118.9
C9—N2—H2A109.2C4—C3—C2119.4 (3)
C8—N2—H2B109.2C4—C3—C7118.0 (3)
C9—N2—H2B109.2C2—C3—C7122.6 (3)
H2A—N2—H2B107.9N2—C9—C8ii110.8 (3)
N1—C1—C2122.2 (3)N2—C9—H26A109.5
N1—C1—C6113.9 (3)C8ii—C9—H26A109.5
C2—C1—C6123.9 (3)N2—C9—H26B109.5
C1—C2—C3118.0 (3)C8ii—C9—H26B109.5
C1—C2—H2121.0H26A—C9—H26B108.1
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O4iii0.821.792.603 (3)171
N2—H2A···Cl1iv0.892.783.562 (3)147
N2—H2A···O3iv0.892.222.861 (3)129
N2—H2B···Cl1v0.892.693.414 (3)139
N2—H2B···Cl2v0.892.693.360 (3)133
C2—H2···O2vi0.932.493.402 (4)169
C4—H12···O2vii0.932.563.362 (4)145
C5—H13···Cl20.932.713.269 (3)119
C8—H27A···Cl1viii0.972.723.561 (3)146
C8—H27B···Cl2ix0.972.813.599 (3)139
C9—H26A···O2x0.972.563.509 (4)165
C9—H26B···Cl1viii0.972.933.713 (3)139
C9—H26B···Cl2v0.972.933.491 (4)118
Symmetry codes: (iii) x+1, y1/2, z+3/2; (iv) x, y+3/2, z1/2; (v) x, y1, z; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y+1, z+1; (viii) x+2, y3/2, z+1/2; (ix) x+2, y1/2, z+1/2; (x) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by The World Academy of Sciences for the Advancement of Science in developing countries (TWAS) under Grant 1 2–1 69 RG/CHE/AF/AC-G–UNESCO FR: 3240271 320 for which grateful acknowledgment is made. AAA is also grateful to the Royal Society of Chemistry for a personal research grant. The authors are thankful for the support of Professor Amitava Choudhury of the Department of Chemistry, Missouri University of Science and Technology, Rolla, USA, for the single-crystal X-ray crystallographic data.

Funding information

Funding for this research was provided by: Academy of Sciences for the Developing World (award No. 1 2-1 69 RG/CHE/AF/AC–G -UNESCO FR: 3240271 320).

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationChoubey, S., Roy, S., Chattopadhayay, S., Bhar, K., Ribas, J., Monfort, M. & Ghosh, B. K. (2015). Polyhedron, 89, 39–44.  CSD CrossRef CAS Google Scholar
First citationDamous, M., Dénès, G., Bouacida, S., Hamlaoui, M., Merazig, H. & Daran, J.-C. (2013). Acta Cryst. E69, m488.  CSD CrossRef IUCr Journals Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citation[Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228-249.]Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGoddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33–35.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGolchoubian, H. & Nateghi, S. (2016). J. Coord. Chem. 69, 3192–3205.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGutschke, S. H., Price, D. J., Powell, A. K. & Wood, P. T. (2001). Eur. J. Inorg. Chem. pp. 2739–2741.  CrossRef Google Scholar
First citationHan, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607–m1608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 335–348.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998). J. Mater. Chem. 8, 733–741.  Web of Science CSD CrossRef CAS Google Scholar
First citationKapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153–6160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKapoor, P., Pathak, A., Kaur, P., Venugopalan, P. & Kapoor, R. (2004). Transition Met. Chem. 29, 251–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, H. W., Sengottuvelan, N., Seo, H.-J., Choi, J. S., Kang, S. K. & Kim, Y.-I. (2008). Bull. Korean Chem. Soc. 29, 1711–1716.  CAS Google Scholar
First citationLi, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S.-A., Jin, Y.-C., Xu, T.-T., Wang, D.-Q. & Gao, J. (2006). Acta Cryst. E62, m3496–m3497.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Yang, L., Zhao, L., Wang, X.-L., Shao, K.-Z. & Su, Z.-M. (2016). Crystal Growth Des., 16, 4374–4382.  CSD CrossRef CAS Google Scholar
First citationLiu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumb, I., Hundal, M. S., Corbella, M., Gómez, V. & Hundal, G. (2013). Eur. J. Inorg. Chem. pp. 4799–4811.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. (1983). Inorg. Chem. 22, 511–515.  CSD CrossRef CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationØien, S., Wragg, D. S., Lillerud, K. P. & Tilset, M. (2013). Acta Cryst. E69, m73–m74.  CSD CrossRef IUCr Journals Google Scholar
First citationPuschmann, H., Howard, J. A. K., Soto, B., Bonne, R. & Au-Alvarez, O. (2001). Acta Cryst. E57, m551–m552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQureshi, N., Yufit, D. S., Steed, K. M., Howard, J. A. K. & Steed, J. W. (2016). CrystEngComm, 18, 5333–5337.  CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. & Ayi, A. A. (2001). Acc. Chem. Res. 34, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z., Li, G., Wang, L., Gao, L., Chen, X., Hua, J. & Feng, S. (2004). Cryst. Growth Des. 4, 25–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmolentsev, A. I., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. & Vasilevsky, S. F. (2014). Polyhedron, 77, 81–88.  CSD CrossRef CAS Google Scholar
First citationTao, J., Tong, M. L., Shi, J. X., Chen, X. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.  CSD CrossRef Google Scholar
First citationTynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z., Kravtsov, V. C. & Zaworotko, M. J. (2005). Angew. Chem. Int. Ed. 44, 2877–2880.  CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, X. X., Ma, J. P., Dong, Y. B., Huang, R. Q. & Lai, T. (2007). Cryst. Growth Des. 7, 1058–1068.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds