research communications
of dicesium hydrogen citrate from laboratory single-crystal and powder X-ray diffraction data and DFT comparison
aAtlantic International University, Honolulu HI , USA, bDepartment of Chemistry, Northwestern University, Evanston IL , USA, and cIllinois Institute of Technology, Department of Chemistry, 3101 S. Dearborn St., Chicago IL 60616, USA
*Correspondence e-mail: kaduk@polycrystallography.com
The +·C6H6O72−, has been solved using laboratory X-ray single-crystal diffraction data, refined using laboratory powder X-ray data, and optimized using density functional techniques. The Cs+ cation is nine-coordinate, with a bond-valence sum of 0.92 valence units. The CsO9 coordination polyhedra share edges and corners to form a three-dimensional framework. The citrate anion is located on a mirror plane. Its central hydroxy/carboxylate O—H⋯O hydrogen bond is short, and (unusually) intermolecular. The centrosymmetric end-end carboxylate hydrogen bond is exceptionally short (O⋯O = 2.416 Å) and strong. These hydrogen bonds contribute 16.5 and 21.7 kcal mol−1, respectively, to the crystal energy. The hydrophobic methylene groups occupy pockets in the framework.
of dicesium hydrogen citrate, 2CsKeywords: crystal structure; powder diffraction; density functional theory; citrate; cesium.
1. Chemical context
In the course of a systematic study of the crystal structures of group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using X-ray powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously determined structures are being reported separately (Rammohan & Kaduk, 2017a). Eleven of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7(H2O), Rb3C6H5O7, Na5H(C6H5O7)2, and CsH2C6H5O7 – have been published recently (Rammohan & Kaduk, 2016a,b,c,d,e, 2017b,c,d,e,f, Rammohan et al., 2016), and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the Cambridge Structural Database (CSD) (Kaduk & Stern, 2016a,b). We report here synthesis and of another alkali metal citrate salt, 2Cs+·HC6H5O72−.
2. Structural commentary
The . The root-mean-square deviation of the non-hydrogen atoms in the experimentally determined and in the DFT-optimized structures is 0.098 Å (Fig. 2). The largest differences are 0.13 Å, at Cs19 and O11. This good agreement provides strong evidence that the experimentally determined structure is correct (van de Streek & Neumann, 2014). The following discussion uses the DFT-optimized structure.
of the title compound is shown in Fig. 1Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008). The C1—C2—C3 angle of 114.1° is flagged as unusual (average = 104.0 (32), Z-score = 3.1). The Cs+ cation is 9-coordinate, with a bond-valence sum of 0.92 valence units. The location of the citrate anion on a mirror plane and the coordination of all seven oxygen atoms to Cs+ cations presumably are the source of the slight distortion. The citrate anion occurs in the trans,trans conformation, which is one of the two low-energy conformations of an isolated citrate moiety. The citrate anion triply chelates to two Cs+ cations through O12, O17, and O15. The citrate also chelates through O12/O16, O15/O17, and O15/O16. The Mulliken overlap populations and atomic charges indicate that the metal-oxygen bonding is ionic. The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) morphology is blocky, with {020} as major faces. A 4th-order spherical harmonic model was included in the The texture index was 1.016, indicating that was slight in the rotated flat-plate specimen.
3. Supramolecular features
The CsO9 coordination polyhedra share edges and corners to form a three-dimensional framework (Fig. 3). The central hydroxy/carboxylate O—H⋯O hydrogen O17—H18⋯O16 is short, and (unusually) intermolecular. The centrosymmetric end-end O12—H20—O12 hydrogen bond (with H20 situated on an inversion center) is exceptionally short and strong (Table 1). By the correlation of Rammohan & Kaduk (2017a), these hydrogen bonds contribute 16.5 and 21.7 kcal mol−1 to the crystal energy. The hydrophobic methylene groups occupy pockets in the framework (Fig. 3).
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a). A search of the cell of dicesium hydrogen citrate in the Cambridge Structural Database (Groom et al., 2016) (increasing the default tolerance from 1.5 to 2.0%) yielded 100 hits, but combining the cell search with the elements C, H, Cs, and O only yielded no hits.
5. Synthesis and crystallization
Citric acid monohydrate, H3C6H5O7(H2O), (2.0796 g, 10.0 mmol) was dissolved in 20 ml deionized water. Cs2CO3 (3.2582 g, 10.0 mmol, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colourless solution was evaporated to dryness in a 333 K oven. Single crystals were isolated from the colourless solid.
6. Refinement
A single crystal was mounted in inert oil and transferred to the cold gas stream of a Bruker Kappa APEX CCD area detector system equipped with a Cu Kα sealed tube with MX optics. Despite suggestions from multiple programs that the was Pnma, all attempts to refine the structure in this yielded unreasonable disorder and non-positive-definite displacement coefficients. Presumably the poor crystal quality and/or were the source of the problems. The best using single crystal data was obtained using P212121.
A portion of the sample was ground in a mortar and pestle, and blended with NIST SRM 640b silicon internal standard. The powder pattern indicated that the sample contained about 24 wt% CsHC6H5O7 (Rammohan & Kaduk, 2017f), which was included as phase 2 in the The Si internal standard was included as phase 3.
Initial Rietveld refinements used the single crystal P212121 model, but were unstable. The ADDSYM module of PLATON (Spek, 2009) suggested the presence of an additional center of symmetry, and that the correct was Pnma (with a transformation of axes). in the higher-symmetry was uneventful. Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982). The asymmetry correction of Finger et al. (1994) was applied, and microstrain broadening by Stephens (1999). The structure was refined by the using GSAS/EXPGUI (Larson & Von Dreele, 2004; Toby, 2001). All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the using Materials Studio (Dassault Systemes, 2014). The limited resolution of the powder data precluded refining displacement coefficients, which were fixed at typical values for alkali metal citrates. Diffraction data are displayed in Fig. 4. Crystal data, data collection and structure details are summarized in Table 2.
7. DFT calculations
After the et al., 2014). The basis sets for the C, H, and O atoms were those of Peintinger et al. (2012), and the basis set for Cs was that of Sophia et al. (2014). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, used 8 k-points and the B3LYP functional, and took about 13 h. The Uiso values from the were assigned to the optimized fractional coordinates.
a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL14 (DovesiSupporting information
https://doi.org/10.1107/S2056989017000792/wm5358sup1.cif
contains datablocks RAMM016C_publ, ramm016c_DFT, RAMM016C_overall, RAMM016C_phase_1, RAMM016C_phase_2, RAMM016C_phase_3, RAMM016C_p_01. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989017000792/wm5358RAMM016C_phase_3sup2.cml
Data collection: DIFFRAC.Measurement (Bruker, 2009) for RAMM016C_phase_2. Program(s) used to solve structure: SHELXT (Sheldrick, 2015) for RAMM016C_phase_1, RAMM016C_phase_2. Molecular graphics: DIAMOND (Crystal Impact, 2015) for RAMM016C_phase_2. Software used to prepare material for publication: publCIF (Westrip, 2010) for RAMM016C_phase_2.
2Cs+·C6H6O72− | c = 6.5959 (2) Å |
Mr = 455.92 | V = 1031.82 (6) Å3 |
Orthorhombic, Pnma | Z = 4 |
Hall symbol: -P 2ac 2n | Dx = 2.935 Mg m−3 |
a = 9.8466 (3) Å | T = 300 K |
b = 15.8872 (5) Å |
x | y | z | Uiso*/Ueq | ||
C1 | 0.485 (3) | 0.4027 (17) | 0.728 (4) | 0.03* | |
C2 | 0.536 (3) | 0.3251 (14) | 0.837 (3) | 0.03* | |
C3 | 0.503 (4) | 0.25 | 0.697 (5) | 0.03* | |
C6 | 0.595 (3) | 0.25 | 0.507 (4) | 0.03* | |
H7 | 0.4982 | 0.8239 | 0.0123 | 0.039* | |
H8 | 0.3388 | 0.8299 | 0.1638 | 0.039* | |
O11 | 0.389 (2) | 0.4449 (13) | 0.807 (4) | 0.03* | |
O12 | 0.549 (3) | 0.4350 (14) | 0.580 (3) | 0.03* | |
O15 | 0.529 (3) | 0.25 | 0.340 (4) | 0.03* | |
O16 | 0.724 (3) | 0.25 | 0.524 (4) | 0.03* | |
O17 | 0.367 (4) | 0.25 | 0.627 (4) | 0.03* | |
H18 | 0.3147 | 0.25 | 0.748 | 0.039* | |
Cs19 | 0.28419 (18) | 0.39202 (15) | 0.2547 (10) | 0.02* | |
H20 | 0.5 | 0.5 | 0.5 | 0.039* |
C1—C2 | 1.510 (2) | O12—H20 | 1.25 (2) |
C1—O11 | 1.270 (2) | O15—C6 | 1.275 (6) |
C1—O12 | 1.273 (6) | O15—Cs19 | 3.35 (2) |
C2—C1 | 1.510 (2) | O15—Cs19ii | 3.35 (2) |
C2—C3 | 1.540 (2) | O15—Cs19viii | 3.43 (2) |
C2—H7i | 1.05 (3) | O15—Cs19vii | 3.43 (2) |
C2—H8i | 1.23 (3) | O16—C6 | 1.273 (6) |
C3—C2 | 1.540 (2) | O16—Cs19viii | 2.971 (18) |
C3—C2ii | 1.540 (2) | O16—Cs19vii | 2.971 (18) |
C3—C6 | 1.550 (2) | O17—C3 | 1.421 (6) |
C3—O17 | 1.421 (6) | O17—H18 | 0.95 (3) |
C6—C3 | 1.550 (2) | O17—Cs19 | 3.43 (2) |
C6—O15 | 1.275 (6) | O17—Cs19ii | 3.43 (2) |
C6—O16 | 1.273 (6) | H18—O17 | 0.95 (3) |
H7—C2iii | 1.05 (3) | Cs19—O11ix | 3.24 (2) |
H8—C2iii | 1.23 (3) | Cs19—O11 | 3.88 (2) |
O11—C1 | 1.270 (2) | Cs19—O11x | 3.12 (2) |
O11—Cs19 | 3.88 (2) | Cs19—O12 | 3.44 (3) |
O11—Cs19iv | 3.24 (2) | Cs19—O12vi | 3.38 (3) |
O11—Cs19v | 3.12 (2) | Cs19—O12xi | 3.27 (2) |
O12—C1 | 1.273 (6) | Cs19—O15 | 3.35 (2) |
O12—Cs19 | 3.44 (3) | Cs19—O15xii | 3.43 (2) |
O12—Cs19vi | 3.38 (3) | Cs19—O16xii | 2.971 (18) |
O12—Cs19vii | 3.27 (2) | Cs19—O17 | 3.43 (2) |
C2—C1—O11 | 119 (2) | Cs19—O17—Cs19ii | 82.2 (6) |
C2—C1—O12 | 122 (2) | O11ix—Cs19—O11x | 93.4 (5) |
O11—C1—O12 | 118 (3) | O11ix—Cs19—O12 | 106.0 (6) |
C1—C2—C3 | 106.4 (17) | O11ix—Cs19—O12vi | 85.9 (5) |
C1—C2—H7iii | 111 (2) | O11ix—Cs19—O12xv | 63.7 (6) |
C1—C2—H8iii | 106 (2) | O11ix—Cs19—O15 | 95.7 (6) |
C3—C2—H7iii | 119 (3) | O11ix—Cs19—O15xvi | 103.7 (6) |
C3—C2—H8iii | 105 (2) | O11ix—Cs19—O16xvi | 72.3 (6) |
H7iii—C2—H8iii | 108.8 (18) | O11ix—Cs19—O17 | 138.4 (6) |
C2—C3—C2ii | 102 (3) | O11x—Cs19—O12 | 100.4 (6) |
C2—C3—C6 | 111.1 (18) | O11x—Cs19—O12vi | 63.6 (6) |
C2—C3—O17 | 113 (2) | O11x—Cs19—O12xv | 60.9 (6) |
C2ii—C3—C6 | 111.1 (18) | O11x—Cs19—O15 | 159.0 (5) |
C2ii—C3—O17 | 113 (2) | O11x—Cs19—O15xvi | 99.6 (5) |
C6—C3—O17 | 107 (2) | O11x—Cs19—O16xvi | 126.1 (6) |
C3—C6—O15 | 114 (3) | O11x—Cs19—O17 | 126.6 (6) |
C3—C6—O16 | 121 (3) | O12—Cs19—O12vi | 43.1 (7) |
C1—O11—Cs19iv | 118.2 (17) | O12—Cs19—O12xv | 156.1 (7) |
C1—O11—Cs19v | 143.2 (19) | O12—Cs19—O15 | 58.9 (5) |
Cs19iv—O11—Cs19v | 98.2 (7) | O12—Cs19—O15xvi | 142.9 (5) |
C1—O12—Cs19 | 92 (3) | O12—Cs19—O16xvi | 133.4 (7) |
C1—O12—Cs19vi | 109 (2) | O12—Cs19—O17 | 60.4 (5) |
C1—O12—Cs19xiii | 141.7 (17) | O12vi—Cs19—O12xv | 113.1 (5) |
Cs19—O12—Cs19vi | 136.9 (7) | O12vi—Cs19—O15 | 98.2 (5) |
Cs19—O12—Cs19xiii | 94.3 (6) | O12vi—Cs19—O15xvi | 161.4 (5) |
C6—O15—Cs19 | 120.8 (14) | O12vi—Cs19—O16xvi | 156.0 (7) |
C6—O15—Cs19ii | 120.8 (14) | O12vi—Cs19—O17 | 100.8 (6) |
C6—O15—Cs19xiv | 77.5 (15) | O12xv—Cs19—O15 | 139.8 (6) |
C6—O15—Cs19xiii | 77.5 (15) | O12xv—Cs19—O15xvi | 59.7 (6) |
Cs19—O15—Cs19ii | 84.7 (7) | O12xv—Cs19—O16xvi | 66.4 (6) |
Cs19—O15—Cs19xiv | 159.7 (9) | O12xv—Cs19—O17 | 141.9 (7) |
Cs19—O15—Cs19xiii | 93.05 (18) | O15—Cs19—O15xvi | 96.59 (14) |
Cs19ii—O15—Cs19xiv | 93.05 (18) | O15—Cs19—O16xvi | 74.7 (5) |
Cs19ii—O15—Cs19xiii | 159.7 (9) | O15—Cs19—O17 | 42.8 (7) |
Cs19xiv—O15—Cs19xiii | 82.1 (6) | O15xvi—Cs19—O16xvi | 40.7 (6) |
C6—O16—Cs19xiv | 98.2 (15) | O15xvi—Cs19—O17 | 82.6 (7) |
C6—O16—Cs19xiii | 98.2 (15) | O16xvi—Cs19—O17 | 89.5 (5) |
Cs19xiv—O16—Cs19xiii | 98.8 (8) | O12—H20—O12vi | 180.0 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x, −y+1/2, z; (iii) −x+1, y+1/2, −z+1; (iv) x, y, z+1; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, y, −z+1/2; (viii) x+1/2, −y+1/2, −z+1/2; (ix) x, y, z−1; (x) −x+1/2, −y+1, z−1/2; (xi) x−1/2, y, −z+1/2; (xii) x−1/2, −y+1/2, −z+1/2; (xiii) x+3/2, y, −z+3/2; (xiv) x+3/2, −y+3/2, −z+3/2; (xv) x+1/2, y, −z+3/2; (xvi) x+1/2, −y+3/2, −z+3/2. |
C6H7CsO7 | c = 5.1682 Å |
Mr = 324.02 | V = 927.17 Å3 |
Orthorhombic, Pna21 | Z = 4 |
Hall symbol: P 2c -2n | Dx = 2.321 Mg m−3 |
a = 8.7362 Å | T = 300 K |
b = 20.5351 Å |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1877 | 0.0459 | 0.281 | 0.065* | |
C2 | 0.3465 | 0.0446 | 0.166 | 0.009* | |
C3 | 0.4423 | 0.0965 | 0.304 | 0.009* | |
C4 | 0.6089 | 0.0896 | 0.212 | 0.009* | |
C5 | 0.7062 | 0.1464 | 0.317 | 0.065* | |
C6 | 0.3805 | 0.1664 | 0.241 | 0.065* | |
O7 | 0.1302 | −0.0065 | 0.333 | 0.065* | |
O8 | 0.1066 | 0.0875 | 0.223 | 0.065* | |
O9 | 0.371 | 0.1861 | 0.009 | 0.065* | |
O10 | 0.351 | 0.2038 | 0.417 | 0.065* | |
O11 | 0.7164 | 0.1977 | 0.185 | 0.065* | |
O12 | 0.7293 | 0.1503 | 0.553 | 0.065* | |
O13 | 0.4359 | 0.0847 | 0.577 | 0.065* | |
H14 | 0.4007 | −0.0062 | 0.1958 | 0.012* | |
H15 | 0.3339 | 0.0538 | −0.0498 | 0.012* | |
H16 | 0.4251 | 0.132 | 0.7041 | 0.085* | |
H17 | 0.6502 | 0.0404 | 0.2549 | 0.012* | |
H18 | 0.6012 | 0.0942 | −0.0229 | 0.012* | |
Cs19 | 0.04535 | 0.20017 | 0.7594 | 0.0503* | |
H20 | 0.0694 | −0.0507 | 0.5686 | 0.039* | |
H21 | 0.67528 | 0.243 | 0.2524 | 0.039* |
C1—C2 | 1.5095 | O12—C5 | 1.2389 |
C1—O7 | 1.2176 | O12—O11 | 2.1395 |
C1—O8 | 1.1496 | O12—Cs19i | 3.1321 |
C2—C1 | 1.5095 | O12—Cs19v | 3.6262 |
C2—C3 | 1.5313 | O13—C3 | 1.4327 |
C2—H14 | 1.1559 | O13—H16 | 1.1764 |
C2—H15 | 1.1365 | H14—C2 | 1.1559 |
C3—C2 | 1.5313 | H14—H15 | 1.8627 |
C3—C4 | 1.5377 | H15—C2 | 1.1365 |
C3—C6 | 1.5678 | H15—H14 | 1.8627 |
C3—O13 | 1.4327 | H16—O9viii | 1.9851 |
C4—C3 | 1.5377 | H16—O13 | 1.1764 |
C4—C5 | 1.5419 | H16—Cs19 | 3.6122 |
C4—H17 | 1.0955 | H16—Cs19v | 3.6143 |
C4—H18 | 1.2195 | H17—C4 | 1.0955 |
C5—C4 | 1.5419 | H17—H18 | 1.8615 |
C5—O11 | 1.2582 | H18—C4 | 1.2195 |
C5—O12 | 1.2389 | H18—H17 | 1.8615 |
C5—Cs19i | 3.9020 | Cs19—C5ix | 3.9020 |
C5—H21 | 2.0297 | Cs19—C6 | 4.0289 |
C6—C3 | 1.5678 | Cs19—C6viii | 3.9050 |
C6—O9 | 1.2682 | Cs19—C6x | 3.972 |
C6—O10 | 1.2181 | Cs19—O8 | 3.6503 |
C6—Cs19ii | 3.9050 | Cs19—O8viii | 3.3735 |
C6—Cs19 | 4.0289 | Cs19—O9viii | 3.1371 |
C6—Cs19iii | 3.972 | Cs19—O9x | 3.0722 |
O7—C1 | 1.2176 | Cs19—O10 | 3.2042 |
O7—O8 | 2.0228 | Cs19—O10vi | 3.1469 |
O7—H20 | 1.6089 | Cs19—O11xi | 3.6193 |
O8—C1 | 1.1496 | Cs19—O11vi | 3.9299 |
O8—O7 | 2.0228 | Cs19—O11x | 3.3867 |
O8—Cs19ii | 3.3735 | Cs19—O12ix | 3.1321 |
O8—Cs19 | 3.6503 | Cs19—O12vi | 3.6262 |
O8—H20iv | 1.8900 | Cs19—H16 | 3.6122 |
O9—C6 | 1.2682 | Cs19—H16vi | 3.6143 |
O9—O10 | 2.1468 | Cs19—Cs19ii | 5.1682 |
O9—H16ii | 1.9851 | Cs19—Cs19viii | 5.1682 |
O9—Cs19ii | 3.1371 | Cs19—Cs19vi | 4.8238 |
O9—Cs19iii | 3.0722 | Cs19—Cs19v | 4.8238 |
O10—C6 | 1.2181 | Cs19—H20xii | 3.6027 |
O10—O9 | 2.1468 | Cs19—H21vi | 3.0848 |
O10—Cs19 | 3.2042 | Cs19—H21x | 3.0236 |
O10—Cs19v | 3.1469 | H20—O7 | 1.6089 |
O10—H21vi | 2.0673 | H20—O8xii | 1.8900 |
O11—C5 | 1.2582 | H20—Cs19iv | 3.6027 |
O11—O12 | 2.1395 | H21—C5 | 2.0297 |
O11—Cs19vii | 3.6193 | H21—O10v | 2.0673 |
O11—Cs19iii | 3.3867 | H21—O11 | 1.0563 |
O11—Cs19v | 3.9299 | H21—Cs19iii | 3.0236 |
O11—H21 | 1.0563 | H21—Cs19v | 3.0848 |
C2—C1—O7 | 116.7731 | O9x—Cs19—O10vi | 59.4859 |
C2—C1—O8 | 118.4826 | O9x—Cs19—O11xi | 50.343 |
O7—C1—O8 | 117.3875 | O9x—Cs19—O11x | 58.3514 |
C1—C2—C3 | 107.8548 | O9x—Cs19—O12ix | 87.3923 |
C1—C2—H14 | 109.8752 | O9x—Cs19—Cs19ii | 114.8276 |
C1—C2—H15 | 107.1232 | O9x—Cs19—Cs19viii | 65.1724 |
C3—C2—H14 | 110.0087 | O9x—Cs19—Cs19vi | 39.5136 |
C3—C2—H15 | 113.2215 | O9x—Cs19—Cs19v | 97.2637 |
H14—C2—H15 | 108.6894 | O9x—Cs19—H21vi | 104.5664 |
C2—C3—C4 | 108.0085 | O9x—Cs19—H21x | 62.5411 |
C2—C3—C6 | 110.6267 | O10—Cs19—O10vi | 97.1512 |
C2—C3—O13 | 108.6407 | O10—Cs19—O11xi | 176.0673 |
C4—C3—C6 | 110.2492 | O10—Cs19—O11x | 88.658 |
C4—C3—O13 | 109.0185 | O10—Cs19—O12ix | 123.6515 |
C6—C3—O13 | 110.2395 | O10—Cs19—Cs19ii | 56.4773 |
C3—C4—C5 | 110.0762 | O10—Cs19—Cs19viii | 123.5227 |
C3—C4—H17 | 109.5203 | O10—Cs19—Cs19vi | 138.138 |
C3—C4—H18 | 104.3867 | O10—Cs19—Cs19v | 40.1379 |
C5—C4—H17 | 116.414 | O10—Cs19—H21vi | 38.3222 |
C5—C4—H18 | 108.7936 | O10—Cs19—H21x | 98.2538 |
H17—C4—H18 | 106.9223 | O10vi—Cs19—O11xi | 85.5337 |
C4—C5—O11 | 118.7882 | O10vi—Cs19—O11x | 102.4289 |
C4—C5—O12 | 119.0252 | O10vi—Cs19—O12ix | 62.4676 |
O11—C5—O12 | 117.9141 | O10vi—Cs19—Cs19ii | 55.783 |
C3—C6—O9 | 120.7284 | O10vi—Cs19—Cs19viii | 124.217 |
C3—C6—O10 | 119.6742 | O10vi—Cs19—Cs19vi | 41.0239 |
O9—C6—O10 | 119.4116 | O10vi—Cs19—Cs19v | 102.8686 |
C1—O7—H20 | 143.3052 | O10vi—Cs19—H21vi | 58.9237 |
C1—O8—Cs19ii | 142.4291 | O10vi—Cs19—H21x | 115.7564 |
C6—O9—Cs19ii | 118.5237 | O11xi—Cs19—O11x | 87.9548 |
C6—O9—Cs19iii | 127.377 | O11xi—Cs19—O12ix | 60.1617 |
Cs19ii—O9—Cs19iii | 101.9433 | O11xi—Cs19—Cs19ii | 127.4261 |
C6—O10—Cs19 | 125.0345 | O11xi—Cs19—Cs19viii | 52.5739 |
C6—O10—Cs19v | 134.4984 | O11xi—Cs19—Cs19vi | 44.5151 |
Cs19—O10—Cs19v | 98.8382 | O11xi—Cs19—Cs19v | 136.4653 |
C5—O11—Cs19vii | 113.4209 | O11xi—Cs19—H21vi | 144.4574 |
C5—O11—Cs19iii | 147.075 | O11xi—Cs19—H21x | 77.9576 |
C5—O11—H21 | 122.3074 | O11x—Cs19—O12ix | 144.3543 |
Cs19vii—O11—Cs19iii | 86.9593 | O11x—Cs19—Cs19ii | 130.5024 |
Cs19vii—O11—H21 | 117.2654 | O11x—Cs19—Cs19viii | 49.4976 |
Cs19iii—O11—H21 | 61.2332 | O11x—Cs19—Cs19vi | 97.8643 |
C5—O12—Cs19i | 120.0024 | O11x—Cs19—Cs19v | 48.5256 |
C3—O13—H16 | 114.4184 | O11x—Cs19—H21vi | 98.9194 |
O8viii—Cs19—O9viii | 60.0614 | O11x—Cs19—H21x | 17.8322 |
O8viii—Cs19—O9x | 107.5655 | O12ix—Cs19—Cs19ii | 70.0882 |
O8viii—Cs19—O10 | 106.0226 | O12ix—Cs19—Cs19viii | 109.9118 |
O8viii—Cs19—O10vi | 156.1712 | O12ix—Cs19—Cs19vi | 48.7345 |
O8viii—Cs19—O11xi | 71.6205 | O12ix—Cs19—Cs19v | 159.551 |
O8viii—Cs19—O11x | 83.8832 | O12ix—Cs19—H21vi | 99.1359 |
O8viii—Cs19—O12ix | 99.0601 | O12ix—Cs19—H21x | 138.084 |
O8viii—Cs19—Cs19ii | 135.2548 | Cs19ii—Cs19—Cs19viii | 180.0 |
O8viii—Cs19—Cs19viii | 44.7452 | Cs19ii—Cs19—Cs19vi | 90.0 |
O8viii—Cs19—Cs19vi | 115.7608 | Cs19ii—Cs19—Cs19v | 90.0 |
O8viii—Cs19—Cs19v | 98.4731 | Cs19ii—Cs19—H21vi | 31.8529 |
O8viii—Cs19—H21vi | 143.5507 | Cs19ii—Cs19—H21x | 147.4235 |
O8viii—Cs19—H21x | 66.8377 | Cs19viii—Cs19—Cs19vi | 90.0 |
O9viii—Cs19—O9x | 110.3022 | Cs19viii—Cs19—Cs19v | 90.0 |
O9viii—Cs19—O10 | 58.2306 | Cs19viii—Cs19—H21vi | 148.1471 |
O9viii—Cs19—O10vi | 141.1001 | Cs19viii—Cs19—H21x | 32.5765 |
O9viii—Cs19—O11xi | 117.9614 | Cs19vi—Cs19—Cs19v | 129.7922 |
O9viii—Cs19—O11x | 52.3974 | Cs19vi—Cs19—H21vi | 99.9449 |
O9viii—Cs19—O12ix | 155.4194 | Cs19vi—Cs19—H21x | 100.1484 |
O9viii—Cs19—Cs19ii | 114.2806 | Cs19v—Cs19—H21vi | 60.4158 |
O9viii—Cs19—Cs19viii | 65.7194 | Cs19v—Cs19—H21x | 59.755 |
O9viii—Cs19—Cs19vi | 149.3491 | H21vi—Cs19—H21x | 115.5707 |
O9viii—Cs19—Cs19v | 38.5431 | O11—H21—Cs19iii | 100.9346 |
O9viii—Cs19—H21vi | 92.8906 | O11—H21—Cs19v | 137.5968 |
O9viii—Cs19—H21x | 49.3517 | Cs19iii—H21—Cs19v | 115.5707 |
O9x—Cs19—O10 | 128.8561 |
Symmetry codes: (i) x+1, y, z; (ii) x, y, z−1; (iii) x+1/2, −y+1/2, z−1; (iv) −x, −y, z−1/2; (v) x+1/2, −y+1/2, z; (vi) x−1/2, −y+1/2, z; (vii) x+1, y, z−1; (viii) x, y, z+1; (ix) x−1, y, z; (x) x−1/2, −y+1/2, z+1; (xi) x−1, y, z+1; (xii) −x, −y, z+1/2. |
Si | V = 160.20 Å3 |
Mr = 28.09 | Z = 8 |
Cubic, Fd3m | Dx = 2.329 Mg m−3 |
Hall symbol: -F 4vw 2vw | T = 300 K |
a = 5.43105 Å |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.125 | 0.125 | 0.125 | 0.01* |
Si1—Si1i | 2.3517 | Si1—Si1iii | 2.3517 |
Si1—Si1ii | 2.3517 | Si1—Si1iv | 2.3517 |
Si1i—Si1—Si1ii | 109.4712 | Si1ii—Si1—Si1iii | 109.4712 |
Si1i—Si1—Si1iii | 109.4712 | Si1ii—Si1—Si1iv | 109.4712 |
Si1i—Si1—Si1iv | 109.4712 | Si1iii—Si1—Si1iv | 109.4712 |
Symmetry codes: (i) x+1/4, y+1/4, −z; (ii) −z, x+1/4, y+1/4; (iii) y+1/4, −z, x+1/4; (iv) −x, −y, −z. |
C6H6Cs2O7 | b = 15.8872 Å |
Mr = 455.92 | c = 6.5959 Å |
Orthorhombic, Pnma | V = 1031.82 Å3 |
Hall symbol: -P 2ac 2n | Z = 4 |
a = 9.8466 Å | T = 300 K |
x | y | z | Uiso*/Ueq | ||
C1 | 0.48590 | 0.40995 | 0.73839 | 0.03000* | |
C2 | 0.53924 | 0.32807 | 0.82202 | 0.03000* | |
H7 | 0.49922 | 0.81932 | 0.02513 | 0.03900* | |
H8 | 0.35061 | 0.83203 | 0.17117 | 0.03900* | |
O11 | 0.39754 | 0.45079 | 0.82841 | 0.03000* | |
O12 | 0.54129 | 0.43424 | 0.56822 | 0.03000* | |
Cs19 | 0.28894 | 0.39193 | 0.26540 | 0.02000* | |
C3 | 0.50141 | 0.25000 | 0.69412 | 0.03000* | |
C6 | 0.58468 | 0.25000 | 0.49542 | 0.03000* | |
O15 | 0.52651 | 0.25000 | 0.32675 | 0.03000* | |
O16 | 0.71279 | 0.25000 | 0.52034 | 0.03000* | |
O17 | 0.36003 | 0.25000 | 0.64658 | 0.03000* | |
H18 | 0.30582 | 0.25000 | 0.77454 | 0.03900* | |
H20 | 0.50000 | 0.50000 | 0.50000 | 0.03900* |
C1—C2 | 1.507 | O12—H20 | 1.208 |
C1—O11 | 1.237 | C3—C2iii | 1.546 |
C1—O12 | 1.306 | C3—C6 | 1.546 |
C2—C3 | 1.546 | C3—O17 | 1.427 |
C2—H7i | 1.086 | C6—O15 | 1.251 |
C2—H8i | 1.087 | C6—O16 | 1.272 |
H7—C2ii | 1.086 | O17—H18 | 0.999 |
H8—C2ii | 1.087 | H20—O12iv | 1.208 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1; (iii) x, −y+1/2, z; (iv) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H20···O12iv | 1.208 | 1.208 | 2.416 | 180.0 |
O17—H18···O16v | 0.999 | 1.634 | 2.632 | 178.2 |
Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, −z+3/2. |
Footnotes
‡Present address: CCDC, 174 Frelinghuysen Rd., Piscataway NJ 00854 USA.
Acknowledgements
We thank Andrey Rogachev for the use of computing resources at IIT.
References
Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317. Web of Science CrossRef CAS Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Howard, C. J. (1982). J. Appl. Cryst. 15, 615–620. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457–1446458. Google Scholar
Kaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460–1446461. Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Peintinger, M. F., Vilela Oliveira, D. & Bredow, T. (2012). Comput. Chem., doi: 10.1002/jcc.23153. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted. Google Scholar
Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230. CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253. CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286–290. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133–136. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sophia, G., Baranek, P., Sarrazin, M., Rerat, M. & Dovesi, R. (2014). Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.