research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dicesium hydrogen citrate from laboratory single-crystal and powder X-ray diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu HI , USA, bDepartment of Chemistry, Northwestern University, Evanston IL , USA, and cIllinois Institute of Technology, Department of Chemistry, 3101 S. Dearborn St., Chicago IL 60616, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 January 2017; accepted 16 January 2017; online 20 January 2017)

The crystal structure of dicesium hydrogen citrate, 2Cs+·C6H6O72−, has been solved using laboratory X-ray single-crystal diffraction data, refined using laboratory powder X-ray data, and optimized using density functional techniques. The Cs+ cation is nine-coordinate, with a bond-valence sum of 0.92 valence units. The CsO9 coordination polyhedra share edges and corners to form a three-dimensional framework. The citrate anion is located on a mirror plane. Its central hy­droxy/carboxyl­ate O—H⋯O hydrogen bond is short, and (unusually) inter­molecular. The centrosymmetric end-end carboxyl­ate hydrogen bond is exceptionally short (O⋯O = 2.416 Å) and strong. These hydrogen bonds contribute 16.5 and 21.7 kcal mol−1, respectively, to the crystal energy. The hydro­phobic methyl­ene groups occupy pockets in the framework.

1. Chemical context

In the course of a systematic study of the crystal structures of group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using X-ray powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously determined structures are being reported separately (Rammohan & Kaduk, 2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]). Eleven of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7(H2O), Rb3C6H5O7, Na5H(C6H5O7)2, and CsH2C6H5O7 – have been published recently (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170-173.],b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403-406.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793-796.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854-857.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159-1162.], 2017b[Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92-95.],c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.],d[Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250-253.],e[Rammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286-290.],f[Rammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133-136.], Rammohan et al., 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]), and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the Cambridge Structural Database (CSD) (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457-1446458.],b[Kaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460-1446461.]). We report here synthesis and crystal structure of another alkali metal citrate salt, 2Cs+·HC6H5O72−.

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the experimentally determined and in the DFT-optimized structures is 0.098 Å (Fig. 2[link]). The largest differences are 0.13 Å, at Cs19 and O11. This good agreement provides strong evidence that the experimentally determined structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). The following discussion uses the DFT-optimized structure.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of dicesium hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The C1—C2—C3 angle of 114.1° is flagged as unusual (average = 104.0 (32), Z-score = 3.1). The Cs+ cation is 9-coordinate, with a bond-valence sum of 0.92 valence units. The location of the citrate anion on a mirror plane and the coordination of all seven oxygen atoms to Cs+ cations presumably are the source of the slight distortion. The citrate anion occurs in the trans,trans conformation, which is one of the two low-energy conformations of an isolated citrate moiety. The citrate anion triply chelates to two Cs+ cations through O12, O17, and O15. The citrate also chelates through O12/O16, O15/O17, and O15/O16. The Mulliken overlap populations and atomic charges indicate that the metal-oxygen bonding is ionic. The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology is blocky, with {020} as major faces. A 4th-order spherical harmonic model was included in the refinement. The texture index was 1.016, indicating that preferred orientation was slight in the rotated flat-plate specimen.

3. Supra­molecular features

The CsO9 coordination polyhedra share edges and corners to form a three-dimensional framework (Fig. 3[link]). The central hy­droxy/carboxyl­ate O—H⋯O hydrogen O17—H18⋯O16 is short, and (unusually) inter­molecular. The centrosymmetric end-end O12—H20—O12 hydrogen bond (with H20 situated on an inversion center) is exceptionally short and strong (Table 1[link]). By the correlation of Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]), these hydrogen bonds contribute 16.5 and 21.7 kcal mol−1 to the crystal energy. The hydro­phobic methyl­ene groups occupy pockets in the framework (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H20⋯O12i 1.208 1.208 2.416 180.0
O17—H18⋯O16ii 0.999 1.634 2.632 178.2
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Crystal structure of Cs2HC6H5O7, viewed down the a-axis. CsO9 polyhedra are green.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]). A reduced cell search of the cell of dicesium hydrogen citrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 100 hits, but combining the cell search with the elements C, H, Cs, and O only yielded no hits.

5. Synthesis and crystallization

Citric acid monohydrate, H3C6H5O7(H2O), (2.0796 g, 10.0 mmol) was dissolved in 20 ml deionized water. Cs2CO3 (3.2582 g, 10.0 mmol, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colourless solution was evaporated to dryness in a 333 K oven. Single crystals were isolated from the colourless solid.

6. Refinement

A single crystal was mounted in inert oil and transferred to the cold gas stream of a Bruker Kappa APEX CCD area detector system equipped with a Cu Kα sealed tube with MX optics. Despite suggestions from multiple programs that the space group was Pnma, all attempts to refine the structure in this space group yielded unreasonable disorder and non-positive-definite displacement coefficients. Presumably the poor crystal quality and/or twinning were the source of the problems. The best refinement using single crystal data was obtained using space group P212121.

A portion of the sample was ground in a mortar and pestle, and blended with NIST SRM 640b silicon inter­nal standard. The powder pattern indicated that the sample contained about 24 wt% CsHC6H5O7 (Rammohan & Kaduk, 2017f[Rammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133-136.]), which was included as phase 2 in the refinement. The Si inter­nal standard was included as phase 3.

Initial Rietveld refinements used the single crystal P212121 model, but were unstable. The ADDSYM module of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) suggested the presence of an additional center of symmetry, and that the correct space group was Pnma (with a transformation of axes). Refinement in the higher-symmetry space group was uneventful. Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied, and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The structure was refined by the Rietveld method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA.]). The limited resolution of the powder data precluded refining displacement coefficients, which were fixed at typical values for alkali metal citrates. Diffraction data are displayed in Fig. 4[link]. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

  Phase 1 Phase 2
Crystal data
Chemical formula 2Cs+·C6H6O72− C6H7CsO7
Mr 455.92 324.02
Crystal system, space group Orthorhombic, Pnma Orthorhombic, Pna21
Temperature (K) 300 300
a, b, c (Å) 9.8466 (3), 15.8872 (5), 6.5959 (2) 8.7362, 20.5351, 5.1682
V3) 1031.82 (6) 927.17
Z 4 4
Radiation type Kα1, Kα2, λ = 1.540629, 1.544451 Å Kα1, Kα2, λ = 1.540629, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 24 × 24 Flat sheet, 24 × 24
 
Data collection
Diffractometer Bruker D2 Phaser Bruker D2 Phaser
Specimen mounting Standard PMMA holder Standard PMMA holder
Data collection mode Reflection Reflection
Scan method Step Step
2θ values (°) 2θmin = 5.042 2θmax = 70.050 2θstep = 0.020 2θmin = 5.042 2θmax = 70.050 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.050, Rwp = 0.062, Rexp = 0.030, R(F2) = 0.081, χ2 = 4.494 Rp = 0.050, Rwp = 0.062, Rexp = 0.030, R(F2) = 0.081, χ2 = 4.494
No. of parameters 57 57
No. of restraints 18 18
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Rietveld plot for the refinement of Cs2HC6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The row of black tick marks indicates the reflection positions, the row of red tick marks indicates the positions of the CsH2C6H5O7 impurity peaks, and the blue tick marks indicate the Si inter­nal standard peaks.

7. DFT calculations

After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the C, H, and O atoms were those of Peintinger et al. (2012[Peintinger, M. F., Vilela Oliveira, D. & Bredow, T. (2012). Comput. Chem., doi: 10.1002/jcc.23153.]), and the basis set for Cs was that of Sophia et al. (2014[Sophia, G., Baranek, P., Sarrazin, M., Rerat, M. & Dovesi, R. (2014). Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites.]). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, used 8 k-points and the B3LYP functional, and took about 13 h. The Uiso values from the Rietveld refinement were assigned to the optimized fractional coordinates.

Supporting information


Computing details top

Data collection: DIFFRAC.Measurement (Bruker, 2009) for RAMM016C_phase_2. Program(s) used to solve structure: SHELXT (Sheldrick, 2015) for RAMM016C_phase_1, RAMM016C_phase_2. Molecular graphics: DIAMOND (Crystal Impact, 2015) for RAMM016C_phase_2. Software used to prepare material for publication: publCIF (Westrip, 2010) for RAMM016C_phase_2.

(RAMM016C_phase_1) Dicesium hydrogen citrate top
Crystal data top
2Cs+·C6H6O72c = 6.5959 (2) Å
Mr = 455.92V = 1031.82 (6) Å3
Orthorhombic, PnmaZ = 4
Hall symbol: -P 2ac 2nDx = 2.935 Mg m3
a = 9.8466 (3) ÅT = 300 K
b = 15.8872 (5) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.485 (3)0.4027 (17)0.728 (4)0.03*
C20.536 (3)0.3251 (14)0.837 (3)0.03*
C30.503 (4)0.250.697 (5)0.03*
C60.595 (3)0.250.507 (4)0.03*
H70.49820.82390.01230.039*
H80.33880.82990.16380.039*
O110.389 (2)0.4449 (13)0.807 (4)0.03*
O120.549 (3)0.4350 (14)0.580 (3)0.03*
O150.529 (3)0.250.340 (4)0.03*
O160.724 (3)0.250.524 (4)0.03*
O170.367 (4)0.250.627 (4)0.03*
H180.31470.250.7480.039*
Cs190.28419 (18)0.39202 (15)0.2547 (10)0.02*
H200.50.50.50.039*
Geometric parameters (Å, º) top
C1—C21.510 (2)O12—H201.25 (2)
C1—O111.270 (2)O15—C61.275 (6)
C1—O121.273 (6)O15—Cs193.35 (2)
C2—C11.510 (2)O15—Cs19ii3.35 (2)
C2—C31.540 (2)O15—Cs19viii3.43 (2)
C2—H7i1.05 (3)O15—Cs19vii3.43 (2)
C2—H8i1.23 (3)O16—C61.273 (6)
C3—C21.540 (2)O16—Cs19viii2.971 (18)
C3—C2ii1.540 (2)O16—Cs19vii2.971 (18)
C3—C61.550 (2)O17—C31.421 (6)
C3—O171.421 (6)O17—H180.95 (3)
C6—C31.550 (2)O17—Cs193.43 (2)
C6—O151.275 (6)O17—Cs19ii3.43 (2)
C6—O161.273 (6)H18—O170.95 (3)
H7—C2iii1.05 (3)Cs19—O11ix3.24 (2)
H8—C2iii1.23 (3)Cs19—O113.88 (2)
O11—C11.270 (2)Cs19—O11x3.12 (2)
O11—Cs193.88 (2)Cs19—O123.44 (3)
O11—Cs19iv3.24 (2)Cs19—O12vi3.38 (3)
O11—Cs19v3.12 (2)Cs19—O12xi3.27 (2)
O12—C11.273 (6)Cs19—O153.35 (2)
O12—Cs193.44 (3)Cs19—O15xii3.43 (2)
O12—Cs19vi3.38 (3)Cs19—O16xii2.971 (18)
O12—Cs19vii3.27 (2)Cs19—O173.43 (2)
C2—C1—O11119 (2)Cs19—O17—Cs19ii82.2 (6)
C2—C1—O12122 (2)O11ix—Cs19—O11x93.4 (5)
O11—C1—O12118 (3)O11ix—Cs19—O12106.0 (6)
C1—C2—C3106.4 (17)O11ix—Cs19—O12vi85.9 (5)
C1—C2—H7iii111 (2)O11ix—Cs19—O12xv63.7 (6)
C1—C2—H8iii106 (2)O11ix—Cs19—O1595.7 (6)
C3—C2—H7iii119 (3)O11ix—Cs19—O15xvi103.7 (6)
C3—C2—H8iii105 (2)O11ix—Cs19—O16xvi72.3 (6)
H7iii—C2—H8iii108.8 (18)O11ix—Cs19—O17138.4 (6)
C2—C3—C2ii102 (3)O11x—Cs19—O12100.4 (6)
C2—C3—C6111.1 (18)O11x—Cs19—O12vi63.6 (6)
C2—C3—O17113 (2)O11x—Cs19—O12xv60.9 (6)
C2ii—C3—C6111.1 (18)O11x—Cs19—O15159.0 (5)
C2ii—C3—O17113 (2)O11x—Cs19—O15xvi99.6 (5)
C6—C3—O17107 (2)O11x—Cs19—O16xvi126.1 (6)
C3—C6—O15114 (3)O11x—Cs19—O17126.6 (6)
C3—C6—O16121 (3)O12—Cs19—O12vi43.1 (7)
C1—O11—Cs19iv118.2 (17)O12—Cs19—O12xv156.1 (7)
C1—O11—Cs19v143.2 (19)O12—Cs19—O1558.9 (5)
Cs19iv—O11—Cs19v98.2 (7)O12—Cs19—O15xvi142.9 (5)
C1—O12—Cs1992 (3)O12—Cs19—O16xvi133.4 (7)
C1—O12—Cs19vi109 (2)O12—Cs19—O1760.4 (5)
C1—O12—Cs19xiii141.7 (17)O12vi—Cs19—O12xv113.1 (5)
Cs19—O12—Cs19vi136.9 (7)O12vi—Cs19—O1598.2 (5)
Cs19—O12—Cs19xiii94.3 (6)O12vi—Cs19—O15xvi161.4 (5)
C6—O15—Cs19120.8 (14)O12vi—Cs19—O16xvi156.0 (7)
C6—O15—Cs19ii120.8 (14)O12vi—Cs19—O17100.8 (6)
C6—O15—Cs19xiv77.5 (15)O12xv—Cs19—O15139.8 (6)
C6—O15—Cs19xiii77.5 (15)O12xv—Cs19—O15xvi59.7 (6)
Cs19—O15—Cs19ii84.7 (7)O12xv—Cs19—O16xvi66.4 (6)
Cs19—O15—Cs19xiv159.7 (9)O12xv—Cs19—O17141.9 (7)
Cs19—O15—Cs19xiii93.05 (18)O15—Cs19—O15xvi96.59 (14)
Cs19ii—O15—Cs19xiv93.05 (18)O15—Cs19—O16xvi74.7 (5)
Cs19ii—O15—Cs19xiii159.7 (9)O15—Cs19—O1742.8 (7)
Cs19xiv—O15—Cs19xiii82.1 (6)O15xvi—Cs19—O16xvi40.7 (6)
C6—O16—Cs19xiv98.2 (15)O15xvi—Cs19—O1782.6 (7)
C6—O16—Cs19xiii98.2 (15)O16xvi—Cs19—O1789.5 (5)
Cs19xiv—O16—Cs19xiii98.8 (8)O12—H20—O12vi180.0
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z; (iii) x+1, y+1/2, z+1; (iv) x, y, z+1; (v) x+1/2, y+1, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x, y, z1; (x) x+1/2, y+1, z1/2; (xi) x1/2, y, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) x+3/2, y, z+3/2; (xiv) x+3/2, y+3/2, z+3/2; (xv) x+1/2, y, z+3/2; (xvi) x+1/2, y+3/2, z+3/2.
(RAMM016C_phase_2) cesium dihydrogen citrate top
Crystal data top
C6H7CsO7c = 5.1682 Å
Mr = 324.02V = 927.17 Å3
Orthorhombic, Pna21Z = 4
Hall symbol: P 2c -2nDx = 2.321 Mg m3
a = 8.7362 ÅT = 300 K
b = 20.5351 Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18770.04590.2810.065*
C20.34650.04460.1660.009*
C30.44230.09650.3040.009*
C40.60890.08960.2120.009*
C50.70620.14640.3170.065*
C60.38050.16640.2410.065*
O70.13020.00650.3330.065*
O80.10660.08750.2230.065*
O90.3710.18610.0090.065*
O100.3510.20380.4170.065*
O110.71640.19770.1850.065*
O120.72930.15030.5530.065*
O130.43590.08470.5770.065*
H140.40070.00620.19580.012*
H150.33390.05380.04980.012*
H160.42510.1320.70410.085*
H170.65020.04040.25490.012*
H180.60120.09420.02290.012*
Cs190.045350.200170.75940.0503*
H200.06940.05070.56860.039*
H210.675280.2430.25240.039*
Geometric parameters (Å, º) top
C1—C21.5095O12—C51.2389
C1—O71.2176O12—O112.1395
C1—O81.1496O12—Cs19i3.1321
C2—C11.5095O12—Cs19v3.6262
C2—C31.5313O13—C31.4327
C2—H141.1559O13—H161.1764
C2—H151.1365H14—C21.1559
C3—C21.5313H14—H151.8627
C3—C41.5377H15—C21.1365
C3—C61.5678H15—H141.8627
C3—O131.4327H16—O9viii1.9851
C4—C31.5377H16—O131.1764
C4—C51.5419H16—Cs193.6122
C4—H171.0955H16—Cs19v3.6143
C4—H181.2195H17—C41.0955
C5—C41.5419H17—H181.8615
C5—O111.2582H18—C41.2195
C5—O121.2389H18—H171.8615
C5—Cs19i3.9020Cs19—C5ix3.9020
C5—H212.0297Cs19—C64.0289
C6—C31.5678Cs19—C6viii3.9050
C6—O91.2682Cs19—C6x3.972
C6—O101.2181Cs19—O83.6503
C6—Cs19ii3.9050Cs19—O8viii3.3735
C6—Cs194.0289Cs19—O9viii3.1371
C6—Cs19iii3.972Cs19—O9x3.0722
O7—C11.2176Cs19—O103.2042
O7—O82.0228Cs19—O10vi3.1469
O7—H201.6089Cs19—O11xi3.6193
O8—C11.1496Cs19—O11vi3.9299
O8—O72.0228Cs19—O11x3.3867
O8—Cs19ii3.3735Cs19—O12ix3.1321
O8—Cs193.6503Cs19—O12vi3.6262
O8—H20iv1.8900Cs19—H163.6122
O9—C61.2682Cs19—H16vi3.6143
O9—O102.1468Cs19—Cs19ii5.1682
O9—H16ii1.9851Cs19—Cs19viii5.1682
O9—Cs19ii3.1371Cs19—Cs19vi4.8238
O9—Cs19iii3.0722Cs19—Cs19v4.8238
O10—C61.2181Cs19—H20xii3.6027
O10—O92.1468Cs19—H21vi3.0848
O10—Cs193.2042Cs19—H21x3.0236
O10—Cs19v3.1469H20—O71.6089
O10—H21vi2.0673H20—O8xii1.8900
O11—C51.2582H20—Cs19iv3.6027
O11—O122.1395H21—C52.0297
O11—Cs19vii3.6193H21—O10v2.0673
O11—Cs19iii3.3867H21—O111.0563
O11—Cs19v3.9299H21—Cs19iii3.0236
O11—H211.0563H21—Cs19v3.0848
C2—C1—O7116.7731O9x—Cs19—O10vi59.4859
C2—C1—O8118.4826O9x—Cs19—O11xi50.343
O7—C1—O8117.3875O9x—Cs19—O11x58.3514
C1—C2—C3107.8548O9x—Cs19—O12ix87.3923
C1—C2—H14109.8752O9x—Cs19—Cs19ii114.8276
C1—C2—H15107.1232O9x—Cs19—Cs19viii65.1724
C3—C2—H14110.0087O9x—Cs19—Cs19vi39.5136
C3—C2—H15113.2215O9x—Cs19—Cs19v97.2637
H14—C2—H15108.6894O9x—Cs19—H21vi104.5664
C2—C3—C4108.0085O9x—Cs19—H21x62.5411
C2—C3—C6110.6267O10—Cs19—O10vi97.1512
C2—C3—O13108.6407O10—Cs19—O11xi176.0673
C4—C3—C6110.2492O10—Cs19—O11x88.658
C4—C3—O13109.0185O10—Cs19—O12ix123.6515
C6—C3—O13110.2395O10—Cs19—Cs19ii56.4773
C3—C4—C5110.0762O10—Cs19—Cs19viii123.5227
C3—C4—H17109.5203O10—Cs19—Cs19vi138.138
C3—C4—H18104.3867O10—Cs19—Cs19v40.1379
C5—C4—H17116.414O10—Cs19—H21vi38.3222
C5—C4—H18108.7936O10—Cs19—H21x98.2538
H17—C4—H18106.9223O10vi—Cs19—O11xi85.5337
C4—C5—O11118.7882O10vi—Cs19—O11x102.4289
C4—C5—O12119.0252O10vi—Cs19—O12ix62.4676
O11—C5—O12117.9141O10vi—Cs19—Cs19ii55.783
C3—C6—O9120.7284O10vi—Cs19—Cs19viii124.217
C3—C6—O10119.6742O10vi—Cs19—Cs19vi41.0239
O9—C6—O10119.4116O10vi—Cs19—Cs19v102.8686
C1—O7—H20143.3052O10vi—Cs19—H21vi58.9237
C1—O8—Cs19ii142.4291O10vi—Cs19—H21x115.7564
C6—O9—Cs19ii118.5237O11xi—Cs19—O11x87.9548
C6—O9—Cs19iii127.377O11xi—Cs19—O12ix60.1617
Cs19ii—O9—Cs19iii101.9433O11xi—Cs19—Cs19ii127.4261
C6—O10—Cs19125.0345O11xi—Cs19—Cs19viii52.5739
C6—O10—Cs19v134.4984O11xi—Cs19—Cs19vi44.5151
Cs19—O10—Cs19v98.8382O11xi—Cs19—Cs19v136.4653
C5—O11—Cs19vii113.4209O11xi—Cs19—H21vi144.4574
C5—O11—Cs19iii147.075O11xi—Cs19—H21x77.9576
C5—O11—H21122.3074O11x—Cs19—O12ix144.3543
Cs19vii—O11—Cs19iii86.9593O11x—Cs19—Cs19ii130.5024
Cs19vii—O11—H21117.2654O11x—Cs19—Cs19viii49.4976
Cs19iii—O11—H2161.2332O11x—Cs19—Cs19vi97.8643
C5—O12—Cs19i120.0024O11x—Cs19—Cs19v48.5256
C3—O13—H16114.4184O11x—Cs19—H21vi98.9194
O8viii—Cs19—O9viii60.0614O11x—Cs19—H21x17.8322
O8viii—Cs19—O9x107.5655O12ix—Cs19—Cs19ii70.0882
O8viii—Cs19—O10106.0226O12ix—Cs19—Cs19viii109.9118
O8viii—Cs19—O10vi156.1712O12ix—Cs19—Cs19vi48.7345
O8viii—Cs19—O11xi71.6205O12ix—Cs19—Cs19v159.551
O8viii—Cs19—O11x83.8832O12ix—Cs19—H21vi99.1359
O8viii—Cs19—O12ix99.0601O12ix—Cs19—H21x138.084
O8viii—Cs19—Cs19ii135.2548Cs19ii—Cs19—Cs19viii180.0
O8viii—Cs19—Cs19viii44.7452Cs19ii—Cs19—Cs19vi90.0
O8viii—Cs19—Cs19vi115.7608Cs19ii—Cs19—Cs19v90.0
O8viii—Cs19—Cs19v98.4731Cs19ii—Cs19—H21vi31.8529
O8viii—Cs19—H21vi143.5507Cs19ii—Cs19—H21x147.4235
O8viii—Cs19—H21x66.8377Cs19viii—Cs19—Cs19vi90.0
O9viii—Cs19—O9x110.3022Cs19viii—Cs19—Cs19v90.0
O9viii—Cs19—O1058.2306Cs19viii—Cs19—H21vi148.1471
O9viii—Cs19—O10vi141.1001Cs19viii—Cs19—H21x32.5765
O9viii—Cs19—O11xi117.9614Cs19vi—Cs19—Cs19v129.7922
O9viii—Cs19—O11x52.3974Cs19vi—Cs19—H21vi99.9449
O9viii—Cs19—O12ix155.4194Cs19vi—Cs19—H21x100.1484
O9viii—Cs19—Cs19ii114.2806Cs19v—Cs19—H21vi60.4158
O9viii—Cs19—Cs19viii65.7194Cs19v—Cs19—H21x59.755
O9viii—Cs19—Cs19vi149.3491H21vi—Cs19—H21x115.5707
O9viii—Cs19—Cs19v38.5431O11—H21—Cs19iii100.9346
O9viii—Cs19—H21vi92.8906O11—H21—Cs19v137.5968
O9viii—Cs19—H21x49.3517Cs19iii—H21—Cs19v115.5707
O9x—Cs19—O10128.8561
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1/2, y+1/2, z1; (iv) x, y, z1/2; (v) x+1/2, y+1/2, z; (vi) x1/2, y+1/2, z; (vii) x+1, y, z1; (viii) x, y, z+1; (ix) x1, y, z; (x) x1/2, y+1/2, z+1; (xi) x1, y, z+1; (xii) x, y, z+1/2.
(RAMM016C_phase_3) silicon top
Crystal data top
SiV = 160.20 Å3
Mr = 28.09Z = 8
Cubic, Fd3mDx = 2.329 Mg m3
Hall symbol: -F 4vw 2vwT = 300 K
a = 5.43105 Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.1250.1250.1250.01*
Geometric parameters (Å, º) top
Si1—Si1i2.3517Si1—Si1iii2.3517
Si1—Si1ii2.3517Si1—Si1iv2.3517
Si1i—Si1—Si1ii109.4712Si1ii—Si1—Si1iii109.4712
Si1i—Si1—Si1iii109.4712Si1ii—Si1—Si1iv109.4712
Si1i—Si1—Si1iv109.4712Si1iii—Si1—Si1iv109.4712
Symmetry codes: (i) x+1/4, y+1/4, z; (ii) z, x+1/4, y+1/4; (iii) y+1/4, z, x+1/4; (iv) x, y, z.
(ramm016c_DFT) top
Crystal data top
C6H6Cs2O7b = 15.8872 Å
Mr = 455.92c = 6.5959 Å
Orthorhombic, PnmaV = 1031.82 Å3
Hall symbol: -P 2ac 2nZ = 4
a = 9.8466 ÅT = 300 K
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.485900.409950.738390.03000*
C20.539240.328070.822020.03000*
H70.499220.819320.025130.03900*
H80.350610.832030.171170.03900*
O110.397540.450790.828410.03000*
O120.541290.434240.568220.03000*
Cs190.288940.391930.265400.02000*
C30.501410.250000.694120.03000*
C60.584680.250000.495420.03000*
O150.526510.250000.326750.03000*
O160.712790.250000.520340.03000*
O170.360030.250000.646580.03000*
H180.305820.250000.774540.03900*
H200.500000.500000.500000.03900*
Bond lengths (Å) top
C1—C21.507O12—H201.208
C1—O111.237C3—C2iii1.546
C1—O121.306C3—C61.546
C2—C31.546C3—O171.427
C2—H7i1.086C6—O151.251
C2—H8i1.087C6—O161.272
H7—C2ii1.086O17—H180.999
H8—C2ii1.087H20—O12iv1.208
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x, y+1/2, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H20···O12iv1.2081.2082.416180.0
O17—H18···O16v0.9991.6342.632178.2
Symmetry codes: (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z+3/2.
 

Footnotes

Present address: CCDC, 174 Frelinghuysen Rd., Piscataway NJ 00854 USA.

Acknowledgements

We thank Andrey Rogachev for the use of computing resources at IIT.

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  Web of Science CrossRef CAS Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457–1446458.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460–1446461.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeintinger, M. F., Vilela Oliveira, D. & Bredow, T. (2012). Comput. Chem., doi: 10.1002/jcc.23153.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286–290.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133–136.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSophia, G., Baranek, P., Sarrazin, M., Rerat, M. & Dovesi, R. (2014). Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds