research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An unexpected oxidation: NaK5Cl2(S2O6)2 revisited

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 January 2017; accepted 10 January 2017; online 13 January 2017)

The title compound, NaK5Cl2(S2O6)2 [systematic name: sodium penta­potassium dichloride bis­(di­thio­nate)], arose as an unexpected product from an organic synthesis that used di­thio­nite (S2O42−) ions as a reducing agent to destroy excess permanganate ions. Compared to the previous study [Stanley (1953[Stanley, E. (1953). Acta Cryst. 6, 187-196.]). Acta Cryst. 6, 187–196], the present tetra­gonal structure exhibits a root 2a × root 2a × c super-cell due to subtle changes in the orientations of the di­thio­nate anions. The structure can be visualized as a three-dimensional framework of [001] columns of alternating trans-NaO4Cl2 and KO4Cl2 octa­hedra cross-linked by the di­thio­nate ions with the inter­stices occupied by KO6Cl2 polyhedra to generate a densely packed three-dimensional framework. The asymmetric unit comprises two sodium ions (site symmetries 4 and -4, four potassium ions (site symmetries = -4, 4, 1 and 1), three chloride ions (site symmetries = 4, 4 and 2) and two half-di­thio­nate ions (all atoms on general positions). Both di­thio­nate ions are completed by crystallographic inversion symmetry. The crystal chosen for data collection was found to be rotationally twinned by 180° about the [100] axis in reciprocal space with a 0.6298 (13):0.3702 (13) domain ratio.

1. Chemical context

As well as their large-scale industrial use in reducing and solublizing vat dyes such as indigo (Božič & Kokol, 2008[Božič, M. & Kokol, V. (2008). Dyes Pigments, 76, 299-309.]), di­thio­nites containing the S2O42− anion (sulfur oxidation state = +3) have long found use as moderately strong reducing agents in organic synthesis (De Vries & Kellogg, 1980[De Vries, J. G. & Kellogg, R. M. (1980). J. Org. Chem. 45, 4126-4129.], and references therein). The title mixed-cation, mixed-anion compound, NaK5Cl2(S2O6)2 (I), containing S2O62− di­thio­nate ions (sulfur oxidation state = +5), arose as a completely unexpected side product from an attempt to oxidize hexa­methyl benzene to mellitic acid as a precursor of synthetic mellite (Plater & Harrison, 2015[Plater, M. J. & Harrison, W. T. A. (2015). J. Chem. Res. (S), 39, 279-281.]): sodium di­thio­nite was added to the reaction to destroy excess permanganate ions (as KMnO4) and the source of the chloride ions was added HCl. To our slight surprise, the structure of the title compound, along with that of the non-isostructural Na2K4Cl2(S2O6)2, was established over 60 years ago (Stanley, 1953[Stanley, E. (1953). Acta Cryst. 6, 187-196.]). This re-determination presents a superstructure of the earlier reported structure, which arises from subtle orientational changes for the di­thio­nate anions.

2. Structural commentary

Compound (I) comprises two sodium ions (Na1 site symmetry = 4, Na2 site symmetry = [\overline{4}]), four potassium ions (site symmetries = [\overline{4}], 4, 1 and 1 for K1, K2, K3 and K4, respectively), three chloride ions (Cl1 and Cl2 with site symmetry 4, Cl3 with site symmetry 2) and two half-di­thio­nate ions (all atoms on general positions) in the asymmetric unit. Selected geometrical data are given in Table 1[link]. Both S2O62− di­thio­nate ions are completed by crystallographic inversion symmetry at the mid-points of their S—S bonds [S1—S1i = 2.1227 (9), S2—S2xiii = 2.1176 (9) Å; see Table 1[link] for symmetry codes] and both exhibit almost ideal staggered conformations about their S—S bonds. The mean S—O bond length (both unique ions) is 1.45 Å and the narrow spread of individual S—O bond lengths from 1.4465 (11) to 1.4526 (13) Å indicates that the negative charges of the anion are delocalized over the three O atoms attached to each S atom (i.e.: we cannot identify localized S=O double bonds and S—O single bonds). In terms of the orientation of the di­thio­nate ions in the unit cell, the S1—O1 bond deviates from the (001) plane by 12.5° and the S2—O5 bond deviates by 10.6° (vide infra).

Table 1
Selected bond lengths (Å)

Na1—O1i 2.3375 (13) K3—Cl2 3.1088 (5)
Na1—Cl1ii 2.6942 (13) K4—O2viii 2.8429 (11)
Na1—Cl2 2.7260 (12) K4—O6vi 2.9235 (11)
Na2—O5iii 2.3506 (13) K4—O6ix 2.9941 (11)
Na2—Cl3iv 2.6986 (5) K4—O4x 3.0284 (12)
K1—O3v 2.8262 (12) K4—O3xi 3.0290 (11)
K1—Cl3iv 2.9976 (5) K4—O2xii 3.0664 (12)
K2—O6 2.8193 (11) K4—Cl1 3.1168 (5)
K2—Cl2 2.9746 (8) K4—Cl3x 3.1291 (5)
K2—Cl1 2.9978 (9) S1—O3 1.4465 (11)
K3—O4v 2.7843 (11) S1—O2 1.4507 (10)
K3—O2v 2.8705 (11) S1—O1 1.4526 (13)
K3—O4vi 2.8973 (11) S1—S1i 2.1227 (9)
K3—O3i 2.8995 (11) S2—O6 1.4475 (11)
K3—O1vii 2.9148 (11) S2—O5 1.4505 (13)
K3—O5iii 3.0176 (11) S2—O4 1.4516 (10)
K3—Cl3iv 3.0836 (5) S2—S2xiii 2.1176 (9)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iv) [-y+{\script{3\over 2}}, x, z]; (v) [y, -x+{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (vii) [-y+1, x-{\script{1\over 2}}, -z]; (viii) [-y+1, x-{\script{1\over 2}}, -z+1]; (ix) [-y+{\script{1\over 2}}, x, z]; (x) [y-{\script{1\over 2}}, -x, -z+1]; (xi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (xii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (xiii) -x, -y+1, -z+1.

The packing for (I) can be described in terms of pseudo layers lying perpendicular to the c-axis direction of the tetra­gonal unit cell. At z ∼ 0 and 1, the S1/O1/O2/O3 di­thio­nate ion and the Na1 and K1 cations reside (Fig. 1[link]); at z ∼1/2, are to be found the S2/O4/O5/O6 di­thio­nate ion and Na2 and K2 (Fig. 2[link]). Between them, at z ∼ 1/4 and 3/4, are K3, K4 and the three chloride ions, which form a distorted square grid (Fig. 3[link]).

[Figure 1]
Figure 1
View down [001] of a slice (−0.15 ≤ z ≤ 0.15) of the structure of (I). Displacement ellipsoids are displayed at the 50% probability level. [Symmetry code: (i) 1 − x, 1 − y, −z.] Note that Na1 lies on a fourfold axis and K1 has [\overline{4}] site symmetry.
[Figure 2]
Figure 2
View down [001] of a slice (0.35 ≤ z ≤ 0.65) of the structure of (I). Displacement ellipsoids are displayed at the 50% probability level. [Symmetry codes: (ii) −x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z.] Note that K2 lies on a fourfold axis and Na2 has [\overline{4}] site symmetry.
[Figure 3]
Figure 3
View down [001] of a slice (0.25 ≤ z ≤ 0.35) of the structure of (I). Displacement ellipsoids are displayed at the 50% probability level. [Symmetry codes: (iii) 1 − x, 1 − y, 1 − z; (iv) [{3\over 2}] − y, x, z; (v) [{1\over 2}] − y, x, z; (vi) [{1\over 2}] + y, 1 − x, 1 − z; (vii) [{1\over 2}] + x, [{1\over 2}] + y, 1 − z.] Note that Cl1 and Cl2 lie on fourfold axes and Cl3 lies on a twofold axis. The chloride ions link to the sodium and potassium ions shown in Figs. 1[link] and 2[link] to generate infinite stacks of alternating NaO4Cl2 and KO4Cl2 octa­hedra.

The extended structure of (I) can be visualized (Fig. 4[link]) as [001] chains of alternating trans-NaO4Cl2 and KO4Cl2 octa­hedra linked via their chloride ions and cross-linked by the di­thio­nate groups. There are two distinct chains: the Na1 and K2 species and their linking chloride ions (Cl1 and Cl2) lie on the fourfold axes at (1/4, 1/4, z) and (3/4, 3/4, z), whereas Na2 and K1 (both site symmetry [\overline{4}]) are connected by Cl3, which lies on the (1/4, 3/4, z) twofold axis and its symmetry-generated clone at (3/4, 1/4, z). As expected, the Na—O bonds (mean = 2.34 Å) are much shorter than the K—O bonds (mean = 2.82 Å). In terms of bond angles, the sodium-centred octa­hedra are almost regular [spread of cis and trans bond angles = 87.94 (4)–92.06 (4) and 175.89 (8)–180°, respectively, for Na1 and 86.02 (3)–93.98 (3) and 172.03 (5)–180°, respectively, for Na2] but the potassium-centred moieties are grossly distorted with ranges of cis and trans angles of 71.75 (2)–108.25 (2) and 143.50 (4)–180°, respectively, for K1 and 74.91 (2)–105.09 (2) and 149.82 (5)–180°, respectively, for K2.

[Figure 4]
Figure 4
Polyhedral view of the structure of (I), showing the [001] chains of NaO4Cl2 octa­hedra (blue) and KO4Cl2 (K1 and K2) octa­hedra (lilac) cross-linked by the di­thio­nate groups. Atoms K3 and K4 are shown as purple spheres.

The structure of (I) is completed by the K3 and K4 potassium ions, which occupy inter­stices in the framework described in the preceding paragraph. The K3 coordination polyhedron approximates to an extremely distorted KO6Cl2 square anti-prism. The coordination for K4 is slightly ambiguous, with six shorter K—O bonds [2.8429 (11)–3.0664 (12) Å] and two K—Cl links [3.1168 (5) and 3.1291 (5) Å] forming a squashed and distorted square anti-prism. There are two further K4⋯O close contacts at 3.2273 (12) and 3.3822 (12) Å [the next-nearest K4⋯O separation after these is 4.3935 (13) Å] but given that these K4⋯O contacts are longer than the K4—Cl bonds and have bond valences (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) of less than 0.05 (Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), we regard them as not significant. The three chloride ions each adopt almost regular ClK5Na octa­hedral geometries.

Bond-valence sum (BVS) data (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for the cations in (I) indicate that the sodium ions in (I) are considerably `overbonded': BVS(Na1) = 1.46 and BVS(Na2) = 1.45 (expected value = 1.0 valence units). Three of the potassium ions are possibly slightly over-bonded (BVS values for K1, K2 and K3 = 1.16, 1.19 and 1.19, respectively) whereas K4 (BVS = 1.01) achieves its expected valence almost exactly.

The previously-reported structure of NaK5Cl2(S2O6)2 (Stanley, 1953[Stanley, E. (1953). Acta Cryst. 6, 187-196.]) was modelled in space group P4/mnc [aS = 8.5621 (6), cS = 11.5288 (6) Å, VS = 845.2 Å3; S = Stanley], thus it may be seen that the present unit cell is a [\surd]2aS × [\surd]2aS × cS super-cell of the Stanley structure with doubled volume. The relative dispositions of the sodium, potassium and chloride ions in the Stanley structure are almost the same as in (I); the main difference occurs in the orientation of the di­thio­nate ions with respect to the (001) plane; in the Stanley structure, this species, which is built up from one unique S atom and two unique O atoms, has 2/m (C2h) point-group symmetry about the mid-point of the S—S bond with the S atom and one of the O atoms lying on the z = 0 mirror plane [compare the deviations from the (001) plane noted above for the S1—O1 and S2—O5 bonds in (I)].

3. Database survey

As already noted, this structure (ICSD reference number 24676) was previously reported by Stanley (1953[Stanley, E. (1953). Acta Cryst. 6, 187-196.]). A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (entries updated to 20 December 2016) revealed 138 crystal structures containing di­thio­nate anions.

4. Synthesis and crystallization

In an attempt to prepare mellitic acid (C6H6O12) as a precursor of synthetic mellite (Plater & Harrison, 2015[Plater, M. J. & Harrison, W. T. A. (2015). J. Chem. Res. (S), 39, 279-281.]), hexa­methyl­benzene (2.0 g, 0.0123 moles) and KMnO4 (23.4 g, 0.148 moles, 12 equiv.) were refluxed in water for 24 h (Friedel & Crafts, 1884[Friedel, C. & Crafts, J. M. (1884). Ann. Chim. 1, 470.]): the organic starting material had a tendency to sublime into the condenser. After cooling, the mixture was treated with excess Na2S2O4 to decompose the unreacted permanganate, which turned the solution brown. It was filtered and then treated with conc. HCl to give a pH of 1. After leaving to crystallize, the solid product (1.34 g) was collected by filtration as colourless blocks of (I). Evidently, di­thio­nite has been oxidized by permanganate to di­thio­nate by an unknown pathway and the sodium and potassium cations and chloride ions (from the hydro­chloric acid) present in the mixture serendipitiously combine with the di­thio­nate ions to form (I).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the atoms in the asymmetric unit were located by SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]): the potassium cations and chloride anions were distinguished in terms of chemically reasonable environments. The crystal chosen for data collection was found to be rotationally twinned by 180° about the [100] axis in reciprocal space with a 0.6298 (13):0.3702 (13) domain ratio.

Table 2
Experimental details

Crystal data
Chemical formula NaK5Cl2(S2O6)2
Mr 609.63
Crystal system, space group Tetragonal, P4/n
Temperature (K) 100
a, c (Å) 12.0421 (1), 11.3925 (2)
V3) 1652.05 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.24
Crystal size (mm) 0.05 × 0.02 × 0.02
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.911, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 1910, 1910, 1834
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.043, 1.06
No. of reflections 1910
No. of parameters 113
Δρmax, Δρmin (e Å−3) 0.35, −0.35
Computer programs: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and ATOMS (Dowty, 1999[Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Sodium pentapotassium dichloride bis(dithionate) top
Crystal data top
NaK5Cl2(S2O6)2Dx = 2.451 Mg m3
Mr = 609.63Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 23162 reflections
a = 12.0421 (1) Åθ = 2.3–27.5°
c = 11.3925 (2) ŵ = 2.24 mm1
V = 1652.05 (4) Å3T = 100 K
Z = 4Block, colourless
F(000) = 12000.05 × 0.02 × 0.02 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1834 reflections with I > 2σ(I)
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1011
Tmin = 0.911, Tmax = 1.000k = 1515
1910 measured reflectionsl = 1414
1910 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0242P)2 + 0.4886P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.35 e Å3
1910 reflectionsΔρmin = 0.35 e Å3
113 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.25000.25000.01268 (9)0.0094 (3)
Na20.75000.25000.50000.0084 (3)
K10.75000.25000.00000.01621 (19)
K20.25000.25000.51306 (5)0.01506 (18)
K30.50130 (4)0.19113 (2)0.24632 (3)0.01042 (8)
K40.18440 (2)0.00129 (4)0.74572 (3)0.01187 (8)
S10.51535 (4)0.58649 (4)0.00758 (3)0.00962 (10)
O10.63276 (11)0.59544 (11)0.02005 (10)0.0160 (3)
O20.48827 (9)0.61202 (9)0.12870 (9)0.0163 (2)
O30.44243 (10)0.63754 (9)0.07768 (9)0.0190 (2)
S20.08586 (4)0.51687 (4)0.49086 (3)0.00872 (10)
O40.10996 (9)0.48723 (9)0.37002 (9)0.0152 (2)
O50.09283 (11)0.63505 (10)0.51433 (9)0.0142 (3)
O60.13966 (9)0.44729 (9)0.57748 (9)0.0169 (2)
Cl10.25000.25000.77619 (6)0.00944 (14)
Cl20.25000.25000.25196 (5)0.00958 (16)
Cl30.25000.75000.26312 (4)0.00951 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0200 (3)0.0200 (3)0.0086 (3)0.0000.0000.000
K20.0183 (3)0.0183 (3)0.0086 (3)0.0000.0000.000
K30.00940 (15)0.01049 (13)0.01136 (15)0.00021 (17)0.00028 (9)0.00154 (12)
K40.01177 (13)0.00978 (15)0.01406 (15)0.00037 (17)0.00130 (13)0.00016 (10)
Na10.0094 (5)0.0094 (5)0.0095 (5)0.0000.0000.000
Na20.0080 (5)0.0080 (5)0.0090 (5)0.0000.0000.000
S10.0104 (2)0.0092 (2)0.00920 (16)0.00190 (19)0.00093 (11)0.00018 (12)
O10.0137 (7)0.0134 (6)0.0208 (5)0.0041 (6)0.0057 (4)0.0037 (5)
O20.0201 (6)0.0156 (5)0.0131 (5)0.0047 (5)0.0054 (5)0.0053 (4)
O30.0211 (6)0.0137 (5)0.0223 (6)0.0004 (5)0.0074 (5)0.0047 (5)
S20.0080 (2)0.0088 (2)0.00928 (16)0.00075 (18)0.00053 (12)0.00015 (12)
O40.0139 (5)0.0188 (6)0.0129 (5)0.0036 (5)0.0053 (4)0.0044 (4)
O50.0134 (7)0.0091 (6)0.0200 (5)0.0031 (5)0.0024 (4)0.0026 (4)
O60.0129 (5)0.0176 (6)0.0202 (5)0.0001 (5)0.0040 (4)0.0061 (5)
Cl10.0100 (2)0.0100 (2)0.0084 (3)0.0000.0000.000
Cl20.0099 (2)0.0099 (2)0.0090 (3)0.0000.0000.000
Cl30.0107 (3)0.0093 (2)0.0085 (2)0.00012 (15)0.0000.000
Geometric parameters (Å, º) top
Na1—O1i2.3375 (13)K4—O5xiv3.2273 (12)
Na1—O1ii2.3375 (13)K4—O1xvi3.3822 (12)
Na1—O1iii2.3375 (13)S1—O31.4465 (11)
Na1—O1iv2.3375 (13)S1—O21.4507 (10)
Na1—Cl1v2.6942 (13)S1—O11.4526 (13)
Na1—Cl22.7260 (12)S1—S1i2.1227 (9)
Na2—O5vi2.3506 (13)O1—Na1i2.3375 (13)
Na2—O5vii2.3506 (13)O1—K3xvii2.9148 (11)
Na2—O5viii2.3506 (13)O1—K4xviii3.3822 (12)
Na2—O5ix2.3506 (13)O2—K4xix2.8429 (11)
Na2—Cl3ix2.6986 (5)O2—K3xi2.8705 (11)
Na2—Cl3vii2.6986 (5)O2—K4xviii3.0664 (12)
K1—O3viii2.8262 (12)O3—K1i2.8262 (12)
K1—O3ix2.8262 (12)O3—K3i2.8995 (11)
K1—O3x2.8262 (12)O3—K4xx3.0290 (11)
K1—O3i2.8262 (12)S2—O61.4475 (11)
K1—Cl3ix2.9976 (5)S2—O51.4505 (13)
K1—Cl3i2.9976 (5)S2—O41.4516 (10)
K2—O62.8193 (11)S2—S2xxi2.1176 (9)
K2—O6viii2.8193 (12)O4—K3xi2.7843 (11)
K2—O6xi2.8193 (12)O4—K3xii2.8973 (11)
K2—O6xii2.8193 (11)O4—K4xxii3.0284 (12)
K2—Cl22.9746 (8)O5—Na2vii2.3506 (13)
K2—Cl12.9978 (9)O5—K3xxiii3.0176 (11)
K3—O4viii2.7843 (11)O5—K4xxii3.2273 (12)
K3—O2viii2.8705 (11)O6—K4xii2.9235 (11)
K3—O4xii2.8973 (11)O6—K4viii2.9941 (11)
K3—O3i2.8995 (11)Cl1—Na1xxiv2.6943 (13)
K3—O1iii2.9148 (11)Cl1—K4xii3.1168 (5)
K3—O5vi3.0176 (11)Cl1—K4viii3.1168 (5)
K3—Cl3ix3.0836 (5)Cl1—K4xi3.1168 (5)
K3—Cl23.1088 (5)Cl2—K3viii3.1088 (5)
K4—O2xiii2.8429 (11)Cl2—K3xi3.1088 (5)
K4—O6xii2.9235 (11)Cl2—K3xii3.1088 (5)
K4—O6xi2.9941 (11)Cl3—Na2vii2.6987 (5)
K4—O4xiv3.0284 (12)Cl3—K1i2.9976 (5)
K4—O3xv3.0290 (11)Cl3—K3xi3.0835 (5)
K4—O2xvi3.0664 (12)Cl3—K3xxv3.0835 (5)
K4—Cl13.1168 (5)Cl3—K4xxii3.1291 (5)
K4—Cl3xiv3.1291 (5)Cl3—K4xix3.1291 (5)
O1i—Na1—O1ii175.89 (8)O6xii—K4—Cl3xiv90.04 (2)
O1i—Na1—O1iii89.926 (3)O6xi—K4—Cl3xiv130.64 (2)
O1ii—Na1—O1iii89.926 (3)O4xiv—K4—Cl3xiv75.88 (2)
O1i—Na1—O1iv89.926 (3)O3xv—K4—Cl3xiv67.35 (2)
O1ii—Na1—O1iv89.926 (3)O2xvi—K4—Cl3xiv129.05 (2)
O1iii—Na1—O1iv175.89 (8)Cl1—K4—Cl3xiv150.327 (9)
O1i—Na1—Cl1v92.06 (4)O2xiii—K4—O5xiv126.97 (3)
O1ii—Na1—Cl1v92.06 (4)O6xii—K4—O5xiv66.79 (3)
O1iii—Na1—Cl1v92.06 (4)O6xi—K4—O5xiv60.67 (3)
O1iv—Na1—Cl1v92.06 (4)O4xiv—K4—O5xiv45.62 (3)
O1i—Na1—Cl287.94 (4)O3xv—K4—O5xiv108.85 (3)
O1ii—Na1—Cl287.94 (4)O2xvi—K4—O5xiv116.05 (3)
O1iii—Na1—Cl287.94 (4)Cl1—K4—O5xiv119.10 (3)
O1iv—Na1—Cl287.94 (4)Cl3xiv—K4—O5xiv71.17 (3)
Cl1v—Na1—Cl2180.0O2xiii—K4—O1xvi73.26 (3)
O5vi—Na2—O5vii172.03 (5)O6xii—K4—O1xvi131.92 (3)
O5vi—Na2—O5viii90.277 (4)O6xi—K4—O1xvi107.92 (3)
O5vii—Na2—O5viii90.277 (4)O4xiv—K4—O1xvi113.99 (3)
O5vi—Na2—O5ix90.277 (4)O3xv—K4—O1xvi58.57 (3)
O5vii—Na2—O5ix90.277 (4)O2xvi—K4—O1xvi44.07 (3)
O5viii—Na2—O5ix172.03 (5)Cl1—K4—O1xvi67.76 (3)
O5vi—Na2—Cl3ix86.02 (3)Cl3xiv—K4—O1xvi113.60 (2)
O5vii—Na2—Cl3ix86.02 (3)O5xiv—K4—O1xvi158.77 (2)
O5viii—Na2—Cl3ix93.98 (3)O3—S1—O2114.34 (7)
O5ix—Na2—Cl3ix93.98 (3)O3—S1—O1114.44 (7)
O5vi—Na2—Cl3vii93.98 (3)O2—S1—O1114.16 (7)
O5vii—Na2—Cl3vii93.98 (3)O3—S1—S1i104.87 (6)
O5viii—Na2—Cl3vii86.02 (3)O2—S1—S1i104.25 (5)
O5ix—Na2—Cl3vii86.02 (3)O1—S1—S1i102.99 (6)
Cl3ix—Na2—Cl3vii180.0S1—O1—Na1i129.73 (8)
O3viii—K1—O3ix143.50 (4)S1—O1—K3xvii113.37 (6)
O3viii—K1—O3x95.627 (13)Na1i—O1—K3xvii101.79 (5)
O3ix—K1—O3x95.627 (13)S1—O1—K4xviii87.35 (5)
O3viii—K1—O3i95.627 (13)Na1i—O1—K4xviii97.05 (5)
O3ix—K1—O3i95.627 (13)K3xvii—O1—K4xviii129.71 (5)
O3x—K1—O3i143.50 (4)S1—O2—K4xix130.46 (6)
O3viii—K1—Cl3ix108.25 (2)S1—O2—K3xi120.98 (6)
O3ix—K1—Cl3ix108.25 (2)K4xix—O2—K3xi101.95 (3)
O3x—K1—Cl3ix71.75 (2)S1—O2—K4xviii100.28 (6)
O3i—K1—Cl3ix71.75 (2)K4xix—O2—K4xviii95.61 (3)
O3viii—K1—Cl3i71.75 (2)K3xi—O2—K4xviii99.20 (3)
O3ix—K1—Cl3i71.75 (2)S1—O3—K1i119.41 (6)
O3x—K1—Cl3i108.25 (2)S1—O3—K3i127.26 (6)
O3i—K1—Cl3i108.25 (2)K1i—O3—K3i93.33 (3)
Cl3ix—K1—Cl3i180.0S1—O3—K4xx121.17 (6)
O6—K2—O6viii86.115 (12)K1i—O3—K4xx93.38 (3)
O6—K2—O6xi86.115 (12)K3i—O3—K4xx94.04 (3)
O6viii—K2—O6xi149.82 (5)O6—S2—O5114.61 (7)
O6—K2—O6xii149.82 (5)O6—S2—O4114.50 (7)
O6viii—K2—O6xii86.115 (12)O5—S2—O4113.86 (7)
O6xi—K2—O6xii86.115 (12)O6—S2—S2xxi105.01 (5)
O6—K2—Cl2105.09 (2)O5—S2—S2xxi103.10 (6)
O6viii—K2—Cl2105.09 (2)O4—S2—S2xxi103.96 (5)
O6xi—K2—Cl2105.09 (2)S2—O5—Na2vii127.70 (8)
O6xii—K2—Cl2105.09 (2)S2—O5—K3xxiii111.41 (6)
O6—K2—Cl174.91 (2)Na2vii—O5—K3xxiii103.01 (4)
O6viii—K2—Cl174.91 (2)S2—O5—K4xxii89.49 (5)
O6xi—K2—Cl174.91 (2)Na2vii—O5—K4xxii96.35 (4)
O6xii—K2—Cl174.91 (2)K3xxiii—O5—K4xxii131.31 (5)
Cl2—K2—Cl1180.0S2—O6—K2121.42 (6)
O4viii—K3—O2viii155.78 (4)S2—O6—K4xii130.44 (6)
O4viii—K3—O4xii111.31 (5)K2—O6—K4xii90.43 (3)
O2viii—K3—O4xii83.34 (3)S2—O6—K4viii119.60 (6)
O4viii—K3—O3i74.78 (3)K2—O6—K4viii89.00 (3)
O2viii—K3—O3i96.76 (3)K4xii—O6—K4viii95.50 (3)
O4xii—K3—O3i163.31 (3)Na1xxiv—Cl1—K2180.0
O4viii—K3—O1iii129.10 (4)Na1xxiv—Cl1—K496.394 (14)
O2viii—K3—O1iii65.88 (3)K2—Cl1—K483.606 (14)
O4xii—K3—O1iii93.82 (3)Na1xxiv—Cl1—K4xii96.394 (14)
O3i—K3—O1iii71.28 (3)K2—Cl1—K4xii83.606 (14)
O4viii—K3—O5vi75.96 (3)K4—Cl1—K4xii167.21 (3)
O2viii—K3—O5vi94.81 (3)Na1xxiv—Cl1—K4viii96.394 (14)
O4xii—K3—O5vi64.12 (3)K2—Cl1—K4viii83.606 (14)
O3i—K3—O5vi132.27 (4)K4—Cl1—K4viii89.290 (3)
O1iii—K3—O5vi153.02 (3)K4xii—Cl1—K4viii89.289 (3)
O4viii—K3—Cl3ix80.21 (2)Na1xxiv—Cl1—K4xi96.394 (14)
O2viii—K3—Cl3ix75.58 (2)K2—Cl1—K4xi83.606 (14)
O4xii—K3—Cl3ix126.11 (2)K4—Cl1—K4xi89.289 (3)
O3i—K3—Cl3ix69.55 (2)K4xii—Cl1—K4xi89.289 (3)
O1iii—K3—Cl3ix119.90 (3)K4viii—Cl1—K4xi167.21 (3)
O5vi—K3—Cl3ix68.94 (3)Na1—Cl2—K2180.0
O4viii—K3—Cl274.58 (2)Na1—Cl2—K388.815 (12)
O2viii—K3—Cl2129.30 (2)K2—Cl2—K391.185 (12)
O4xii—K3—Cl273.07 (2)Na1—Cl2—K3viii88.814 (12)
O3i—K3—Cl294.52 (3)K2—Cl2—K3viii91.186 (12)
O1iii—K3—Cl271.59 (3)K3—Cl2—K3viii89.976 (1)
O5vi—K3—Cl2112.82 (3)Na1—Cl2—K3xi88.815 (12)
Cl3ix—K3—Cl2153.089 (9)K2—Cl2—K3xi91.185 (12)
O2xiii—K4—O6xii73.54 (3)K3—Cl2—K3xi89.975 (1)
O2xiii—K4—O6xi144.06 (3)K3viii—Cl2—K3xi177.63 (2)
O6xii—K4—O6xi81.16 (4)Na1—Cl2—K3xii88.814 (12)
O2xiii—K4—O4xiv150.56 (4)K2—Cl2—K3xii91.186 (12)
O6xii—K4—O4xiv112.11 (3)K3—Cl2—K3xii177.63 (2)
O6xi—K4—O4xiv63.40 (3)K3viii—Cl2—K3xii89.975 (1)
O2xiii—K4—O3xv94.02 (3)K3xi—Cl2—K3xii89.975 (1)
O6xii—K4—O3xv156.61 (4)Na2vii—Cl3—K1i180.0
O6xi—K4—O3xv117.73 (3)Na2vii—Cl3—K3xi93.559 (11)
O4xiv—K4—O3xv69.49 (3)K1i—Cl3—K3xi86.441 (11)
O2xiii—K4—O2xvi116.96 (4)Na2vii—Cl3—K3xxv93.559 (11)
O6xii—K4—O2xvi140.54 (3)K1i—Cl3—K3xxv86.441 (11)
O6xi—K4—O2xvi69.44 (3)K3xi—Cl3—K3xxv172.88 (2)
O4xiv—K4—O2xvi77.97 (3)Na2vii—Cl3—K4xxii91.846 (11)
O3xv—K4—O2xvi62.72 (3)K1i—Cl3—K4xxii88.154 (10)
O2xiii—K4—Cl177.20 (2)K3xi—Cl3—K4xxii88.576 (7)
O6xii—K4—Cl171.69 (2)K3xxv—Cl3—K4xxii91.195 (7)
O6xi—K4—Cl170.78 (2)Na2vii—Cl3—K4xix91.846 (10)
O4xiv—K4—Cl1132.25 (2)K1i—Cl3—K4xix88.154 (10)
O3xv—K4—Cl1125.74 (3)K3xi—Cl3—K4xix91.195 (7)
O2xvi—K4—Cl174.06 (2)K3xxv—Cl3—K4xix88.576 (7)
O2xiii—K4—Cl3xiv75.23 (2)K4xxii—Cl3—K4xix176.31 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y1/2, z; (iii) y+1, x1/2, z; (iv) y1/2, x+1, z; (v) x, y, z1; (vi) x+1/2, y1/2, z+1; (vii) x+1, y+1, z+1; (viii) y, x+1/2, z; (ix) y+3/2, x, z; (x) x+1/2, y1/2, z; (xi) y+1/2, x, z; (xii) x+1/2, y+1/2, z; (xiii) y+1, x1/2, z+1; (xiv) y1/2, x, z+1; (xv) x+1/2, y+1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) y+1/2, x+1, z; (xviii) x+1/2, y+1/2, z+1; (xix) y+1/2, x+1, z+1; (xx) x+1/2, y+1/2, z1; (xxi) x, y+1, z+1; (xxii) y, x+1/2, z+1; (xxiii) x1/2, y+1/2, z+1; (xxiv) x, y, z+1; (xxv) y, x+3/2, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection.

References

First citationBožič, M. & Kokol, V. (2008). Dyes Pigments, 76, 299–309.  Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Vries, J. G. & Kellogg, R. M. (1980). J. Org. Chem. 45, 4126–4129.  CrossRef CAS Web of Science Google Scholar
First citationDowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriedel, C. & Crafts, J. M. (1884). Ann. Chim. 1, 470.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlater, M. J. & Harrison, W. T. A. (2015). J. Chem. Res. (S), 39, 279–281.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStanley, E. (1953). Acta Cryst. 6, 187–196.  CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds