research communications
An unexpected oxidation: NaK5Cl2(S2O6)2 revisited
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, NaK5Cl2(S2O6)2 [systematic name: sodium pentapotassium dichloride bis(dithionate)], arose as an unexpected product from an organic synthesis that used dithionite (S2O42−) ions as a reducing agent to destroy excess permanganate ions. Compared to the previous study [Stanley (1953). Acta Cryst. 6, 187–196], the present tetragonal structure exhibits a root 2a × root 2a × c super-cell due to subtle changes in the orientations of the dithionate anions. The structure can be visualized as a three-dimensional framework of [001] columns of alternating trans-NaO4Cl2 and KO4Cl2 octahedra cross-linked by the dithionate ions with the interstices occupied by KO6Cl2 polyhedra to generate a densely packed three-dimensional framework. The comprises two sodium ions (site symmetries 4 and -4, four potassium ions (site symmetries = -4, 4, 1 and 1), three chloride ions (site symmetries = 4, 4 and 2) and two half-dithionate ions (all atoms on general positions). Both dithionate ions are completed by crystallographic inversion symmetry. The crystal chosen for data collection was found to be rotationally twinned by 180° about the [100] axis in with a 0.6298 (13):0.3702 (13) domain ratio.
Keywords: crystal structure; dithionate; super-cell; redetermination.
CCDC reference: 1526611
1. Chemical context
As well as their large-scale industrial use in reducing and solublizing vat dyes such as indigo (Božič & Kokol, 2008), dithionites containing the S2O42− anion (sulfur = +3) have long found use as moderately strong reducing agents in organic synthesis (De Vries & Kellogg, 1980, and references therein). The title mixed-cation, mixed-anion compound, NaK5Cl2(S2O6)2 (I), containing S2O62− dithionate ions (sulfur = +5), arose as a completely unexpected side product from an attempt to oxidize hexamethyl benzene to mellitic acid as a precursor of synthetic mellite (Plater & Harrison, 2015): sodium dithionite was added to the reaction to destroy excess permanganate ions (as KMnO4) and the source of the chloride ions was added HCl. To our slight surprise, the structure of the title compound, along with that of the non-isostructural Na2K4Cl2(S2O6)2, was established over 60 years ago (Stanley, 1953). This re-determination presents a of the earlier reported structure, which arises from subtle orientational changes for the dithionate anions.
2. Structural commentary
Compound (I) comprises two sodium ions (Na1 . Both S2O62− dithionate ions are completed by crystallographic inversion symmetry at the mid-points of their S—S bonds [S1—S1i = 2.1227 (9), S2—S2xiii = 2.1176 (9) Å; see Table 1 for symmetry codes] and both exhibit almost ideal staggered conformations about their S—S bonds. The mean S—O bond length (both unique ions) is 1.45 Å and the narrow spread of individual S—O bond lengths from 1.4465 (11) to 1.4526 (13) Å indicates that the negative charges of the anion are delocalized over the three O atoms attached to each S atom (i.e.: we cannot identify localized S=O double bonds and S—O single bonds). In terms of the orientation of the dithionate ions in the the S1—O1 bond deviates from the (001) plane by 12.5° and the S2—O5 bond deviates by 10.6° (vide infra).
= 4, Na2 = ), four potassium ions (site symmetries = , 4, 1 and 1 for K1, K2, K3 and K4, respectively), three chloride ions (Cl1 and Cl2 with 4, Cl3 with 2) and two half-dithionate ions (all atoms on general positions) in the Selected geometrical data are given in Table 1The packing for (I) can be described in terms of pseudo layers lying perpendicular to the c-axis direction of the tetragonal At z ∼ 0 and 1, the S1/O1/O2/O3 dithionate ion and the Na1 and K1 cations reside (Fig. 1); at z ∼1/2, are to be found the S2/O4/O5/O6 dithionate ion and Na2 and K2 (Fig. 2). Between them, at z ∼ 1/4 and 3/4, are K3, K4 and the three chloride ions, which form a distorted square grid (Fig. 3).
The extended structure of (I) can be visualized (Fig. 4) as [001] chains of alternating trans-NaO4Cl2 and KO4Cl2 octahedra linked via their chloride ions and cross-linked by the dithionate groups. There are two distinct chains: the Na1 and K2 species and their linking chloride ions (Cl1 and Cl2) lie on the fourfold axes at (1/4, 1/4, z) and (3/4, 3/4, z), whereas Na2 and K1 (both ) are connected by Cl3, which lies on the (1/4, 3/4, z) twofold axis and its symmetry-generated clone at (3/4, 1/4, z). As expected, the Na—O bonds (mean = 2.34 Å) are much shorter than the K—O bonds (mean = 2.82 Å). In terms of bond angles, the sodium-centred octahedra are almost regular [spread of cis and trans bond angles = 87.94 (4)–92.06 (4) and 175.89 (8)–180°, respectively, for Na1 and 86.02 (3)–93.98 (3) and 172.03 (5)–180°, respectively, for Na2] but the potassium-centred moieties are grossly distorted with ranges of cis and trans angles of 71.75 (2)–108.25 (2) and 143.50 (4)–180°, respectively, for K1 and 74.91 (2)–105.09 (2) and 149.82 (5)–180°, respectively, for K2.
The structure of (I) is completed by the K3 and K4 potassium ions, which occupy interstices in the framework described in the preceding paragraph. The K3 6Cl2 square anti-prism. The coordination for K4 is slightly ambiguous, with six shorter K—O bonds [2.8429 (11)–3.0664 (12) Å] and two K—Cl links [3.1168 (5) and 3.1291 (5) Å] forming a squashed and distorted square anti-prism. There are two further K4⋯O close contacts at 3.2273 (12) and 3.3822 (12) Å [the next-nearest K4⋯O separation after these is 4.3935 (13) Å] but given that these K4⋯O contacts are longer than the K4—Cl bonds and have bond valences (Brown & Altermatt, 1985) of less than 0.05 (Brown, 2002), we regard them as not significant. The three chloride ions each adopt almost regular ClK5Na octahedral geometries.
approximates to an extremely distorted KOBond-valence sum (BVS) data (Brown & Altermatt, 1985) for the cations in (I) indicate that the sodium ions in (I) are considerably `overbonded': BVS(Na1) = 1.46 and BVS(Na2) = 1.45 (expected value = 1.0 valence units). Three of the potassium ions are possibly slightly over-bonded (BVS values for K1, K2 and K3 = 1.16, 1.19 and 1.19, respectively) whereas K4 (BVS = 1.01) achieves its expected valence almost exactly.
The previously-reported structure of NaK5Cl2(S2O6)2 (Stanley, 1953) was modelled in P4/mnc [aS = 8.5621 (6), cS = 11.5288 (6) Å, VS = 845.2 Å3; S = Stanley], thus it may be seen that the present is a 2aS × 2aS × cS super-cell of the Stanley structure with doubled volume. The relative dispositions of the sodium, potassium and chloride ions in the Stanley structure are almost the same as in (I); the main difference occurs in the orientation of the dithionate ions with respect to the (001) plane; in the Stanley structure, this species, which is built up from one unique S atom and two unique O atoms, has 2/m (C2h) point-group symmetry about the mid-point of the S—S bond with the S atom and one of the O atoms lying on the z = 0 mirror plane [compare the deviations from the (001) plane noted above for the S1—O1 and S2—O5 bonds in (I)].
3. Database survey
As already noted, this structure (ICSD reference number 24676) was previously reported by Stanley (1953). A survey of the Cambridge Structural Database (Groom et al., 2016) (entries updated to 20 December 2016) revealed 138 crystal structures containing dithionate anions.
4. Synthesis and crystallization
In an attempt to prepare mellitic acid (C6H6O12) as a precursor of synthetic mellite (Plater & Harrison, 2015), hexamethylbenzene (2.0 g, 0.0123 moles) and KMnO4 (23.4 g, 0.148 moles, 12 equiv.) were refluxed in water for 24 h (Friedel & Crafts, 1884): the organic starting material had a tendency to sublime into the condenser. After cooling, the mixture was treated with excess Na2S2O4 to decompose the unreacted permanganate, which turned the solution brown. It was filtered and then treated with conc. HCl to give a pH of 1. After leaving to crystallize, the solid product (1.34 g) was collected by filtration as colourless blocks of (I). Evidently, dithionite has been oxidized by permanganate to dithionate by an unknown pathway and the sodium and potassium cations and chloride ions (from the hydrochloric acid) present in the mixture serendipitiously combine with the dithionate ions to form (I).
5. Refinement
Crystal data, data collection and structure . All the atoms in the were located by SHELXT (Sheldrick, 2015a): the potassium cations and chloride anions were distinguished in terms of chemically reasonable environments. The crystal chosen for data collection was found to be rotationally twinned by 180° about the [100] axis in with a 0.6298 (13):0.3702 (13) domain ratio.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1526611
https://doi.org/10.1107/S2056989017000494/wm5357sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017000494/wm5357Isup2.hkl
Data collection: CrystalClear (Rigaku, 2010); cell
CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).NaK5Cl2(S2O6)2 | Dx = 2.451 Mg m−3 |
Mr = 609.63 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/n | Cell parameters from 23162 reflections |
a = 12.0421 (1) Å | θ = 2.3–27.5° |
c = 11.3925 (2) Å | µ = 2.24 mm−1 |
V = 1652.05 (4) Å3 | T = 100 K |
Z = 4 | Block, colourless |
F(000) = 1200 | 0.05 × 0.02 × 0.02 mm |
Rigaku Mercury CCD diffractometer | 1834 reflections with I > 2σ(I) |
ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→11 |
Tmin = 0.911, Tmax = 1.000 | k = −15→15 |
1910 measured reflections | l = −14→14 |
1910 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0242P)2 + 0.4886P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.35 e Å−3 |
1910 reflections | Δρmin = −0.35 e Å−3 |
113 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.2500 | 0.2500 | 0.01268 (9) | 0.0094 (3) | |
Na2 | 0.7500 | 0.2500 | 0.5000 | 0.0084 (3) | |
K1 | 0.7500 | 0.2500 | 0.0000 | 0.01621 (19) | |
K2 | 0.2500 | 0.2500 | 0.51306 (5) | 0.01506 (18) | |
K3 | 0.50130 (4) | 0.19113 (2) | 0.24632 (3) | 0.01042 (8) | |
K4 | 0.18440 (2) | 0.00129 (4) | 0.74572 (3) | 0.01187 (8) | |
S1 | 0.51535 (4) | 0.58649 (4) | 0.00758 (3) | 0.00962 (10) | |
O1 | 0.63276 (11) | 0.59544 (11) | −0.02005 (10) | 0.0160 (3) | |
O2 | 0.48827 (9) | 0.61202 (9) | 0.12870 (9) | 0.0163 (2) | |
O3 | 0.44243 (10) | 0.63754 (9) | −0.07768 (9) | 0.0190 (2) | |
S2 | 0.08586 (4) | 0.51687 (4) | 0.49086 (3) | 0.00872 (10) | |
O4 | 0.10996 (9) | 0.48723 (9) | 0.37002 (9) | 0.0152 (2) | |
O5 | 0.09283 (11) | 0.63505 (10) | 0.51433 (9) | 0.0142 (3) | |
O6 | 0.13966 (9) | 0.44729 (9) | 0.57748 (9) | 0.0169 (2) | |
Cl1 | 0.2500 | 0.2500 | 0.77619 (6) | 0.00944 (14) | |
Cl2 | 0.2500 | 0.2500 | 0.25196 (5) | 0.00958 (16) | |
Cl3 | 0.2500 | 0.7500 | 0.26312 (4) | 0.00951 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0200 (3) | 0.0200 (3) | 0.0086 (3) | 0.000 | 0.000 | 0.000 |
K2 | 0.0183 (3) | 0.0183 (3) | 0.0086 (3) | 0.000 | 0.000 | 0.000 |
K3 | 0.00940 (15) | 0.01049 (13) | 0.01136 (15) | 0.00021 (17) | 0.00028 (9) | −0.00154 (12) |
K4 | 0.01177 (13) | 0.00978 (15) | 0.01406 (15) | −0.00037 (17) | −0.00130 (13) | 0.00016 (10) |
Na1 | 0.0094 (5) | 0.0094 (5) | 0.0095 (5) | 0.000 | 0.000 | 0.000 |
Na2 | 0.0080 (5) | 0.0080 (5) | 0.0090 (5) | 0.000 | 0.000 | 0.000 |
S1 | 0.0104 (2) | 0.0092 (2) | 0.00920 (16) | −0.00190 (19) | 0.00093 (11) | −0.00018 (12) |
O1 | 0.0137 (7) | 0.0134 (6) | 0.0208 (5) | −0.0041 (6) | 0.0057 (4) | −0.0037 (5) |
O2 | 0.0201 (6) | 0.0156 (5) | 0.0131 (5) | −0.0047 (5) | 0.0054 (5) | −0.0053 (4) |
O3 | 0.0211 (6) | 0.0137 (5) | 0.0223 (6) | −0.0004 (5) | −0.0074 (5) | 0.0047 (5) |
S2 | 0.0080 (2) | 0.0088 (2) | 0.00928 (16) | −0.00075 (18) | 0.00053 (12) | −0.00015 (12) |
O4 | 0.0139 (5) | 0.0188 (6) | 0.0129 (5) | −0.0036 (5) | 0.0053 (4) | −0.0044 (4) |
O5 | 0.0134 (7) | 0.0091 (6) | 0.0200 (5) | −0.0031 (5) | 0.0024 (4) | −0.0026 (4) |
O6 | 0.0129 (5) | 0.0176 (6) | 0.0202 (5) | −0.0001 (5) | −0.0040 (4) | 0.0061 (5) |
Cl1 | 0.0100 (2) | 0.0100 (2) | 0.0084 (3) | 0.000 | 0.000 | 0.000 |
Cl2 | 0.0099 (2) | 0.0099 (2) | 0.0090 (3) | 0.000 | 0.000 | 0.000 |
Cl3 | 0.0107 (3) | 0.0093 (2) | 0.0085 (2) | 0.00012 (15) | 0.000 | 0.000 |
Na1—O1i | 2.3375 (13) | K4—O5xiv | 3.2273 (12) |
Na1—O1ii | 2.3375 (13) | K4—O1xvi | 3.3822 (12) |
Na1—O1iii | 2.3375 (13) | S1—O3 | 1.4465 (11) |
Na1—O1iv | 2.3375 (13) | S1—O2 | 1.4507 (10) |
Na1—Cl1v | 2.6942 (13) | S1—O1 | 1.4526 (13) |
Na1—Cl2 | 2.7260 (12) | S1—S1i | 2.1227 (9) |
Na2—O5vi | 2.3506 (13) | O1—Na1i | 2.3375 (13) |
Na2—O5vii | 2.3506 (13) | O1—K3xvii | 2.9148 (11) |
Na2—O5viii | 2.3506 (13) | O1—K4xviii | 3.3822 (12) |
Na2—O5ix | 2.3506 (13) | O2—K4xix | 2.8429 (11) |
Na2—Cl3ix | 2.6986 (5) | O2—K3xi | 2.8705 (11) |
Na2—Cl3vii | 2.6986 (5) | O2—K4xviii | 3.0664 (12) |
K1—O3viii | 2.8262 (12) | O3—K1i | 2.8262 (12) |
K1—O3ix | 2.8262 (12) | O3—K3i | 2.8995 (11) |
K1—O3x | 2.8262 (12) | O3—K4xx | 3.0290 (11) |
K1—O3i | 2.8262 (12) | S2—O6 | 1.4475 (11) |
K1—Cl3ix | 2.9976 (5) | S2—O5 | 1.4505 (13) |
K1—Cl3i | 2.9976 (5) | S2—O4 | 1.4516 (10) |
K2—O6 | 2.8193 (11) | S2—S2xxi | 2.1176 (9) |
K2—O6viii | 2.8193 (12) | O4—K3xi | 2.7843 (11) |
K2—O6xi | 2.8193 (12) | O4—K3xii | 2.8973 (11) |
K2—O6xii | 2.8193 (11) | O4—K4xxii | 3.0284 (12) |
K2—Cl2 | 2.9746 (8) | O5—Na2vii | 2.3506 (13) |
K2—Cl1 | 2.9978 (9) | O5—K3xxiii | 3.0176 (11) |
K3—O4viii | 2.7843 (11) | O5—K4xxii | 3.2273 (12) |
K3—O2viii | 2.8705 (11) | O6—K4xii | 2.9235 (11) |
K3—O4xii | 2.8973 (11) | O6—K4viii | 2.9941 (11) |
K3—O3i | 2.8995 (11) | Cl1—Na1xxiv | 2.6943 (13) |
K3—O1iii | 2.9148 (11) | Cl1—K4xii | 3.1168 (5) |
K3—O5vi | 3.0176 (11) | Cl1—K4viii | 3.1168 (5) |
K3—Cl3ix | 3.0836 (5) | Cl1—K4xi | 3.1168 (5) |
K3—Cl2 | 3.1088 (5) | Cl2—K3viii | 3.1088 (5) |
K4—O2xiii | 2.8429 (11) | Cl2—K3xi | 3.1088 (5) |
K4—O6xii | 2.9235 (11) | Cl2—K3xii | 3.1088 (5) |
K4—O6xi | 2.9941 (11) | Cl3—Na2vii | 2.6987 (5) |
K4—O4xiv | 3.0284 (12) | Cl3—K1i | 2.9976 (5) |
K4—O3xv | 3.0290 (11) | Cl3—K3xi | 3.0835 (5) |
K4—O2xvi | 3.0664 (12) | Cl3—K3xxv | 3.0835 (5) |
K4—Cl1 | 3.1168 (5) | Cl3—K4xxii | 3.1291 (5) |
K4—Cl3xiv | 3.1291 (5) | Cl3—K4xix | 3.1291 (5) |
O1i—Na1—O1ii | 175.89 (8) | O6xii—K4—Cl3xiv | 90.04 (2) |
O1i—Na1—O1iii | 89.926 (3) | O6xi—K4—Cl3xiv | 130.64 (2) |
O1ii—Na1—O1iii | 89.926 (3) | O4xiv—K4—Cl3xiv | 75.88 (2) |
O1i—Na1—O1iv | 89.926 (3) | O3xv—K4—Cl3xiv | 67.35 (2) |
O1ii—Na1—O1iv | 89.926 (3) | O2xvi—K4—Cl3xiv | 129.05 (2) |
O1iii—Na1—O1iv | 175.89 (8) | Cl1—K4—Cl3xiv | 150.327 (9) |
O1i—Na1—Cl1v | 92.06 (4) | O2xiii—K4—O5xiv | 126.97 (3) |
O1ii—Na1—Cl1v | 92.06 (4) | O6xii—K4—O5xiv | 66.79 (3) |
O1iii—Na1—Cl1v | 92.06 (4) | O6xi—K4—O5xiv | 60.67 (3) |
O1iv—Na1—Cl1v | 92.06 (4) | O4xiv—K4—O5xiv | 45.62 (3) |
O1i—Na1—Cl2 | 87.94 (4) | O3xv—K4—O5xiv | 108.85 (3) |
O1ii—Na1—Cl2 | 87.94 (4) | O2xvi—K4—O5xiv | 116.05 (3) |
O1iii—Na1—Cl2 | 87.94 (4) | Cl1—K4—O5xiv | 119.10 (3) |
O1iv—Na1—Cl2 | 87.94 (4) | Cl3xiv—K4—O5xiv | 71.17 (3) |
Cl1v—Na1—Cl2 | 180.0 | O2xiii—K4—O1xvi | 73.26 (3) |
O5vi—Na2—O5vii | 172.03 (5) | O6xii—K4—O1xvi | 131.92 (3) |
O5vi—Na2—O5viii | 90.277 (4) | O6xi—K4—O1xvi | 107.92 (3) |
O5vii—Na2—O5viii | 90.277 (4) | O4xiv—K4—O1xvi | 113.99 (3) |
O5vi—Na2—O5ix | 90.277 (4) | O3xv—K4—O1xvi | 58.57 (3) |
O5vii—Na2—O5ix | 90.277 (4) | O2xvi—K4—O1xvi | 44.07 (3) |
O5viii—Na2—O5ix | 172.03 (5) | Cl1—K4—O1xvi | 67.76 (3) |
O5vi—Na2—Cl3ix | 86.02 (3) | Cl3xiv—K4—O1xvi | 113.60 (2) |
O5vii—Na2—Cl3ix | 86.02 (3) | O5xiv—K4—O1xvi | 158.77 (2) |
O5viii—Na2—Cl3ix | 93.98 (3) | O3—S1—O2 | 114.34 (7) |
O5ix—Na2—Cl3ix | 93.98 (3) | O3—S1—O1 | 114.44 (7) |
O5vi—Na2—Cl3vii | 93.98 (3) | O2—S1—O1 | 114.16 (7) |
O5vii—Na2—Cl3vii | 93.98 (3) | O3—S1—S1i | 104.87 (6) |
O5viii—Na2—Cl3vii | 86.02 (3) | O2—S1—S1i | 104.25 (5) |
O5ix—Na2—Cl3vii | 86.02 (3) | O1—S1—S1i | 102.99 (6) |
Cl3ix—Na2—Cl3vii | 180.0 | S1—O1—Na1i | 129.73 (8) |
O3viii—K1—O3ix | 143.50 (4) | S1—O1—K3xvii | 113.37 (6) |
O3viii—K1—O3x | 95.627 (13) | Na1i—O1—K3xvii | 101.79 (5) |
O3ix—K1—O3x | 95.627 (13) | S1—O1—K4xviii | 87.35 (5) |
O3viii—K1—O3i | 95.627 (13) | Na1i—O1—K4xviii | 97.05 (5) |
O3ix—K1—O3i | 95.627 (13) | K3xvii—O1—K4xviii | 129.71 (5) |
O3x—K1—O3i | 143.50 (4) | S1—O2—K4xix | 130.46 (6) |
O3viii—K1—Cl3ix | 108.25 (2) | S1—O2—K3xi | 120.98 (6) |
O3ix—K1—Cl3ix | 108.25 (2) | K4xix—O2—K3xi | 101.95 (3) |
O3x—K1—Cl3ix | 71.75 (2) | S1—O2—K4xviii | 100.28 (6) |
O3i—K1—Cl3ix | 71.75 (2) | K4xix—O2—K4xviii | 95.61 (3) |
O3viii—K1—Cl3i | 71.75 (2) | K3xi—O2—K4xviii | 99.20 (3) |
O3ix—K1—Cl3i | 71.75 (2) | S1—O3—K1i | 119.41 (6) |
O3x—K1—Cl3i | 108.25 (2) | S1—O3—K3i | 127.26 (6) |
O3i—K1—Cl3i | 108.25 (2) | K1i—O3—K3i | 93.33 (3) |
Cl3ix—K1—Cl3i | 180.0 | S1—O3—K4xx | 121.17 (6) |
O6—K2—O6viii | 86.115 (12) | K1i—O3—K4xx | 93.38 (3) |
O6—K2—O6xi | 86.115 (12) | K3i—O3—K4xx | 94.04 (3) |
O6viii—K2—O6xi | 149.82 (5) | O6—S2—O5 | 114.61 (7) |
O6—K2—O6xii | 149.82 (5) | O6—S2—O4 | 114.50 (7) |
O6viii—K2—O6xii | 86.115 (12) | O5—S2—O4 | 113.86 (7) |
O6xi—K2—O6xii | 86.115 (12) | O6—S2—S2xxi | 105.01 (5) |
O6—K2—Cl2 | 105.09 (2) | O5—S2—S2xxi | 103.10 (6) |
O6viii—K2—Cl2 | 105.09 (2) | O4—S2—S2xxi | 103.96 (5) |
O6xi—K2—Cl2 | 105.09 (2) | S2—O5—Na2vii | 127.70 (8) |
O6xii—K2—Cl2 | 105.09 (2) | S2—O5—K3xxiii | 111.41 (6) |
O6—K2—Cl1 | 74.91 (2) | Na2vii—O5—K3xxiii | 103.01 (4) |
O6viii—K2—Cl1 | 74.91 (2) | S2—O5—K4xxii | 89.49 (5) |
O6xi—K2—Cl1 | 74.91 (2) | Na2vii—O5—K4xxii | 96.35 (4) |
O6xii—K2—Cl1 | 74.91 (2) | K3xxiii—O5—K4xxii | 131.31 (5) |
Cl2—K2—Cl1 | 180.0 | S2—O6—K2 | 121.42 (6) |
O4viii—K3—O2viii | 155.78 (4) | S2—O6—K4xii | 130.44 (6) |
O4viii—K3—O4xii | 111.31 (5) | K2—O6—K4xii | 90.43 (3) |
O2viii—K3—O4xii | 83.34 (3) | S2—O6—K4viii | 119.60 (6) |
O4viii—K3—O3i | 74.78 (3) | K2—O6—K4viii | 89.00 (3) |
O2viii—K3—O3i | 96.76 (3) | K4xii—O6—K4viii | 95.50 (3) |
O4xii—K3—O3i | 163.31 (3) | Na1xxiv—Cl1—K2 | 180.0 |
O4viii—K3—O1iii | 129.10 (4) | Na1xxiv—Cl1—K4 | 96.394 (14) |
O2viii—K3—O1iii | 65.88 (3) | K2—Cl1—K4 | 83.606 (14) |
O4xii—K3—O1iii | 93.82 (3) | Na1xxiv—Cl1—K4xii | 96.394 (14) |
O3i—K3—O1iii | 71.28 (3) | K2—Cl1—K4xii | 83.606 (14) |
O4viii—K3—O5vi | 75.96 (3) | K4—Cl1—K4xii | 167.21 (3) |
O2viii—K3—O5vi | 94.81 (3) | Na1xxiv—Cl1—K4viii | 96.394 (14) |
O4xii—K3—O5vi | 64.12 (3) | K2—Cl1—K4viii | 83.606 (14) |
O3i—K3—O5vi | 132.27 (4) | K4—Cl1—K4viii | 89.290 (3) |
O1iii—K3—O5vi | 153.02 (3) | K4xii—Cl1—K4viii | 89.289 (3) |
O4viii—K3—Cl3ix | 80.21 (2) | Na1xxiv—Cl1—K4xi | 96.394 (14) |
O2viii—K3—Cl3ix | 75.58 (2) | K2—Cl1—K4xi | 83.606 (14) |
O4xii—K3—Cl3ix | 126.11 (2) | K4—Cl1—K4xi | 89.289 (3) |
O3i—K3—Cl3ix | 69.55 (2) | K4xii—Cl1—K4xi | 89.289 (3) |
O1iii—K3—Cl3ix | 119.90 (3) | K4viii—Cl1—K4xi | 167.21 (3) |
O5vi—K3—Cl3ix | 68.94 (3) | Na1—Cl2—K2 | 180.0 |
O4viii—K3—Cl2 | 74.58 (2) | Na1—Cl2—K3 | 88.815 (12) |
O2viii—K3—Cl2 | 129.30 (2) | K2—Cl2—K3 | 91.185 (12) |
O4xii—K3—Cl2 | 73.07 (2) | Na1—Cl2—K3viii | 88.814 (12) |
O3i—K3—Cl2 | 94.52 (3) | K2—Cl2—K3viii | 91.186 (12) |
O1iii—K3—Cl2 | 71.59 (3) | K3—Cl2—K3viii | 89.976 (1) |
O5vi—K3—Cl2 | 112.82 (3) | Na1—Cl2—K3xi | 88.815 (12) |
Cl3ix—K3—Cl2 | 153.089 (9) | K2—Cl2—K3xi | 91.185 (12) |
O2xiii—K4—O6xii | 73.54 (3) | K3—Cl2—K3xi | 89.975 (1) |
O2xiii—K4—O6xi | 144.06 (3) | K3viii—Cl2—K3xi | 177.63 (2) |
O6xii—K4—O6xi | 81.16 (4) | Na1—Cl2—K3xii | 88.814 (12) |
O2xiii—K4—O4xiv | 150.56 (4) | K2—Cl2—K3xii | 91.186 (12) |
O6xii—K4—O4xiv | 112.11 (3) | K3—Cl2—K3xii | 177.63 (2) |
O6xi—K4—O4xiv | 63.40 (3) | K3viii—Cl2—K3xii | 89.975 (1) |
O2xiii—K4—O3xv | 94.02 (3) | K3xi—Cl2—K3xii | 89.975 (1) |
O6xii—K4—O3xv | 156.61 (4) | Na2vii—Cl3—K1i | 180.0 |
O6xi—K4—O3xv | 117.73 (3) | Na2vii—Cl3—K3xi | 93.559 (11) |
O4xiv—K4—O3xv | 69.49 (3) | K1i—Cl3—K3xi | 86.441 (11) |
O2xiii—K4—O2xvi | 116.96 (4) | Na2vii—Cl3—K3xxv | 93.559 (11) |
O6xii—K4—O2xvi | 140.54 (3) | K1i—Cl3—K3xxv | 86.441 (11) |
O6xi—K4—O2xvi | 69.44 (3) | K3xi—Cl3—K3xxv | 172.88 (2) |
O4xiv—K4—O2xvi | 77.97 (3) | Na2vii—Cl3—K4xxii | 91.846 (11) |
O3xv—K4—O2xvi | 62.72 (3) | K1i—Cl3—K4xxii | 88.154 (10) |
O2xiii—K4—Cl1 | 77.20 (2) | K3xi—Cl3—K4xxii | 88.576 (7) |
O6xii—K4—Cl1 | 71.69 (2) | K3xxv—Cl3—K4xxii | 91.195 (7) |
O6xi—K4—Cl1 | 70.78 (2) | Na2vii—Cl3—K4xix | 91.846 (10) |
O4xiv—K4—Cl1 | 132.25 (2) | K1i—Cl3—K4xix | 88.154 (10) |
O3xv—K4—Cl1 | 125.74 (3) | K3xi—Cl3—K4xix | 91.195 (7) |
O2xvi—K4—Cl1 | 74.06 (2) | K3xxv—Cl3—K4xix | 88.576 (7) |
O2xiii—K4—Cl3xiv | 75.23 (2) | K4xxii—Cl3—K4xix | 176.31 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1/2, y−1/2, −z; (iii) −y+1, x−1/2, −z; (iv) y−1/2, −x+1, −z; (v) x, y, z−1; (vi) x+1/2, y−1/2, −z+1; (vii) −x+1, −y+1, −z+1; (viii) y, −x+1/2, z; (ix) −y+3/2, x, z; (x) x+1/2, y−1/2, −z; (xi) −y+1/2, x, z; (xii) −x+1/2, −y+1/2, z; (xiii) −y+1, x−1/2, −z+1; (xiv) y−1/2, −x, −z+1; (xv) −x+1/2, −y+1/2, z+1; (xvi) x−1/2, y−1/2, −z+1; (xvii) y+1/2, −x+1, −z; (xviii) x+1/2, y+1/2, −z+1; (xix) y+1/2, −x+1, −z+1; (xx) −x+1/2, −y+1/2, z−1; (xxi) −x, −y+1, −z+1; (xxii) −y, x+1/2, −z+1; (xxiii) x−1/2, y+1/2, −z+1; (xxiv) x, y, z+1; (xxv) y, −x+3/2, z. |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection.
References
Božič, M. & Kokol, V. (2008). Dyes Pigments, 76, 299–309. Google Scholar
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
De Vries, J. G. & Kellogg, R. M. (1980). J. Org. Chem. 45, 4126–4129. CrossRef CAS Web of Science Google Scholar
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friedel, C. & Crafts, J. M. (1884). Ann. Chim. 1, 470. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Plater, M. J. & Harrison, W. T. A. (2015). J. Chem. Res. (S), 39, 279–281. Web of Science CrossRef CAS Google Scholar
Rigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stanley, E. (1953). Acta Cryst. 6, 187–196. CrossRef IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.