research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­bis­­[(1,2,5,6-η)-cyclo­octa-1,5-diene]iridium(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: william.jones@rochester.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 January 2017; accepted 16 January 2017; online 27 January 2017)

The title complex, [IrCl(C8H12)2], was synthesized directly from the reaction of IrCl3·3H2O with a large excess of cod (cod = cyclo­octa-1,5-diene) in alcoholic solvent. Large yellow needles were obtained by the slow cooling of a hot solution. Based on the positions of the chloride ligand and the mid-points of the four C=C bonds, the mol­ecule adopts a five-coordinate geometry that is midway between square pyramidal and trigonal bipyramidal. The material crystallizes in the ortho­rhom­bic space group Pbca with one mol­ecule per asymmetric unit in a general position and shows no significant inter­molecular inter­actions. Individual mol­ecules are aligned along [010], and these rows form a pseudo-hexa­gonal packing arrangement.

1. Chemical context

First reported in 1966 (Winkhaus & Singer, 1966[Winkhaus, G. & Singer, H. (1966). Chem. Ber. 99, 3610-3618.]) [Ir(cod)(μ-Cl)]2 (cod = 1,5-cyclo­octa­diene, C8H12) is perhaps the most common organometallic precursor used in the synthesis of a variety of organoiridium compounds (Leigh & Richards, 1982[Leigh, G. J. & Richards, R. L. (1982). In Comprehensive Organometallic Chemistry: the synthesis, reactions, and structures of organometallic compounds, edited by G. Wilkinson, F. G. A. Stone & E. W. Abel, Vol. 5, pp. 599-603. New York: Pergamon Press.]). [Ir(cod)(μ-Cl)]2 can be prepared using either Na2IrCl6·6H2O or IrCl3·3H2O as the metal-containing precursor (Herde et al., 1974[Herde, J. L., Lambert, J. C. & Senoff, C. V. (1974). Inorg. Synth. 15, 18-20.]). A few years later it was reported that a cyclo­octene-ligated dimer [Ir(C8H14)2(μ-Cl)]2 had been synthesized from the reaction of ammonium hexa­chlorido­iridiate(III) hydrate, (NH4)3IrCl6·H2O, with cyclo­octene in a mixture of 2-propanol and water (Onderdelinden & van der Ent, 1972[Onderdelinden, A. L. & van der Ent, A. (1972). Inorg. Chim. Acta, 6, 420-426.]). In all three cases, IrIV or IrIII is reduced to IrI by oxidation of the alcoholic solvent. Upon suspension in pure cod, [Ir(C8H14)2(μ-Cl)]2 reacted to form mononuclear IrCl(cod)2, which was then characterized by infra-red spectroscopy and elemental analysis (Onderdelinden & van der Ent, 1972[Onderdelinden, A. L. & van der Ent, A. (1972). Inorg. Chim. Acta, 6, 420-426.]). Analogous to thermally unstable IrCl(C2H4)4, which releases ethyl­ene to form the (slightly) more stable dimer [Ir(C2H4)2(μ-Cl)]2 (Onderdelinden & van der Ent, 1972[Onderdelinden, A. L. & van der Ent, A. (1972). Inorg. Chim. Acta, 6, 420-426.]), IrCl(cod)2 readily generates stable [Ir(cod)(μ-Cl)]2 with the loss of one equivalent of cod per iridium. We have found that if Herde's preparation using IrCl3·3H2O is carried out with a large excess of cod (10 ×), the product isolated after removal of the alcoholic solvent is IrCl(cod)2 (Fig. 1[link]). This was apparent as the red–orange reaction mixture, which contained a mixture of red [Ir(cod)(μ-Cl)]2 and yellow IrCl(cod)2, became pale yellow. Recrystallization from refluxing methanol/cod (7:1, v:v) followed by cooling produced yellow needles of IrCl(cod)2 suitable for diffraction studies.

[Figure 1]
Figure 1
Reaction scheme showing the formation of the mixture of [Ir(cod)(μ-Cl)]2 and IrCl(cod)2. As the ethanol is removed under vacuum the solution becomes rich in cod, which drives the formation of IrCl(cod)2. Loss of cod regenerates the dimer.

Herein we report the isolation and results of the single structure determination of mononuclear IrCl(cod)2 and compare it to related IrX(diene)2 (X = Cl, SnMe3, SnCl3) complexes.

[Scheme 1]

2. Structural commentary

Our single-crystal X-ray diffraction study confirmed the mol­ecule to be mononuclear IrCl(cod)2, in which the two cod ligands are bound in an η2:η2 fashion (Fig. 2[link]). The material crystallizes in the ortho­rhom­bic space group Pbca, with one mol­ecule per asymmetric unit in a general position. The five-coordinate complex adopts a geometry that is midway between square pyramidal (SP) and trigonal bipyramidal (TBP), with a τ5 parameter of 0.52 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), calculated using the mid-points of the C=C double bonds and the axial chlorido ligand. The elongation of the cod double bonds (Table 1[link]) compared to those of non-coordinating cod, 1.333 (4) and 1.334 (4) Å (Byrn et al., 1990[Byrn, M. P., Curtis, C. J., Khan, S. I., Sawin, P. A., Tsurumi, R. & Strouse, C. E. (1990). J. Am. Chem. Soc. 112, 1865-1874.]), or to that of free ethyl­ene, 1.333 Å (Lide, 2002–2003[Lide, D. R. (2002-2003). Chem. Phys. 83rd ed. Florida: CRC Press.]), is consistent with back donation to the π* orbitals from a low-valent iridium atom, formally IrI. The elongations are asymmetric, with one double bond from each cod ligand being larger than the other by 0.048 (6) and 0.029 (6) Å, respectively, for cod ligands C1—C8 and C9—C16. Likewise the distances between Ir and the mid-points of the C=C bonds also show this asymmetry with two shorter distances, Ir—(C1/C2) = 2.047 (4) and Ir—(C9/C10) = 2.069 (4) Å, and two longer distances, Ir—(C5/C6) = 2.138 (4) and Ir—(C13/C14) = 2.141 (4) Å (Table 2[link]). This is likely due to its inter­mediacy between the geometric extremes of SP and TBP. Ideal SP geometry (τ5 = 0) would have very similar Ir–mid-point(C=C) distances as they would involve the same metal and ligand orbitals, while ideal TBP geometry (τ5 = 1) would involve different orbitals, dependent upon on whether the ligand's C=C bond lay in an axial or an equatorial position. We see the former (SP) in Ir(SnCl3)(nbd)2 (nbd = norbornadiene; Malosh et al., 2013[Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98-105.]), for which τ5 = 0.06 and the Ir–mid-point(C=C) distances are similar, ranging from 2.067 (4) to 2.089 (4) Å. An example towards TBP is found in [IrCl(cod)(CC*)]+ (CC* = [(η5-C5H5)Fe(η6-(1,1-di(2-propen­yl)-3-buten­yl)benzene)]; Marcén et al., 2002[Marcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. & Astruc, D. (2002). Organometallics, 21, 326-330.]), for which τ5 = 0.76.

Table 1
Selected bond lengths (Å)

Ir1—Cl1 2.5573 (8) C9—C10 1.418 (5)
C1—C2 1.437 (5) C13—C14 1.389 (4)
C5—C6 1.389 (4)    

Table 2
Comparison of bond lengths (Å) and τ5 parameters for selected five-coordinate Ir complexes containing four substituted ethyl­ene ligands and a terminal chlorido or stannato ligand, according to the labeling in Fig. 3[link]

Feature IrCl(cod)2 COIRSNa DIVPABb DIVNUTc DIVPIJd PUYCOBe
MXf 2.5573 (8) 2.642 (2) 2.7090 (4) 2.6606 (4) 2.5850 (9) 2.3883 (15)
M—[A] 2.047 (4) 2.068 (31) 2.062 (4) 2.067 (4) 2.101 (5) 2.048 (8)
M—[B] 2.138 (4) 2.135 (26) 2.114 (4) 2.089 (4) 2.119 (5) 2.057 (8)
M—[C] 2.069 (4) 2.053 (34) 2.069 (4) 2.076 (4) 2.104 (5) 2.118 (8)
M—[D] 2.141 (4) 2.134 (24) 2.126 (4) 2.089 (4) 2.109 (5) 2.170 (8)
             
C=C[A] 1.437 (5) 1.320 (40) 1.425 (5) 1.408 (6) 1.415(8) 1.395 (9)
C=C[B] 1.389 (4) 1.450 (44) 1.416 (5) 1.415 (7) 1.389 (7) 1.372 (12)
C=C[C] 1.418 (5) 1.361 (44) 1.411 (5) 1.400 (7) 1.394 (7) 1.393 (8)
C=C[D] 1.389 (4) 1.375 (41) 1.407 (5) 1.423 (7) 1.404 (8) 1.386 (9)
             
τ5g 0.52 0.53 0.55 0.10 0.06 0.76
Notes: (a) Ir(SnCl3)(cod)2 (Porta et al., 1967[Porta, P., Powell, H. M., Mawby, R. J. & Venanzi, L. M. (1967). J. Chem. Soc. A, pp. 455-465.]); (b) Ir(SnMe3)(cod)2 (Malosh et al., 2013[Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98-105.]); (c) Ir(SnMe3)(nbd)2 (Malosh et al., 2013[Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98-105.]); (d) Ir(SnCl3)(nbd)2 (Malosh et al., 2013[Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98-105.]); (e) [IrCl(cod)(CC*)]+ (Marcén et al., 2002[Marcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. & Astruc, D. (2002). Organometallics, 21, 326-330.]); (f) X = Sn or Cl; (g) Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).
[Figure 2]
Figure 2
The mol­ecular structure of IrCl(cod)2, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Although there are no significant inter­molecular inter­actions, the packing has adopted a supra­molecular arrangement. Individual mol­ecules are aligned in columns parallel to [010], which are then arranged in an overall pseudo-hexa­gonal packing (Fig. 4[link]).

[Figure 4]
Figure 4
Pseudo-hexa­gonal arrangement of rows of mol­ecules aligned along [010].

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.38, update No. 1, November 2016, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed just a few related five-coordinate iridium complexes with four unconjugated substituted ethyl­ene ligands and a halido or stannato ligand in the fifth coordination site: Ir(SnCl3)(cod)2 (CSD refcode COIRSN; Porta et al., 1967[Porta, P., Powell, H. M., Mawby, R. J. & Venanzi, L. M. (1967). J. Chem. Soc. A, pp. 455-465.]), Ir(SnMe3)(cod)2 (refcode DIVPAB), Ir(SnCl3)(nbd)2 (refcode DIVPIJ), Ir(SnMe3)(nbd)2 (refcode DIVNUT); Malosh et al., 2013[Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98-105.]), and [IrCl(cod)(CC*)]+ (refcode PUYCOB; Marcén et al., 2002[Marcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. & Astruc, D. (2002). Organometallics, 21, 326-330.]). A report on the structure of IrCl(C2H4)4 exists, but no positional parameters were given (van der Ent & van Soest, 1970[Ent, A. van der & van Soest, T. C. (1970). Chem. Commun. pp. 225-226.]), which is unfortunate because a comparison of this species with IrCl(cod)2 would ostensibly show how the bite-angle restrictions imposed by the cod rings affect the overall geometry. The geometries of the two tin-containing compounds with cod are closely related to that of the title complex. Both Ir(SnCl3)(cod)2 and Ir(SnMe3)(cod)2 exhibit the same long–short variation of the Ir–mid-point(C=C) bond lengths within each cod ligand and have similar τ5 parameters of 0.53 and 0.55, respectively (Table 2[link]). Malosh and coworkers concluded that the bulk of the cod ligands relative to that of the nbd ligands was responsible for the geometric distortion from SP geometry, specifically due to CH2⋯Me and CH2⋯Cl repulsions (Malosh et al., 2013[Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98-105.]). And indeed the two nbd complexes have near-perfect SP τ5 values of 0.10 and 0.06. In complex [IrCl(cod)(CC*)]+, the non-cod diene is part of a 1,1-di(2-propen­yl)-3-buten­yl)benzene unit that is η6-coordinating to an [Fe(C5H5)]+ cationic fragment. The penta­coordinated saturated (18 electron) iridium atom approaches a TBP geometry more than the other complexes mentioned (τ5 = 0.76), with the two apical positions being occupied by one C=C bond of the cod ligand and the chlorido ligand. The angles in the equatorial plane range between 109.73 (17) and 126.61 (16)°. The restriction of the cod ligand with its bite angle of 84.9 (2)° prevents the structure from ever achieving perfect TBP geometry, and this holds more so for structures with nbd ligands whose bite angles are even more acute. The Ir–mid-point(C=C) bond lengths differ, showing significantly longer bond lengths to the allylic C=C centroids [avg. 2.144 (11) Å] than to the cod C=C diolefin centroids [avg. 2.052 (11) Å]. The terminal Ir—Cl distance in IrCl(cod)2 of 2.5573 (8) Å is longer than all of the 214 structures with five-coordinate iridium in the CSD containing an IrCl(η2:η2-cod) fragment (avg. 2.368 Å), which may be attributable to its tendency to form the well-known stable cationic complex, [Ir(cod)2]+, whose structure (refcode TUQWOS) displays the anti­cipated d8 square-planar geometry with [BArF] {tetra­kis­[3,5-bis­(tri­fluoro­meth­yl)phen­yl]borate} as the non-coordinating anion (Woodmansee et al., 2010[Woodmansee, D. H., Müller, M.-A., Neuburger, M. & Pfaltz, A. (2010). Chem. Sci. 1, 72-78.]).

5. Synthesis and crystallization

All operations and routine manipulations were performed under a nitro­gen atmosphere, either on a high-vacuum line using modified Schlenk techniques or in a Vacuum Atmospheres Company Dri-Lab. A preparation of IrCl(cod)2 via a cyclo­octene-ligated dimer has been reported previously (Onderdelinden & van der Ent, 1972[Onderdelinden, A. L. & van der Ent, A. (1972). Inorg. Chim. Acta, 6, 420-426.]).

A two-necked round-bottom flask was charged with IrCl3·3H2O (6.0 g, 0.017 mol) and cod (20 g, 0.18 mol) in 80 ml of ethanol under nitro­gen. The reaction mixture was refluxed for 24 h, followed by removal of the solvent under vacuum. As the ethanol evaporated, the red–orange solution became more yellow as the cod concentration increased, leading to the isolation of a yellow solid (5.32 g, 70.5%). The product was recrystallized by refluxing in a mixture 35 ml of methanol and 5 ml of cod, followed by cooling to obtain shiny yellow needles of IrCl(cod)2 (5.06 g, 67.0%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were treated in the riding-model approximation, with C(methine)—H = 1.00 Å, C(methyl­ene)—H = 0.99 Å, and with Uiso(H) = 1.2Ueq(C). The maximum and minimum electron densities are found 1.09 and 0.55 Å, respectively, from the iridium atom.

Table 3
Experimental details

Crystal data
Chemical formula [IrCl(C8H12)2]
Mr 444.00
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 12.8756 (8), 13.3719 (8), 15.9033 (10)
V3) 2738.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 9.93
Crystal size (mm) 0.24 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD platform
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.173, 0.278
No. of measured, independent and observed [I > 2σ(I)] reflections 83189, 7755, 5394
Rint 0.112
(sin θ/λ)max−1) 0.883
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 1.01
No. of reflections 7755
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.34, −1.86
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 3]
Figure 3
Lettering scheme used for bonds in Table 2[link]. Letters AD are the mid-points of the C=C bonds. In cases of cyclo­dienes, consecutive letters A, B and/or C, D are on the same ligand; axial ligand X is SnR3 or Cl.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Chloridobis[(1,2,5,6-η)-cycloocta-1,5-diene]iridium(I) top
Crystal data top
[IrCl(C8H12)2]Dx = 2.154 Mg m3
Mr = 444.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5121 reflections
a = 12.8756 (8) Åθ = 2.5–29.0°
b = 13.3719 (8) ŵ = 9.93 mm1
c = 15.9033 (10) ÅT = 100 K
V = 2738.1 (3) Å3Block, yellow
Z = 80.24 × 0.20 × 0.20 mm
F(000) = 1712
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
5394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.112
ω scansθmax = 38.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2222
Tmin = 0.173, Tmax = 0.278k = 2323
83189 measured reflectionsl = 2727
7755 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0214P)2]
where P = (Fo2 + 2Fc2)/3
7755 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 1.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.27908 (2)0.39530 (2)0.59862 (2)0.00769 (3)
Cl10.13983 (6)0.50996 (6)0.66069 (5)0.01377 (14)
C10.1656 (3)0.2813 (2)0.5723 (2)0.0116 (5)
H1A0.1454960.2412480.6228240.014*
C20.2626 (2)0.2509 (2)0.5357 (2)0.0123 (6)
H2A0.2968620.1946070.5664720.015*
C30.2855 (3)0.2514 (3)0.4419 (2)0.0143 (6)
H3A0.2196850.2418500.4106910.017*
H3B0.3315720.1943140.4283870.017*
C40.3373 (3)0.3486 (3)0.4120 (2)0.0157 (6)
H4A0.4136200.3416040.4163470.019*
H4B0.3197810.3600320.3521510.019*
C50.3028 (3)0.4380 (2)0.4632 (2)0.0126 (6)
H5A0.3470390.4986570.4551930.015*
C60.2005 (2)0.4593 (2)0.4845 (2)0.0114 (6)
H6A0.1860190.5325190.4892220.014*
C70.1063 (3)0.3986 (2)0.4565 (2)0.0142 (6)
H7A0.1229280.3635240.4033710.017*
H7B0.0475580.4444980.4455060.017*
C80.0736 (3)0.3211 (3)0.5234 (2)0.0157 (6)
H8A0.0239390.3525820.5628660.019*
H8B0.0377020.2647790.4953610.019*
C90.4463 (2)0.4276 (2)0.5992 (2)0.0129 (5)
H9A0.4768940.4356080.5417630.015*
C100.3907 (2)0.5127 (2)0.6275 (2)0.0127 (6)
H10A0.3902670.5698890.5870160.015*
C110.3863 (3)0.5434 (2)0.7186 (2)0.0145 (6)
H11A0.3347210.5977170.7249550.017*
H11B0.4549330.5703680.7352390.017*
C120.3573 (3)0.4571 (2)0.7786 (2)0.0143 (6)
H12A0.4219670.4285740.8023480.017*
H12B0.3163210.4846710.8258940.017*
C130.2957 (3)0.3738 (2)0.7378 (2)0.0122 (6)
H13A0.2285080.3593140.7668340.015*
C140.3391 (3)0.2906 (2)0.6990 (2)0.0121 (5)
H14A0.2968630.2282530.7054810.014*
C150.4533 (3)0.2717 (2)0.6889 (2)0.0143 (6)
H15A0.4635870.2165050.6482780.017*
H15B0.4824930.2503360.7435670.017*
C160.5120 (2)0.3639 (2)0.6581 (2)0.0132 (6)
H16A0.5331370.4047680.7071190.016*
H16B0.5757450.3424410.6283950.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.00792 (5)0.00752 (5)0.00763 (5)0.00044 (4)0.00014 (4)0.00038 (4)
Cl10.0124 (3)0.0145 (3)0.0144 (4)0.0035 (3)0.0018 (3)0.0005 (3)
C10.0128 (13)0.0107 (13)0.0111 (13)0.0039 (11)0.0013 (11)0.0010 (10)
C20.0142 (14)0.0104 (13)0.0123 (14)0.0015 (11)0.0020 (11)0.0017 (11)
C30.0144 (14)0.0176 (14)0.0109 (14)0.0007 (12)0.0019 (12)0.0048 (11)
C40.0157 (14)0.0192 (15)0.0124 (15)0.0007 (12)0.0012 (12)0.0017 (12)
C50.0131 (13)0.0136 (14)0.0112 (14)0.0016 (11)0.0016 (11)0.0035 (11)
C60.0152 (14)0.0103 (13)0.0088 (13)0.0003 (10)0.0017 (11)0.0034 (10)
C70.0114 (13)0.0173 (14)0.0138 (14)0.0011 (12)0.0040 (11)0.0007 (12)
C80.0131 (14)0.0182 (15)0.0157 (16)0.0057 (12)0.0012 (12)0.0014 (12)
C90.0117 (13)0.0132 (13)0.0137 (14)0.0000 (10)0.0007 (12)0.0007 (12)
C100.0136 (13)0.0109 (13)0.0137 (15)0.0019 (11)0.0017 (12)0.0002 (11)
C110.0163 (14)0.0125 (14)0.0148 (16)0.0018 (11)0.0025 (12)0.0040 (11)
C120.0153 (14)0.0170 (15)0.0106 (14)0.0025 (12)0.0018 (11)0.0025 (11)
C130.0145 (14)0.0146 (14)0.0076 (13)0.0001 (11)0.0011 (11)0.0005 (10)
C140.0159 (14)0.0109 (13)0.0094 (13)0.0004 (11)0.0012 (12)0.0043 (10)
C150.0150 (14)0.0121 (14)0.0158 (16)0.0046 (11)0.0035 (12)0.0004 (11)
C160.0106 (13)0.0153 (14)0.0137 (15)0.0026 (11)0.0026 (11)0.0022 (12)
Geometric parameters (Å, º) top
Ir1—C12.152 (3)C7—H7A0.9900
Ir1—C102.178 (3)C7—H7B0.9900
Ir1—C22.185 (3)C8—H8A0.9900
Ir1—C92.196 (3)C8—H8B0.9900
Ir1—C132.242 (3)C9—C101.418 (5)
Ir1—C62.248 (3)C9—C161.522 (5)
Ir1—C52.249 (3)C9—H9A1.0000
Ir1—C142.260 (3)C10—C111.506 (5)
Ir1—Cl12.5573 (8)C10—H10A1.0000
C1—C21.437 (5)C11—C121.543 (5)
C1—C81.514 (5)C11—H11A0.9900
C1—H1A1.0000C11—H11B0.9900
C2—C31.521 (5)C12—C131.514 (5)
C2—H2A1.0000C12—H12A0.9900
C3—C41.537 (5)C12—H12B0.9900
C3—H3A0.9900C13—C141.389 (4)
C3—H3B0.9900C13—H13A1.0000
C4—C51.512 (5)C14—C151.500 (4)
C4—H4A0.9900C14—H14A1.0000
C4—H4B0.9900C15—C161.527 (5)
C5—C61.389 (4)C15—H15A0.9900
C5—H5A1.0000C15—H15B0.9900
C6—C71.525 (4)C16—H16A0.9900
C6—H6A1.0000C16—H16B0.9900
C7—C81.543 (5)
C1—Ir1—C10178.38 (12)C5—C6—C7125.0 (3)
C1—Ir1—C238.68 (12)C5—C6—Ir172.04 (18)
C10—Ir1—C2142.92 (12)C7—C6—Ir1113.0 (2)
C1—Ir1—C9143.67 (12)C5—C6—H6A113.3
C10—Ir1—C937.84 (12)C7—C6—H6A113.3
C2—Ir1—C9105.71 (12)Ir1—C6—H6A113.3
C1—Ir1—C1399.56 (12)C6—C7—C8111.9 (3)
C10—Ir1—C1379.68 (12)C6—C7—H7A109.2
C2—Ir1—C13110.35 (12)C8—C7—H7A109.2
C9—Ir1—C1385.84 (12)C6—C7—H7B109.2
C1—Ir1—C678.85 (12)C8—C7—H7B109.2
C10—Ir1—C6101.16 (12)H7A—C7—H7B107.9
C2—Ir1—C685.57 (12)C1—C8—C7112.1 (3)
C9—Ir1—C6111.72 (12)C1—C8—H8A109.2
C13—Ir1—C6152.77 (12)C7—C8—H8A109.2
C1—Ir1—C594.89 (12)C1—C8—H8B109.2
C10—Ir1—C585.98 (12)C7—C8—H8B109.2
C2—Ir1—C578.39 (12)H8A—C8—H8B107.9
C9—Ir1—C579.69 (12)C10—C9—C16122.2 (3)
C13—Ir1—C5164.79 (12)C10—C9—Ir170.37 (18)
C6—Ir1—C536.00 (11)C16—C9—Ir1115.9 (2)
C1—Ir1—C1486.02 (12)C10—C9—H9A113.8
C10—Ir1—C1494.13 (12)C16—C9—H9A113.8
C2—Ir1—C1478.99 (12)Ir1—C9—H9A113.8
C9—Ir1—C1477.53 (12)C9—C10—C11122.9 (3)
C13—Ir1—C1435.94 (11)C9—C10—Ir171.79 (18)
C6—Ir1—C14163.81 (12)C11—C10—Ir1112.0 (2)
C5—Ir1—C14141.95 (12)C9—C10—H10A114.3
C1—Ir1—Cl191.36 (9)C11—C10—H10A114.3
C10—Ir1—Cl187.07 (9)Ir1—C10—H10A114.3
C2—Ir1—Cl1129.69 (8)C10—C11—C12113.6 (3)
C9—Ir1—Cl1124.61 (9)C10—C11—H11A108.8
C13—Ir1—Cl176.29 (8)C12—C11—H11A108.8
C6—Ir1—Cl176.57 (9)C10—C11—H11B108.8
C5—Ir1—Cl1108.22 (9)C12—C11—H11B108.8
C14—Ir1—Cl1109.78 (9)H11A—C11—H11B107.7
C2—C1—C8124.9 (3)C13—C12—C11114.3 (3)
C2—C1—Ir171.90 (18)C13—C12—H12A108.7
C8—C1—Ir1112.5 (2)C11—C12—H12A108.7
C2—C1—H1A113.5C13—C12—H12B108.7
C8—C1—H1A113.5C11—C12—H12B108.7
Ir1—C1—H1A113.5H12A—C12—H12B107.6
C1—C2—C3124.4 (3)C14—C13—C12124.7 (3)
C1—C2—Ir169.42 (18)C14—C13—Ir172.71 (18)
C3—C2—Ir1115.3 (2)C12—C13—Ir1112.3 (2)
C1—C2—H2A113.5C14—C13—H13A113.4
C3—C2—H2A113.5C12—C13—H13A113.4
Ir1—C2—H2A113.5Ir1—C13—H13A113.4
C2—C3—C4113.0 (3)C13—C14—C15125.1 (3)
C2—C3—H3A109.0C13—C14—Ir171.35 (18)
C4—C3—H3A109.0C15—C14—Ir1111.3 (2)
C2—C3—H3B109.0C13—C14—H14A113.8
C4—C3—H3B109.0C15—C14—H14A113.8
H3A—C3—H3B107.8Ir1—C14—H14A113.8
C5—C4—C3112.0 (3)C14—C15—C16112.6 (3)
C5—C4—H4A109.2C14—C15—H15A109.1
C3—C4—H4A109.2C16—C15—H15A109.1
C5—C4—H4B109.2C14—C15—H15B109.1
C3—C4—H4B109.2C16—C15—H15B109.1
H4A—C4—H4B107.9H15A—C15—H15B107.8
C6—C5—C4124.9 (3)C9—C16—C15112.0 (3)
C6—C5—Ir171.96 (18)C9—C16—H16A109.2
C4—C5—Ir1110.8 (2)C15—C16—H16A109.2
C6—C5—H5A113.9C9—C16—H16B109.2
C4—C5—H5A113.9C15—C16—H16B109.2
Ir1—C5—H5A113.9H16A—C16—H16B107.9
C8—C1—C2—C32.0 (5)C16—C9—C10—C114.0 (5)
Ir1—C1—C2—C3107.2 (3)Ir1—C9—C10—C11104.9 (3)
C8—C1—C2—Ir1105.2 (3)C16—C9—C10—Ir1108.9 (3)
C1—C2—C3—C493.2 (4)C9—C10—C11—C1249.6 (4)
Ir1—C2—C3—C411.7 (4)Ir1—C10—C11—C1232.3 (3)
C2—C3—C4—C531.5 (4)C10—C11—C12—C1324.8 (4)
C3—C4—C5—C646.1 (4)C11—C12—C13—C1489.4 (4)
C3—C4—C5—Ir135.8 (3)C11—C12—C13—Ir15.6 (3)
C4—C5—C6—C72.8 (5)C12—C13—C14—C152.1 (5)
Ir1—C5—C6—C7106.0 (3)Ir1—C13—C14—C15103.4 (3)
C4—C5—C6—Ir1103.2 (3)C12—C13—C14—Ir1105.5 (3)
C5—C6—C7—C895.7 (4)C13—C14—C15—C1645.8 (4)
Ir1—C6—C7—C812.1 (3)Ir1—C14—C15—C1635.9 (3)
C2—C1—C8—C744.6 (4)C10—C9—C16—C1597.1 (4)
Ir1—C1—C8—C738.5 (3)Ir1—C9—C16—C1514.8 (4)
C6—C7—C8—C132.5 (4)C14—C15—C16—C933.3 (4)
Comparison of bond lengths (Å) and τ5 parameters for selected five-coordinate Ir complexes containing four substituted ethylene ligands and a terminal chlorido or stannato ligand, according to the labeling in Fig. 3. top
FeatureIrCl(cod)2COIRSNaDIVPABbDIVNUTcDIVPIJdPUYCOBe
MXf2.5573 (8)2.642 (2)2.7090 (4)2.6606 (4)2.5850 (9)2.3883 (15)
M—[A]2.047 (4)2.068 (31)2.062 (4)2.067 (4)2.101 (5)2.048 (8)
M—[B]2.138 (4)2.135 (26)2.114 (4)2.089 (4)2.119 (5)2.057 (8)
M—[C]2.069 (4)2.053 (34)2.069 (4)2.076 (4)2.104 (5)2.118 (8)
M—[D]2.141 (4)2.134 (24)2.126 (4)2.089 (4)2.109 (5)2.170 (8)
CC[A]1.437 (5)1.320 (40)1.425 (5)1.408 (6)1.415 (8)1.395 (9)
CC[B]1.389 (4)1.450 (44)1.416 (5)1.415 (7)1.389 (7)1.372 (12)
CC[C]1.418 (5)1.361 (44)1.411 (5)1.400 (7)1.394 (7)1.393 (8)
CC[D]1.389 (4)1.375 (41)1.407 (5)1.423 (7)1.404 (8)1.386 (9)
τ5g0.520.530.550.100.060.76
Notes: (a) Ir(SnCl3)(cod)2 (Porta et al., 1967); (b) Ir(SnMe3)(cod)2 (Malosh et al., 2013); (c) Ir(SnMe3)(nbd)2 (Malosh et al., 2013); (d) Ir(SnCl3)(nbd)2 (Malosh et al., 2013); (e) [IrCl(cod)(CC*)]+ (Marcén et al., 2002); (f) X = Sn or Cl; (g) Addison et al. (1984).
 

Acknowledgements

The authors acknowledge support by the NSF under the CCI Center for Enabling New Technologies through Catalysis (CENTC), CHE-1205189. AKFR thanks the NSF CENTC REU program for support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Khan, S. I., Sawin, P. A., Tsurumi, R. & Strouse, C. E. (1990). J. Am. Chem. Soc. 112, 1865–1874.  CSD CrossRef CAS Google Scholar
First citationEnt, A. van der & van Soest, T. C. (1970). Chem. Commun. pp. 225–226.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerde, J. L., Lambert, J. C. & Senoff, C. V. (1974). Inorg. Synth. 15, 18–20.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeigh, G. J. & Richards, R. L. (1982). In Comprehensive Organometallic Chemistry: the synthesis, reactions, and structures of organometallic compounds, edited by G. Wilkinson, F. G. A. Stone & E. W. Abel, Vol. 5, pp. 599–603. New York: Pergamon Press.  Google Scholar
First citationLide, D. R. (2002–2003). Chem. Phys. 83rd ed. Florida: CRC Press.  Google Scholar
First citationMalosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. & Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745–746, 98–105.  CSD CrossRef CAS Google Scholar
First citationMarcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. & Astruc, D. (2002). Organometallics, 21, 326–330.  Google Scholar
First citationOnderdelinden, A. L. & van der Ent, A. (1972). Inorg. Chim. Acta, 6, 420–426.  CrossRef CAS Google Scholar
First citationPorta, P., Powell, H. M., Mawby, R. J. & Venanzi, L. M. (1967). J. Chem. Soc. A, pp. 455–465.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWinkhaus, G. & Singer, H. (1966). Chem. Ber. 99, 3610–3618.  CrossRef CAS Google Scholar
First citationWoodmansee, D. H., Müller, M.-A., Neuburger, M. & Pfaltz, A. (2010). Chem. Sci. 1, 72–78.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds