research communications
2,7.015,20]pentacosa-2,4,6,15(20),16,18-hexaen-23-one
of 22,24,25-trimethyl-8,11,14-trioxa-25-azatetracyclo[19.3.1.0aInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, bGraduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, cDepartment of Biotechnology, Vietnam–Russia Tropical Centre, 58 Nguyen Van Huyen, Hanoi, Vietnam, dFaculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam, eOrganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, fInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and gX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: ngvtuyen@hotmail.com
The title compound, C24H29NO4, is the product of a Petrenko–Kritchenko condensation of 1,5-bis(2-formylphenoxy)-3-oxapentane, pentan-3-one and methylammonium acetate in ethanol. The molecule has mirror symmetry. The aza-14-crown-3 ether ring adopts a bowl conformation stabilized by a weak intramolecular C—H⋯O hydrogen bond. The conformation of the C—O—C—C—O—C—C—O—C polyether chain is t–g+–t–t–g−–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the benzene rings fused to the aza-14-crown-4-ether moiety is 72.68 (4)°. The piperidinone ring adopts a chair conformation. The nitrogen atom has a trigonal–pyramidal geometry, the sum of the bond angles being 335.9°. In the crystal, the molecules are linked by weak C—H⋯O interactions, forming zigzag chains propagating along the [100] direction.
Keywords: crystal structure; macroheterocycles; crown ethers; stacking interactions.
CCDC reference: 1524447
1. Chemical context
Macroheterocycles containing both crown ether and azaheterocyclic moieties are prospective compounds not only as metal-ion receptors (Pedersen, 1988), but also as membrane ion-transporting vehicles (Gökel & Murillo, 1996), as active components of environmental chemistry (Bradshaw & Izatt, 1997), for the design of organic sensors (Costero et al., 2005), in nanosized on-off switches and other molecular electronic devices (Natali & Giordani, 2012). Moreover, they can possess antibacterial (An et al., 1998) and anticancer properties (Artiemenko et al., 2002; Le et al., 2014, 2015), and other useful biological activity (Anh & Soldatenkov, 2016; Tran et al., 2016).
Recently, we have developed effective methods for the synthesis of azacrown γ-piperidone (Levov et al., 2006, 2008; Anh et al., 2008, 2012a,b,c; Hieu et al. (2011, 2012a,b) or γ-arylpyridine (Anh & Soldatenkov, 2016; Tran et al., 2016) subunits. This chemistry allowed us to make systematic studies of the fine structural features of a novel series of azacrown macrocycles using X-ray diffraction. Such data should be of use for the subsequent design of more certain drug-like macroheterocyclic molecules bearing new would-be pharmacophore groups.
containingIn attempts to apply this chemistry for obtaining azacrown γ-piperidine moiety, we studied the condensation of diethylketone and 1,5-bis(2-formylphenoxy)-3-oxapentane in the presence of methylammonium acetate taken both as the nitrogen source and as the template in ethanol/acetic acid solution. The reaction proceeded smoothly to give the expected azacrown title molecule, (I), with 32% yield.
which contain a 1,3,5-trimethyl-substituted2. Structural commentary
The title compound (Fig. 1), the product of a Petrenko–Kritchenko condensation of 1,5-bis(2-formylphenoxy)-3-oxapentane, pentan-3-one and methylammonium acetate in ethanol, crystallizes in the orthorhombic Pnma and, in the crystal, occupies a special position on a mirror plane. The aza-14-crown-3 ether ring adopts a bowl conformation stabilized by the weak intramolecular C16—H16B⋯O11 hydrogen bond (Table 1, Fig. 1). The distances from the center of the macrocycle cavity (defined as the centroid of atoms O8/O11/O8A/N14) to the O8, O11 and N14 atoms are 2.265 (2), 1.880 (2) and 2.393 (2) Å, respectively [atoms with the suffix A are related by the x, − y, z.]. The conformation of the C7—O8—C9—C10—O11—C10A—C9A—O8A—C7A polyether chain is t–g+–t–t–g−–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 72.68 (4)°. The piperidinone ring adopts a chair conformation. The nitrogen N14 atom has a trigonal–pyramidal geometry (sum of the bond angles is 335.9°).
|
The molecule of (I) possesses four asymmetric centers at the C1, C13, C13A and C1A carbon atoms and can have potentially numerous The crystal of (I) is racemic and consists of enantiomeric pairs with the following of the centers: rac-1R*,13S*,13AR*,1AS*.
3. Supramolecular features
In the crystal, molecules of (I) form zigzag chains along [100] via weak C—H⋯O interactions (Table 1, Figs. 2 and 3). π–π stacking is observed in the crystal, the distance between parallel benzene rings is 3.446 (3) Å and the shortest intermolecular C5⋯C7i distance is 3.495 (2) Å [symmetry code: (i) 1 − x, 1 − y, −z].
4. Synthesis and crystallization
Methylammonium acetate (3.85 g, 50 mmol) was added to a solution of 1,5-bis(2-formylphenoxy)-3-oxapentane (3.14 g, 10.0 mmol) and diethylketone (1.41 g, 10.0 mmol) in ethanol/acetic acid (40 mL/1 mL) mixture. The reaction mixture was stirred at 293 K for three days (monitored by TLC until the disappearance of the starting heterocyclic ketone spot). At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and recrystallized from ethanol solution to give 2.1 g of crystals of (I) (yield 32% m.p. 485–487 K). IR (KBr), ν/cm−1: 1702. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 0.89 (d, 6H, CH3, J = 6.7 Hz), 1.86 (c, 3H, NCH3), 3.19 (d, 2H, H1, H21, J = 10.8 Hz), 3.76–4.16 (m, 10H, Hether and H22, H24), 6.78–7.26 (m, 8H, Harom). Analysis calculated for C24H29NO4: C, 67.72; H, 7.31; N, 5.64. Found: C, 67.54; H, 7.42; N, 5.41.
5. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed in calculated positions with C—H = 0.95 Å (aryl-H), 0.96 Å (methyl-H), 0.98 Å (methylene-H) or 1.00 Å (methine-H) and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for all other atoms].
details are summarized in Table 2Supporting information
CCDC reference: 1524447
https://doi.org/10.1107/S2056989016020508/xu5896sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016020508/xu5896Isup2.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H29NO4 | Dx = 1.319 Mg m−3 |
Mr = 395.48 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 4090 reflections |
a = 8.1468 (5) Å | θ = 3.0–29.2° |
b = 20.3402 (11) Å | µ = 0.09 mm−1 |
c = 12.0155 (7) Å | T = 120 K |
V = 1991.1 (2) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.15 × 0.15 mm |
F(000) = 848 |
Bruker APEXII CCD diffractometer | 2469 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.065 |
φ and ω scans | θmax = 30.6°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −11→11 |
Tmin = 0.970, Tmax = 0.980 | k = −29→29 |
25079 measured reflections | l = −17→16 |
3128 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: mixed |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.046P)2 + 1.66P] where P = (Fo2 + 2Fc2)/3 |
3128 reflections | (Δ/σ)max < 0.001 |
140 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.58338 (18) | 0.30912 (7) | −0.07447 (12) | 0.0151 (3) | |
H1 | 0.4639 | 0.3029 | −0.0903 | 0.018* | |
C2 | 0.60218 (18) | 0.37109 (7) | −0.00494 (12) | 0.0156 (3) | |
C3 | 0.75023 (19) | 0.40480 (7) | 0.00526 (13) | 0.0190 (3) | |
H3 | 0.8432 | 0.3900 | −0.0354 | 0.023* | |
C4 | 0.7652 (2) | 0.45976 (7) | 0.07366 (14) | 0.0223 (3) | |
H4 | 0.8670 | 0.4822 | 0.0793 | 0.027* | |
C5 | 0.6301 (2) | 0.48134 (7) | 0.13342 (13) | 0.0223 (3) | |
H5 | 0.6398 | 0.5188 | 0.1803 | 0.027* | |
C6 | 0.4808 (2) | 0.44885 (7) | 0.12557 (13) | 0.0195 (3) | |
H6 | 0.3888 | 0.4637 | 0.1672 | 0.023* | |
C7 | 0.46690 (18) | 0.39412 (7) | 0.05590 (12) | 0.0162 (3) | |
O8 | 0.32384 (13) | 0.35995 (5) | 0.04244 (9) | 0.0194 (2) | |
C9 | 0.19912 (19) | 0.36553 (8) | 0.12588 (13) | 0.0201 (3) | |
H9A | 0.1387 | 0.4074 | 0.1172 | 0.024* | |
H9B | 0.2488 | 0.3645 | 0.2011 | 0.024* | |
C10 | 0.08483 (19) | 0.30816 (7) | 0.11056 (13) | 0.0197 (3) | |
H10A | −0.0119 | 0.3129 | 0.1597 | 0.024* | |
H10B | 0.0462 | 0.3062 | 0.0325 | 0.024* | |
O11 | 0.17272 (19) | 0.2500 | 0.13785 (13) | 0.0192 (3) | |
C12 | 0.6367 (3) | 0.2500 | −0.24937 (18) | 0.0157 (4) | |
O12 | 0.5743 (2) | 0.2500 | −0.34102 (13) | 0.0219 (3) | |
C13 | 0.67442 (18) | 0.31314 (7) | −0.18726 (12) | 0.0160 (3) | |
H13 | 0.7951 | 0.3147 | −0.1722 | 0.019* | |
N14 | 0.6428 (2) | 0.2500 | −0.01435 (14) | 0.0148 (3) | |
C15 | 0.6282 (2) | 0.37347 (7) | −0.25565 (13) | 0.0192 (3) | |
H15A | 0.6833 | 0.3715 | −0.3281 | 0.029* | |
H15B | 0.6626 | 0.4133 | −0.2161 | 0.029* | |
H15C | 0.5091 | 0.3744 | −0.2667 | 0.029* | |
C16 | 0.6033 (3) | 0.2500 | 0.10474 (17) | 0.0186 (4) | |
H16A | 0.6489 | 0.2885 | 0.1390 | 0.028* | |
H16B | 0.4864 | 0.2500 | 0.1141 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0192 (7) | 0.0111 (6) | 0.0151 (6) | 0.0006 (5) | 0.0007 (5) | −0.0001 (5) |
C2 | 0.0197 (7) | 0.0118 (6) | 0.0154 (6) | 0.0002 (5) | −0.0012 (5) | 0.0008 (5) |
C3 | 0.0200 (7) | 0.0152 (6) | 0.0217 (7) | 0.0009 (5) | −0.0016 (6) | 0.0010 (5) |
C4 | 0.0240 (8) | 0.0169 (7) | 0.0259 (8) | −0.0028 (6) | −0.0061 (6) | −0.0005 (6) |
C5 | 0.0317 (8) | 0.0133 (6) | 0.0219 (7) | 0.0005 (6) | −0.0075 (6) | −0.0042 (6) |
C6 | 0.0248 (7) | 0.0161 (7) | 0.0177 (7) | 0.0031 (6) | −0.0015 (6) | −0.0026 (5) |
C7 | 0.0202 (7) | 0.0124 (6) | 0.0158 (7) | 0.0003 (5) | −0.0018 (5) | 0.0004 (5) |
O8 | 0.0198 (5) | 0.0201 (5) | 0.0183 (5) | −0.0026 (4) | 0.0035 (4) | −0.0054 (4) |
C9 | 0.0208 (7) | 0.0203 (7) | 0.0193 (7) | 0.0025 (6) | 0.0038 (6) | −0.0033 (6) |
C10 | 0.0176 (7) | 0.0217 (7) | 0.0199 (7) | 0.0033 (6) | 0.0015 (6) | −0.0008 (6) |
O11 | 0.0177 (7) | 0.0183 (7) | 0.0216 (8) | 0.000 | −0.0020 (6) | 0.000 |
C12 | 0.0152 (9) | 0.0157 (9) | 0.0162 (9) | 0.000 | 0.0047 (7) | 0.000 |
O12 | 0.0306 (9) | 0.0190 (7) | 0.0160 (7) | 0.000 | −0.0006 (6) | 0.000 |
C13 | 0.0161 (6) | 0.0149 (6) | 0.0169 (7) | −0.0019 (5) | 0.0014 (5) | −0.0001 (5) |
N14 | 0.0193 (8) | 0.0104 (7) | 0.0147 (8) | 0.000 | −0.0017 (6) | 0.000 |
C15 | 0.0245 (8) | 0.0144 (6) | 0.0187 (7) | −0.0008 (6) | −0.0002 (6) | 0.0028 (5) |
C16 | 0.0271 (11) | 0.0154 (9) | 0.0134 (9) | 0.000 | −0.0003 (8) | 0.000 |
C1—N14 | 1.4840 (17) | C9—H9B | 0.9900 |
C1—C2 | 1.5197 (19) | C10—O11 | 1.4211 (17) |
C1—C13 | 1.547 (2) | C10—H10A | 0.9900 |
C1—H1 | 1.0000 | C10—H10B | 0.9900 |
C2—C3 | 1.393 (2) | O11—C10i | 1.4211 (17) |
C2—C7 | 1.403 (2) | C12—O12 | 1.213 (3) |
C3—C4 | 1.393 (2) | C12—C13i | 1.5168 (18) |
C3—H3 | 0.9500 | C12—C13 | 1.5168 (18) |
C4—C5 | 1.385 (2) | C13—C15 | 1.524 (2) |
C4—H4 | 0.9500 | C13—H13 | 1.0000 |
C5—C6 | 1.388 (2) | N14—C16 | 1.467 (3) |
C5—H5 | 0.9500 | N14—C1i | 1.4840 (17) |
C6—C7 | 1.397 (2) | C15—H15A | 0.9800 |
C6—H6 | 0.9500 | C15—H15B | 0.9800 |
C7—O8 | 1.3666 (18) | C15—H15C | 0.9800 |
O8—C9 | 1.4319 (18) | C16—H16A | 0.9595 |
C9—C10 | 1.504 (2) | C16—H16B | 0.9593 |
C9—H9A | 0.9900 | ||
N14—C1—C2 | 111.82 (12) | H9A—C9—H9B | 108.6 |
N14—C1—C13 | 108.23 (12) | O11—C10—C9 | 107.80 (13) |
C2—C1—C13 | 112.92 (12) | O11—C10—H10A | 110.1 |
N14—C1—H1 | 107.9 | C9—C10—H10A | 110.1 |
C2—C1—H1 | 107.9 | O11—C10—H10B | 110.1 |
C13—C1—H1 | 107.9 | C9—C10—H10B | 110.1 |
C3—C2—C7 | 118.03 (13) | H10A—C10—H10B | 108.5 |
C3—C2—C1 | 122.95 (13) | C10—O11—C10i | 112.69 (16) |
C7—C2—C1 | 118.96 (13) | O12—C12—C13i | 122.11 (9) |
C2—C3—C4 | 121.51 (15) | O12—C12—C13 | 122.11 (9) |
C2—C3—H3 | 119.2 | C13i—C12—C13 | 115.71 (18) |
C4—C3—H3 | 119.2 | C12—C13—C15 | 111.50 (13) |
C5—C4—C3 | 119.40 (15) | C12—C13—C1 | 106.80 (12) |
C5—C4—H4 | 120.3 | C15—C13—C1 | 113.36 (12) |
C3—C4—H4 | 120.3 | C12—C13—H13 | 108.3 |
C4—C5—C6 | 120.68 (14) | C15—C13—H13 | 108.3 |
C4—C5—H5 | 119.7 | C1—C13—H13 | 108.3 |
C6—C5—H5 | 119.7 | C16—N14—C1i | 113.80 (10) |
C5—C6—C7 | 119.40 (14) | C16—N14—C1 | 113.80 (10) |
C5—C6—H6 | 120.3 | C1i—N14—C1 | 108.27 (15) |
C7—C6—H6 | 120.3 | C13—C15—H15A | 109.5 |
O8—C7—C6 | 123.03 (14) | C13—C15—H15B | 109.5 |
O8—C7—C2 | 116.00 (12) | H15A—C15—H15B | 109.5 |
C6—C7—C2 | 120.97 (14) | C13—C15—H15C | 109.5 |
C7—O8—C9 | 118.82 (11) | H15A—C15—H15C | 109.5 |
O8—C9—C10 | 106.99 (12) | H15B—C15—H15C | 109.5 |
O8—C9—H9A | 110.3 | N14—C16—H16A | 109.5 |
C10—C9—H9A | 110.3 | N14—C16—H16B | 109.4 |
O8—C9—H9B | 110.3 | H16A—C16—H16B | 109.5 |
C10—C9—H9B | 110.3 | ||
N14—C1—C2—C3 | 80.51 (18) | C2—C7—O8—C9 | 159.44 (13) |
C13—C1—C2—C3 | −41.84 (19) | C7—O8—C9—C10 | −161.82 (12) |
N14—C1—C2—C7 | −96.59 (16) | O8—C9—C10—O11 | 67.31 (16) |
C13—C1—C2—C7 | 141.06 (13) | C9—C10—O11—C10i | −171.15 (10) |
C7—C2—C3—C4 | 0.1 (2) | O12—C12—C13—C15 | −1.4 (2) |
C1—C2—C3—C4 | −177.05 (14) | C13i—C12—C13—C15 | −178.58 (11) |
C2—C3—C4—C5 | 0.3 (2) | O12—C12—C13—C1 | 122.9 (2) |
C3—C4—C5—C6 | −0.1 (2) | C13i—C12—C13—C1 | −54.2 (2) |
C4—C5—C6—C7 | −0.5 (2) | N14—C1—C13—C12 | 58.80 (16) |
C5—C6—C7—O8 | −179.15 (14) | C2—C1—C13—C12 | −176.87 (13) |
C5—C6—C7—C2 | 0.9 (2) | N14—C1—C13—C15 | −178.02 (12) |
C3—C2—C7—O8 | 179.34 (13) | C2—C1—C13—C15 | −53.68 (16) |
C1—C2—C7—O8 | −3.41 (19) | C2—C1—N14—C16 | 38.57 (19) |
C3—C2—C7—C6 | −0.7 (2) | C13—C1—N14—C16 | 163.56 (14) |
C1—C2—C7—C6 | 176.59 (13) | C2—C1—N14—C1i | 166.15 (9) |
C6—C7—O8—C9 | −20.6 (2) | C13—C1—N14—C1i | −68.85 (18) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O12ii | 0.99 | 2.58 | 3.449 (2) | 147 |
C16—H16B···O11 | 0.96 | 2.57 | 3.530 (3) | 180 |
Symmetry code: (ii) x−1/2, −y+1/2, −z−1/2. |
Funding information
Funding for this research was provided by: National Foundation for Science and Technology Developmenthttps://doi.org/10.13039/100007224 (award No. 104.01-2014.39); Ministry of Education and Science of the Russian Federationhttps://doi.org/10.13039/501100003443 (award No. 02.a03.21.0008 of June 24, 2016).
References
An, H., Wang, T., Mohan, V., Griffey, R. H. & Cook, P. D. (1998). Tetrahedron, 54, 3999–4012. Web of Science CrossRef CAS Google Scholar
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465. Google Scholar
Artiemenko, A. G., Kovdienko, N. A., Kuz'min, V. E., Kamalov, G. L., Lozitskaya, R. N., Fedchuk, A. S., Lozitsky, V. P., Dyachenko, N. S. & Nosach, L. N. (2002). Exp. Oncol. 24, 123–127. Google Scholar
Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costero, A. M., Bañuls, M. J., Aurell, M. J., Ochando, L. E. & Doménech, A. J. (2005). Tetrahedron, 61, 10309–10320. Web of Science CSD CrossRef CAS Google Scholar
Gökel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432. Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocyc. Compd. 47, 1307–1308. Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432. CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849. CSD CrossRef IUCr Journals Google Scholar
Le, A. T. & Soldatenkov, A. T. (2016). Chem. Heterocycl. Compd, 52, 152–154. Web of Science CrossRef CAS Google Scholar
Le, T. A., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). Macroheterocycles, 7, 386–390. Web of Science CrossRef CAS Google Scholar
Le, A. T., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224–225. Web of Science CrossRef CAS Google Scholar
Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 457–462. Google Scholar
Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36. Web of Science CSD CrossRef Google Scholar
Natali, M. & Giordani, S. (2012). Chem. Soc. Rev. 41, 4010–4029. Web of Science CrossRef CAS PubMed Google Scholar
Pedersen, C. J. (1988). Angew. Chem. 100, 1053–1059. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tran, T. T. V., Anh, L. T., Nguyen, H. H., Truong, H. H. & Soldatenkov, A. T. (2016). Acta Cryst. E72, 663–666. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.