research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[copper(II)-μ2-salicylato-[di­aqua­copper(II)]-μ2-salicylato] dihydrate]

CROSSMARK_Color_square_no_text.svg

aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: m.lutz@uu.nl

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 January 2017; accepted 17 January 2017; online 20 January 2017)

The title compound, {[Cu2(C7H4O3)2(H2O)2]·2H2O}n, contains two copper(II) cations in special positions (one on a twofold rotation axis and one on an inversion centre) and the the salicylate ligand in its dianionic form. By four- and six-coordinate metal coordination, chains are formed parallel to [001], which are extended by O—H⋯O hydrogen bonding into sheets extending parallel to (100). These sheets are weakly connected by O—H⋯O hydrogen bonding via the non-coordinating lattice water mol­ecules into a three-dimensional network.

1. Chemical context

Salicylic acid (2-hy­droxy­benzoic acid, H2Sal) has two acidic hydrogen atoms and the corresponding pKa values are 2.853 (9) and 12.897 (7) (Farajtabar & Gharib, 2010[Farajtabar, A. & Gharib, F. (2010). Monatsh. Chem. 141, 381-386.]; García et al., 1982[García, M. C., Ramis, G. & Mongay, C. (1982). Spectrochim. Acta A, 38, 1005-1009.]). Titration studies with Cu2+ indeed indicate the formation of complexes with the monoanionic ligand HSal as well as with the dianionic ligand Sal2− (Dahlund & Olin, 1988[Dahlund, M. & Olin, Å. (1988). Acta Chem. Scand. Ser. A, 42, 273-278.]; Furia & Porto, 2002[Furia, E. & Porto, R. (2002). Ann. Chim. 92, 521-530.]). From the literature, crystal structures of copper salicylate are only known with the monoanionic HSal ligand. They occur as a tetra­hydrate (Hanic & Michalov, 1960[Hanic, F. & Michalov, J. (1960). Acta Cryst. 13, 299-302.]; Rissanen et al., 1987[Rissanen, K., Valkonen, J., Kokkonen, P. & Leskelä, M. (1987). Acta Chem. Scand. 41a, 299-309.]) and as a dihydrate (Jagner et al., 1976[Jagner, S., Hazell, R. G. & Larsen, K. P. (1976). Acta Cryst. B32, 548-554.]), the latter being described as an order–disorder structure. In an attempt to crystallize copper(II) salicylate we obtained a mixture of crystals (see Synthesis and Crystallization), among which was the title compound (I)[link] with composition [Cu2(C7H4O3)2(H2O)2]·2H2O that involves the dianionic ligand Sal2−.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] is shown in Fig. 1[link]. The two copper(II) cations are located on special positions with twofold rotation symmetry (Cu1, Wyckoff position c) and inversion symmetry (Cu2, Wyckoff position b). Cu2 is four-coordinated in a square-planar configuration with donor atoms O2 of the carboxyl­ate and O3 of the deprotonated hy­droxy group. The two pairs of Cu—O distances are 1.905 (2) Å and are the shortest in the present structure (Table 1[link]). As a consequence of the inversion symmetry, the fourfold coordination environment is exactly planar with an angle sum of 360.0 (2)°. Cu1 has an environment of six oxygen atoms (Fig. 2[link]). The Cu1—O1 distance to a carboxyl­ate oxygen atom, and the Cu1—O4 distance to the coordinating water mol­ecule are in the expected range. The Cu1—O2 distance of 2.332 (2) Å is rather long, which indicates only a weak inter­action. The twofold rotation axis bis­ects the O1—Cu1—O1i and the O4—Cu1—O4i angles [symmetry code: (i) 1 − x, y, [{1\over 2}] − z]. This allows the five atoms Cu1, O1, O4, O1i and O4i to deviate significantly from planarity. The sum of the cis angles is 382.8 (3)° and the dihedral angle between the O1—Cu1—O1i/O4—Cu1—O4i planes is 49.86 (14)°. If one decides to consider Cu1 as four-coordinated, the coordination environment is consequently best described as halfway between square-planar and tetra­hedral with approximate D2d symmetry [τ4 parameter = 0.52; θ6 = 94.60 (11)°; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]]. The O2—Cu1—O2i angle is nearly perpendicular to the twofold axis and thus at 176.45 (12)° nearly linear. A description as a six-coordinated metal cation can nevertheless only be called very distorted due to the non-planarity of the equatorial atoms.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.984 (2) Cu2—O2 1.905 (2)
Cu1—O4 2.001 (3) O1—C1 1.292 (4)
Cu1—O2 2.332 (2) O2—C1 1.274 (4)
Cu2—O3 1.905 (2) O3—C3 1.322 (4)
       
O1—Cu1—O1i 96.07 (14) O3—Cu2—O2 92.62 (10)
O1—Cu1—O4 94.60 (11) C1—O2—Cu2 129.6 (2)
O4i—Cu1—O4 97.54 (15) C1—O2—Cu1 84.86 (19)
O2—Cu1—O2i 176.45 (12) Cu2—O2—Cu1 145.44 (13)
       
O1—C1—C2—C7 −3.4 (5) O2—C1—C2—C3 −2.5 (6)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit in the crystal structure of (I)[link] in a view along [010]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres with an arbitrary radius. Additional bonds to O atoms outside the asymmetric unit indicate the completed coordination environments of the two copper(II) cations.
[Figure 2]
Figure 2
The environment of the Cu1 atom with C2 symmetry. Because the Cu1—O2 distance is rather long, the metal atom can either be described as four-coordinated (green) or as six-coordinated (red). In both cases, the coordination geometry is severely distorted. [Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.]

The Cu1—O2 bond fails the Hirshfeld rigid-bond test (Hirshfeld, 1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]) with Δ m.s.d.a. of 0.0200 (13) Å2 as calculated with the PLATON software (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). A similar effect has been observed in bidentate Zn—O(carboxyl­ate) complexes and was attributed to the strain in the four-membered chelate ring (Lutz & Spek, 2009[Lutz, M. & Spek, A. L. (2009). Acta Cryst. C65, m69-m74.]). In the present case, it can also be ascribed to the weakness of the inter­action, which allows a rather uncorrelated movement of Cu1 and O2. In fact, O2 is bridging between Cu1 and Cu2 and the O2—Cu2 bond is much stronger than O2—Cu1. Δ m.s.d.a. for O2—Cu2 is only 0.0007 (13) Å2 and inconspicuous.

The salicylate dianion is located on a general position. It is essentially planar with a maximum deviation of 0.054 (3) Å from the least-squares plane. This small deviation involves the carboxyl­ate group with torsion angles of −3.4 (5) ° for C7—C2—C1—O1 and −2.5 (6) ° for C3—C2—C1—O2. The C—OH bond length of 1.359 (2) Å in Cu(HSal)2·4H2O (Rissanen et al., 1987[Rissanen, K., Valkonen, J., Kokkonen, P. & Leskelä, M. (1987). Acta Chem. Scand. 41a, 299-309.]) is shortened to 1.322 (4) Å after deprotonation in the present compound [Cu2(C7H4O3)2(H2O)2]·2H2O (Table 1[link]). One of the water mol­ecules (O4) coordinates to the Cu1 copper(II) ion, while the other water mol­ecule (O5) is present as non-coordinating lattice water.

3. Supra­molecular features

Compound (I)[link] forms coordination chains extending parallel to [001] with a Cu⋯Cu distance of 4.0478 (4) Å. The coordinating water mol­ecule O4 acts as a donor of hydrogen bonds with the carboxyl­ate oxygen O1 and the deprotonated hy­droxy oxygen O3 as acceptors (Table 2[link]). This extends the one-dimensional coordination polymer into a two-dimensional hydrogen-bonded network parallel to (100) (Fig. 3[link]). Between the hydrogen-bonded layers there are solvent-accessible channels along [010] at the positions x = 0.25 and z = 0.25, which is the inter­section of two glide planes. By symmetry, there are four channels per unit cell with a volume of 59 Å3 each, as calculated with the PLATON software (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Each channel is occupied by two non-coordinating water mol­ecules O5 per unit cell. The O5 water mol­ecules are linked to each other by cooperative hydrogen bonding, forming chains along [010]. A second hydrogen bond for O5 involves the coordinating water mol­ecule O4. The lattice water mol­ecules thus connect the described (100) layers into a three-dimensional hydrogen-bonded network. It should be noted that the hydrogen bonds O5⋯O4 are rather long (Table 2[link]) and therefore the link between the layers appears to be weak.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1ii 0.77 1.96 2.718 (3) 169
O4—H4B⋯O3iii 0.73 1.96 2.685 (3) 177
O5—H5A⋯O5iv 0.80 2.02 2.803 (3) 167
O5—H5B⋯O4 0.71 2.43 3.088 (4) 157
Symmetry codes: (ii) x, y-1, z; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 3]
Figure 3
The packing of (I)[link] in the crystal, in a view along [010], showing the hydrogen-bonded layers (black) parallel to (100). The layers are linked via non-coordinating hydrate water mol­ecules (red) into a three-dimensional network. C—H hydrogen atoms have been omitted for clarity.

In a more systematic approach the packing can be subjected to a topological analysis using TOPOS (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]). In this process, mol­ecular entities are abstracted as nodes. Cu1 is a node with a coordination number of 4 (linked to two salicylate ligands and two water mol­ecules). Cu2 has a coordination number of 2 (two salicylate ions). The salicylate ion has four neighbours (two copper ions and two hydrogen bonds). Water mol­ecule O4 is connected to four nodes (one copper ion and three hydrogen bonds). The lattice water O5 has a coordination number of 3 (three hydrogen bonds). A plot of the simplified structure is given in Fig. 4[link].

[Figure 4]
Figure 4
Simplified net as prepared with the TOPOS software (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]). Copper cations are shown in green. Nodes derived from the salicylate dianion are displayed in purple and have a coordination number of four. Nodes derived from the water mol­ecules are drawn in grey and have coordination numbers of three and four for the lattice and coordinating water mol­ecules, respectively.

4. Synthesis and crystallization

0.55 g (4 mmol) salicylic acid were suspended in 8 ml water. With a concentrated NaOH solution the pH value was adjusted to approximately 5. A solution of 0.5 g (2 mmol) copper(II) sulfate penta­hydrate in 10 ml water was added. Crystals appeared after a few days of standing. From the unit-cell determinations it became clear that the mixture of crystals contained at least three species: colourless salicylic acid, green Cu(HSal)2·2H2O, and brown crystals of (I)[link]. The crystals of (I)[link] are thin plates with <100> being the small dimension. A possible explanation for the form is a two-dimensional hydrogen-bonded network in the structure which extends parallel to (100), as discussed above.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C7H4O3)2(H2O)2]·2H2O
Mr 471.34
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 150
a, b, c (Å) 19.5028 (17), 5.0553 (4), 15.7573 (13)
V3) 1553.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.80
Crystal size (mm) 0.17 × 0.09 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Numerical (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.669, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14169, 1799, 1186
Rint 0.082
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.04
No. of reflections 1799
No. of parameters 120
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.58
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), PEAKREF (Schreurs, 2016[Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.]), Eval15 (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), DRAWxtl (Finger et al., 2007[Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188-192.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The diffraction data appeared to contain reflections of a small second crystal fragment related by a ca 2° rotation about hkl = (4[\overline{1}]3) with respect to the main fragment. Two orientation matrices were used for the integration with the Eval15 software (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]). A large isotropic mosaicity of 1.4° was assumed for the prediction of the reflection profiles. Only the non-overlapping reflections were used for structure solution and refinement.

All hydrogen atoms were located in difference Fourier maps. C—H hydrogen atoms were refined with a riding model. O—H hydrogen atoms were kept fixed at their located positions.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: PEAKREF (Schreurs, 2016); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[copper(II)-µ2-salicylato-[diaquacopper(II)]-µ2-salicylato] dihydrate] top
Crystal data top
[Cu2(C7H4O3)2(H2O)2]·2H2ODx = 2.015 Mg m3
Mr = 471.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 6768 reflections
a = 19.5028 (17) Åθ = 2.1–27.5°
b = 5.0553 (4) ŵ = 2.80 mm1
c = 15.7573 (13) ÅT = 150 K
V = 1553.6 (2) Å3Plate, brown
Z = 40.17 × 0.09 × 0.02 mm
F(000) = 952
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1186 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.082
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: numerical
(SADABS; Sheldrick, 2014)
h = 2525
Tmin = 0.669, Tmax = 1.000k = 66
14169 measured reflectionsl = 1620
1799 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.4851P]
where P = (Fo2 + 2Fc2)/3
1799 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.18416 (12)0.2500000.01968 (19)
Cu20.5000000.0000000.5000000.00951 (16)
O10.56220 (14)0.4466 (5)0.30330 (15)0.0123 (6)
O20.52168 (14)0.1699 (5)0.39545 (15)0.0124 (6)
O30.55744 (13)0.2318 (5)0.56341 (15)0.0116 (6)
C10.56041 (19)0.3678 (7)0.3812 (2)0.0091 (7)
C20.60045 (18)0.4988 (7)0.4466 (2)0.0087 (7)
C30.59722 (19)0.4210 (7)0.5328 (2)0.0095 (7)
C40.6396 (2)0.5632 (7)0.5908 (2)0.0139 (8)
H40.6390970.5157790.6490850.017*
C50.6809 (2)0.7660 (8)0.5647 (2)0.0135 (8)
H50.7081390.8573350.6051410.016*
C60.6837 (2)0.8409 (7)0.4794 (2)0.0128 (8)
H60.7123060.9825140.4615530.015*
C70.64451 (19)0.7064 (7)0.4224 (2)0.0117 (8)
H70.6469470.7543490.3642120.014*
O40.57447 (14)0.0767 (5)0.22503 (15)0.0121 (6)
H4A0.5686540.2007930.2521770.018*
H4B0.5714660.1180390.1809930.018*
O50.71893 (16)0.1128 (6)0.2774 (2)0.0314 (8)
H5A0.7304620.2647630.2771380.047*
H5B0.6846330.1127190.2626890.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0208 (4)0.0075 (3)0.0308 (4)0.0000.0139 (4)0.000
Cu20.0158 (3)0.0101 (3)0.0026 (3)0.0037 (3)0.0009 (3)0.0004 (2)
O10.0213 (15)0.0107 (13)0.0049 (11)0.0023 (11)0.0028 (11)0.0029 (10)
O20.0217 (14)0.0107 (12)0.0048 (12)0.0056 (10)0.0003 (10)0.0010 (10)
O30.0193 (15)0.0119 (12)0.0037 (11)0.0058 (11)0.0006 (11)0.0020 (10)
C10.0132 (18)0.0091 (16)0.0050 (16)0.0025 (14)0.0014 (14)0.0024 (14)
C20.0111 (18)0.0093 (16)0.0056 (16)0.0024 (15)0.0008 (14)0.0009 (14)
C30.0128 (19)0.0099 (17)0.0058 (16)0.0024 (15)0.0010 (15)0.0002 (15)
C40.019 (2)0.0144 (19)0.0080 (17)0.0021 (16)0.0006 (16)0.0011 (15)
C50.0141 (19)0.0181 (19)0.0082 (17)0.0032 (16)0.0031 (15)0.0021 (15)
C60.0155 (19)0.0097 (18)0.0134 (19)0.0023 (15)0.0017 (15)0.0031 (14)
C70.0152 (19)0.0121 (18)0.0078 (17)0.0021 (15)0.0000 (15)0.0029 (15)
O40.0203 (14)0.0121 (13)0.0038 (11)0.0013 (11)0.0017 (10)0.0021 (10)
O50.0300 (18)0.0267 (16)0.0374 (18)0.0011 (15)0.0086 (15)0.0095 (15)
Geometric parameters (Å, º) top
Cu1—O11.984 (2)C2—C71.409 (5)
Cu1—O1i1.984 (2)C2—C31.416 (5)
Cu1—O4i2.001 (3)C3—C41.426 (5)
Cu1—O42.001 (3)C4—C51.367 (5)
Cu1—O22.332 (2)C4—H40.9500
Cu1—O2i2.332 (2)C5—C61.397 (5)
Cu2—O3ii1.905 (2)C5—H50.9500
Cu2—O31.905 (2)C6—C71.361 (5)
Cu2—O2ii1.905 (2)C6—H60.9500
Cu2—O21.905 (2)C7—H70.9500
O1—C11.292 (4)O4—H4A0.7679
O2—C11.274 (4)O4—H4B0.7271
O3—C31.322 (4)O5—H5A0.8007
C1—C21.452 (5)O5—H5B0.7079
O1—Cu1—O1i96.07 (14)O2—C1—O1115.2 (3)
O1—Cu1—O4i143.25 (10)O2—C1—C2123.5 (3)
O1i—Cu1—O4i94.60 (11)O1—C1—C2121.3 (3)
O1—Cu1—O494.60 (11)C7—C2—C3119.5 (3)
O1i—Cu1—O4143.25 (10)C7—C2—C1118.4 (3)
O4i—Cu1—O497.54 (15)C3—C2—C1122.0 (3)
O1—Cu1—O259.59 (9)O3—C3—C2125.2 (3)
O1i—Cu1—O2123.20 (9)O3—C3—C4118.1 (3)
O4i—Cu1—O285.29 (9)C2—C3—C4116.7 (3)
O4—Cu1—O292.36 (9)C5—C4—C3121.8 (3)
O1—Cu1—O2i123.20 (9)C5—C4—H4119.1
O1i—Cu1—O2i59.59 (9)C3—C4—H4119.1
O4i—Cu1—O2i92.37 (9)C4—C5—C6121.0 (4)
O4—Cu1—O2i85.29 (9)C4—C5—H5119.5
O2—Cu1—O2i176.45 (12)C6—C5—H5119.5
O3ii—Cu2—O3180.0C7—C6—C5118.5 (3)
O3ii—Cu2—O2ii92.62 (10)C7—C6—H6120.8
O3—Cu2—O2ii87.38 (10)C5—C6—H6120.8
O3ii—Cu2—O287.38 (10)C6—C7—C2122.5 (3)
O3—Cu2—O292.62 (10)C6—C7—H7118.8
O2ii—Cu2—O2180.0C2—C7—H7118.8
C1—O1—Cu1100.4 (2)Cu1—O4—H4A108.8
C1—O2—Cu2129.6 (2)Cu1—O4—H4B108.6
C1—O2—Cu184.86 (19)H4A—O4—H4B106.5
Cu2—O2—Cu1145.44 (13)H5A—O5—H5B105.3
C3—O3—Cu2126.8 (2)
Cu2—O2—C1—O1176.6 (2)C7—C2—C3—O3179.2 (3)
Cu1—O2—C1—O11.0 (3)C1—C2—C3—O31.9 (6)
Cu2—O2—C1—C23.7 (5)C7—C2—C3—C40.4 (5)
Cu1—O2—C1—C2178.8 (3)C1—C2—C3—C4179.3 (3)
Cu1—O1—C1—O21.2 (3)O3—C3—C4—C5178.3 (4)
Cu1—O1—C1—C2178.6 (3)C2—C3—C4—C50.5 (5)
O2—C1—C2—C7176.4 (3)C3—C4—C5—C60.6 (6)
O1—C1—C2—C73.4 (5)C4—C5—C6—C70.3 (6)
O2—C1—C2—C32.5 (6)C5—C6—C7—C21.3 (6)
O1—C1—C2—C3177.7 (3)C3—C2—C7—C61.3 (5)
Cu2—O3—C3—C24.9 (5)C1—C2—C7—C6179.7 (4)
Cu2—O3—C3—C4176.3 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1iii0.771.962.718 (3)169
O4—H4B···O3iv0.731.962.685 (3)177
O5—H5A···O5v0.802.022.803 (3)167
O5—H5B···O40.712.433.088 (4)157
Symmetry codes: (iii) x, y1, z; (iv) x, y, z1/2; (v) x+3/2, y+1/2, z.
 

Funding information

Funding for this research was provided by: Nederlandse Organisatie voor Wetenschappelijk Onderzoek

References

First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDahlund, M. & Olin, Å. (1988). Acta Chem. Scand. Ser. A, 42, 273–278.  CrossRef Google Scholar
First citationFarajtabar, A. & Gharib, F. (2010). Monatsh. Chem. 141, 381–386.  CrossRef CAS Google Scholar
First citationFinger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuria, E. & Porto, R. (2002). Ann. Chim. 92, 521–530.  CAS Google Scholar
First citationGarcía, M. C., Ramis, G. & Mongay, C. (1982). Spectrochim. Acta A, 38, 1005–1009.  Google Scholar
First citationHanic, F. & Michalov, J. (1960). Acta Cryst. 13, 299–302.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationJagner, S., Hazell, R. G. & Larsen, K. P. (1976). Acta Cryst. B32, 548–554.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLutz, M. & Spek, A. L. (2009). Acta Cryst. C65, m69–m74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRissanen, K., Valkonen, J., Kokkonen, P. & Leskelä, M. (1987). Acta Chem. Scand. 41a, 299–309.  CrossRef Google Scholar
First citationSchreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.  Google Scholar
First citationSchreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds