research communications
Z,5Z)-5-(2-methoxy-2-oxoethylidene)-2-{(E)-[2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enylidene]hydrazinylidene}-4-oxothiazolidin-3-yl)fumarate
of dimethyl 2-((2aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, bInstitut de Chimie Moléculaire de Reims, CNRS UMR 7312 Bât., Europol'Agro - Moulin de la Housse UFR Sciences BP 1039-51687 Reims Cédex 2, France, and cLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma
The 22H27N3O7S, were determined from the synthetic pathway and by X-ray analysis. This compound is a new 4-thiazolidinone derivative prepared and isolated as pure product from thiosemicarbazone carvone. The molecule is built up from an oxothiazolidine ring tetrasubstituted by a methoxy–oxoethylidene, a maleate, an oxygen and a cyclohexylidene–hydrazone. The cyclohexylidene ring is statistically disordered over two positions, resulting in an inversion of configuration for the substituted carbon.
and the conformation of the title compound, CCCDC reference: 1529291
1. Chemical context
In recent years, the synthesis of heterocyclic systems containing nitrogen and sulfur has attracted great interest because of their broad spectrum of pharmacological activities. The thiazol nucleus is found in a large number of natural products (Nielsen et al., 2012), as well as in diverse pharmaceutical products (Le Flohic et al., 2005). Indeed, some 4-arylthiazole derivatives exhibit a strong anti-inflammatory activity (Hirai & Sugimoto, 1977) while some tetrahydrothiazolo-[4,5-b] pyridines show antioxidant properties (Uchikawa et al., 1996). The therapeutic usefulness of these heterocyclic systems prompted us to prepare a new substituted thiazole which shows important medicinal properties. The title compound 2 was synthesized by the reaction of (R)-thiosemicarbazone carvone 1 easily obtained from naturally occurring (R)-carvone] with dimethyl acetylenedicarboxylate in basic medium, using ethanol as solvent. The resulting product 2 was obtained in 65% yield.
The structure of 2 was established using spectroscopic (MS and NMR) data, while its stereochemistry was determined based mainly on the synthetic pathway and implied by the X-ray analysis. The thiazolic compound 2 is finally identified as dimethyl 2-((2Z,5Z)-5-(2-methoxy-2-oxoethylidene)-2-{(E)-[2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enylidene]hydrazinylidene}-4-oxothiazolidin-3-yl)fumarate.
2. Structural commentary
The title molecule is built up from an oxothiazolidine ring tetrasubstituted by a methoxy-oxoethylidene, a fumarate, an oxygen and a cyclohexylidene-hydrazone (Fig. 1). As expected, the thiazolidine ring and all the atoms attached to it (plane A = S1/C2/N3/C4/C5/N2/C7/O4/C10) are roughly coplanar with the largest deviation from the mean plane being 0.085 (2) Å for C10. The butadiene fragment (C1′/C2′/C3′/C4′A/C4′B) of the cyclohexylidene ring is twisted slightly with respect to this plane, making a dihedral angle of 8.3 (2)°. The methoxycarbonyl group (C11/O11/O12/C12) is also twisted slightly with respect to plane A, with a dihedral angle of 8.2 (2)°. The methoxycarbonyl groups (C6/O61/O62/C14 and C9/O91/O92/C13) of the fumarate group make dihedral angles of 70.06 (7) and 75.59 (9)°, respectively, with the thiazolidine ring.
The most striking feature of this structure is the conformational statistical disorder which affects the cyclohexylidene ring: atoms C6′ and C5′ are split over two positions, each of half occupancy, with respect to the mean plane of the butadiene (C1′–C4′) fragment (Fig.1). Such disorder inverts the configuration at C5 (R C5′A and S C5′B) and so the crystal might be considered as a racemate. Could the crystal be considered as a built up from the combination of R and S configurations? It is difficult to answer this question.
3. Supramolecular features
In the crystal, there are C—H⋯O weak hydrogen-bonding interactions (Table 1) which link the molecules, building a two-dimensional network parallel to the (001) plane, as shown in Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, update November 2015; Groom et al., 2016) using a thiazolidine ring substituted by a hydrazone linked to a cyclohexyl ring as the main skeleton, revealed the presence of six structures.
A comparison of the main C—N, N—N, C—S distances in the title compound and the structures extracted from the CSD shows good correlation: within the C=N—N=C fragment, the double bonds are located on the CN, the N—N distance is that of a single bond corresponding to a hydrazono group. The C=N—N=C torsion angles (Table 2) indicate that in each case the four atoms are nearly planar.
5. Synthesis and crystallization
A solution of (1R)-thiosemicarbazone carvone 1 and dimethyl acetylenedicarboxylate (1.25 eq) in anhydrous MeCN (50 mL), was heated under reflux for 30 min. After the completion of the reaction (the progress of the reaction was monitored by TLC), the solvent was evaporated to dryness. The crude product was purified by silica gel (230–400 mesh) using hexane/ethyl acetate (95:5) as The pure thiazolic product 2 was obtained in 65% yield. Slow evaporation from an ethanolic solution of the title compound gave crystals of 2 suitable for crystallographic analysis.
6. Refinement
Crystal data, data collection and structure . The disorder was been refined using the tools available in SHELXL2014. All H atoms were initially located in a difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95–1.0 Å and O—H = 0.84 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,O) for all other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1529291
https://doi.org/10.1107/S2056989017001190/xu5897sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017001190/xu5897Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).C22H25N3O7S | Z = 2 |
Mr = 475.51 | F(000) = 500 |
Triclinic, P1 | Dx = 1.350 Mg m−3 |
a = 8.2468 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8783 (4) Å | Cell parameters from 8618 reflections |
c = 15.1039 (6) Å | θ = 2.4–26.8° |
α = 96.144 (2)° | µ = 0.19 mm−1 |
β = 105.172 (2)° | T = 173 K |
γ = 95.750 (2)° | Flattened, yellow |
V = 1170.14 (8) Å3 | 0.37 × 0.25 × 0.03 mm |
Bruker APEXII CCD diffractometer | 4778 independent reflections |
Radiation source: fine-focus sealed tube | 4085 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
φ and ω scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −10→10 |
Tmin = 0.732, Tmax = 1.0 | k = −12→12 |
34166 measured reflections | l = −18→18 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0088P)2 + 2.0702P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max < 0.001 |
4778 reflections | Δρmax = 0.30 e Å−3 |
315 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.62041 (8) | 0.86199 (7) | 0.53866 (5) | 0.02031 (15) | |
N1 | 0.3971 (3) | 0.6620 (2) | 0.40411 (16) | 0.0238 (5) | |
N2 | 0.4884 (3) | 0.7458 (2) | 0.35923 (16) | 0.0219 (5) | |
N3 | 0.6949 (3) | 0.9353 (2) | 0.38976 (15) | 0.0197 (5) | |
O4 | 0.8958 (2) | 1.1256 (2) | 0.45018 (13) | 0.0279 (5) | |
O11 | 0.7109 (3) | 0.9837 (2) | 0.72559 (14) | 0.0310 (5) | |
O12 | 0.8836 (3) | 1.1828 (2) | 0.78060 (13) | 0.0298 (5) | |
O61 | 0.5937 (3) | 0.7601 (2) | 0.16332 (14) | 0.0376 (5) | |
O62 | 0.7897 (2) | 0.7213 (2) | 0.28911 (14) | 0.0282 (4) | |
O91 | 0.7901 (4) | 1.0015 (3) | 0.12561 (17) | 0.0515 (7) | |
O92 | 0.6342 (3) | 1.1721 (3) | 0.13646 (17) | 0.0538 (7) | |
C2 | 0.5920 (3) | 0.8376 (3) | 0.41840 (18) | 0.0197 (5) | |
C4 | 0.7978 (3) | 1.0332 (3) | 0.46061 (18) | 0.0199 (5) | |
C5 | 0.7660 (3) | 1.0086 (3) | 0.55003 (18) | 0.0191 (5) | |
C1' | 0.3108 (3) | 0.5531 (3) | 0.3521 (2) | 0.0234 (6) | |
C6'A | 0.2869 (12) | 0.5260 (9) | 0.2500 (10) | 0.0287 (17) | 0.5 |
H6'1 | 0.3901 | 0.5660 | 0.2354 | 0.034* | 0.5 |
H6'2 | 0.1910 | 0.5715 | 0.2179 | 0.034* | 0.5 |
C5'A | 0.2517 (8) | 0.3731 (6) | 0.2149 (4) | 0.0268 (13) | 0.5 |
H5'A | 0.3538 | 0.3305 | 0.2444 | 0.032* | 0.5 |
C4'A | 0.1024 (4) | 0.3074 (3) | 0.2435 (3) | 0.0405 (8) | 0.5 |
H4'1 | −0.0037 | 0.3307 | 0.2033 | 0.049* | 0.5 |
H4'2 | 0.0986 | 0.2063 | 0.2335 | 0.049* | 0.5 |
C6'B | 0.3359 (11) | 0.4961 (9) | 0.2590 (10) | 0.0287 (17) | 0.5 |
H6'3 | 0.3707 | 0.5733 | 0.2283 | 0.034* | 0.5 |
H6'4 | 0.4280 | 0.4377 | 0.2698 | 0.034* | 0.5 |
C5'B | 0.1756 (9) | 0.4123 (7) | 0.1957 (5) | 0.0335 (15) | 0.5 |
H5'B | 0.0900 | 0.4759 | 0.1758 | 0.040* | 0.5 |
C4'B | 0.1024 (4) | 0.3074 (3) | 0.2435 (3) | 0.0405 (8) | 0.5 |
H4'3 | −0.0178 | 0.2782 | 0.2087 | 0.049* | 0.5 |
H4'4 | 0.1626 | 0.2259 | 0.2407 | 0.049* | 0.5 |
C3' | 0.1105 (4) | 0.3520 (3) | 0.3419 (2) | 0.0345 (7) | |
H3' | 0.0414 | 0.2975 | 0.3696 | 0.041* | |
C2' | 0.2076 (3) | 0.4630 (3) | 0.3939 (2) | 0.0268 (6) | |
C17 | 0.2189 (4) | 0.5009 (4) | 0.4944 (2) | 0.0407 (8) | |
H17A | 0.1542 | 0.4280 | 0.5151 | 0.061* | |
H17B | 0.1721 | 0.5872 | 0.5028 | 0.061* | |
H17C | 0.3378 | 0.5124 | 0.5310 | 0.061* | |
C6 | 0.6828 (3) | 0.7956 (3) | 0.24011 (19) | 0.0250 (6) | |
C7 | 0.6900 (3) | 0.9341 (3) | 0.29482 (18) | 0.0212 (5) | |
C8 | 0.6931 (3) | 1.0514 (3) | 0.26006 (19) | 0.0265 (6) | |
H8 | 0.6827 | 1.1316 | 0.2978 | 0.032* | |
C9 | 0.7115 (4) | 1.0664 (3) | 0.1666 (2) | 0.0322 (7) | |
C10 | 0.8410 (3) | 1.0963 (3) | 0.62646 (18) | 0.0228 (6) | |
H10 | 0.9203 | 1.1714 | 0.6238 | 0.027* | |
C11 | 0.8037 (3) | 1.0792 (3) | 0.71487 (19) | 0.0237 (6) | |
C12 | 0.8491 (5) | 1.1760 (3) | 0.8692 (2) | 0.0388 (8) | |
H12A | 0.7274 | 1.1754 | 0.8618 | 0.058* | |
H12B | 0.9120 | 1.2561 | 0.9131 | 0.058* | |
H12C | 0.8846 | 1.0918 | 0.8927 | 0.058* | |
C13 | 0.6425 (6) | 1.2005 (5) | 0.0456 (3) | 0.0715 (14) | |
H13A | 0.7613 | 1.2236 | 0.0463 | 0.107* | |
H13B | 0.5807 | 1.2779 | 0.0291 | 0.107* | |
H13C | 0.5913 | 1.1191 | 0.0000 | 0.107* | |
C14 | 0.7916 (4) | 0.5857 (3) | 0.2438 (3) | 0.0421 (8) | |
H14A | 0.6766 | 0.5354 | 0.2253 | 0.063* | |
H14B | 0.8672 | 0.5364 | 0.2866 | 0.063* | |
H14C | 0.8322 | 0.5930 | 0.1889 | 0.063* | |
C7' | 0.2228 (5) | 0.3479 (4) | 0.1088 (3) | 0.0488 (9) | |
C9' | 0.2088 (5) | 0.2048 (5) | 0.0776 (3) | 0.0663 (12) | |
H9'1 | 0.2373 | 0.1919 | 0.0185 | 0.100* | |
H9'2 | 0.0924 | 0.1619 | 0.0693 | 0.100* | |
H9'3 | 0.2871 | 0.1621 | 0.1237 | 0.100* | |
C8' | 0.2471 (7) | 0.4446 (5) | 0.0520 (3) | 0.0794 (16) | |
H8'1 | 0.2547 | 0.4159 | −0.0087 | 0.095* | |
H8'2 | 0.2562 | 0.5397 | 0.0737 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0217 (3) | 0.0199 (3) | 0.0195 (3) | 0.0015 (2) | 0.0057 (3) | 0.0047 (2) |
N1 | 0.0222 (12) | 0.0232 (12) | 0.0266 (12) | −0.0003 (9) | 0.0081 (10) | 0.0056 (10) |
N2 | 0.0214 (11) | 0.0193 (11) | 0.0244 (12) | −0.0011 (9) | 0.0067 (9) | 0.0033 (9) |
N3 | 0.0215 (11) | 0.0198 (11) | 0.0166 (11) | −0.0013 (9) | 0.0049 (9) | 0.0016 (9) |
O4 | 0.0274 (11) | 0.0287 (11) | 0.0256 (11) | −0.0073 (8) | 0.0094 (8) | −0.0002 (8) |
O11 | 0.0389 (12) | 0.0293 (11) | 0.0240 (11) | −0.0007 (9) | 0.0086 (9) | 0.0054 (9) |
O12 | 0.0362 (12) | 0.0320 (11) | 0.0185 (10) | 0.0004 (9) | 0.0066 (8) | −0.0025 (8) |
O61 | 0.0493 (14) | 0.0339 (12) | 0.0207 (11) | −0.0022 (10) | −0.0007 (10) | −0.0019 (9) |
O62 | 0.0235 (10) | 0.0307 (11) | 0.0292 (11) | 0.0061 (8) | 0.0064 (8) | −0.0015 (9) |
O91 | 0.0797 (19) | 0.0446 (15) | 0.0402 (14) | 0.0044 (13) | 0.0363 (14) | 0.0033 (11) |
O92 | 0.0513 (15) | 0.082 (2) | 0.0399 (14) | 0.0191 (14) | 0.0174 (12) | 0.0396 (14) |
C2 | 0.0187 (13) | 0.0215 (13) | 0.0199 (13) | 0.0032 (10) | 0.0064 (10) | 0.0040 (11) |
C4 | 0.0173 (12) | 0.0207 (13) | 0.0214 (13) | 0.0040 (10) | 0.0048 (10) | 0.0021 (11) |
C5 | 0.0165 (12) | 0.0206 (13) | 0.0201 (13) | 0.0030 (10) | 0.0044 (10) | 0.0032 (10) |
C1' | 0.0186 (13) | 0.0208 (13) | 0.0320 (15) | 0.0024 (10) | 0.0072 (11) | 0.0080 (12) |
C6'A | 0.032 (5) | 0.020 (4) | 0.035 (3) | −0.001 (3) | 0.012 (4) | 0.003 (3) |
C5'A | 0.023 (3) | 0.027 (3) | 0.028 (3) | 0.005 (3) | 0.001 (3) | 0.005 (3) |
C4'A | 0.0361 (18) | 0.0239 (16) | 0.054 (2) | −0.0081 (13) | 0.0055 (16) | 0.0035 (15) |
C6'B | 0.032 (5) | 0.020 (4) | 0.035 (3) | −0.001 (3) | 0.012 (4) | 0.003 (3) |
C5'B | 0.026 (4) | 0.026 (3) | 0.042 (4) | −0.001 (3) | −0.003 (3) | 0.006 (3) |
C4'B | 0.0361 (18) | 0.0239 (16) | 0.054 (2) | −0.0081 (13) | 0.0055 (16) | 0.0035 (15) |
C3' | 0.0262 (15) | 0.0279 (16) | 0.050 (2) | −0.0018 (12) | 0.0095 (14) | 0.0179 (14) |
C2' | 0.0201 (13) | 0.0237 (14) | 0.0392 (17) | 0.0035 (11) | 0.0089 (12) | 0.0135 (12) |
C17 | 0.0356 (18) | 0.049 (2) | 0.0427 (19) | −0.0017 (15) | 0.0182 (15) | 0.0174 (16) |
C6 | 0.0251 (14) | 0.0271 (15) | 0.0225 (14) | −0.0019 (11) | 0.0086 (11) | 0.0020 (11) |
C7 | 0.0192 (13) | 0.0246 (14) | 0.0192 (13) | −0.0010 (10) | 0.0062 (10) | 0.0015 (11) |
C8 | 0.0262 (14) | 0.0322 (16) | 0.0200 (14) | −0.0001 (12) | 0.0057 (11) | 0.0034 (12) |
C9 | 0.0319 (16) | 0.0365 (17) | 0.0245 (15) | −0.0100 (13) | 0.0062 (13) | 0.0052 (13) |
C10 | 0.0193 (13) | 0.0249 (14) | 0.0229 (14) | 0.0010 (11) | 0.0052 (11) | 0.0009 (11) |
C11 | 0.0207 (13) | 0.0282 (15) | 0.0207 (14) | 0.0047 (11) | 0.0029 (11) | 0.0029 (11) |
C12 | 0.056 (2) | 0.0400 (18) | 0.0198 (15) | 0.0021 (16) | 0.0129 (14) | −0.0015 (13) |
C13 | 0.072 (3) | 0.106 (4) | 0.042 (2) | 0.003 (3) | 0.013 (2) | 0.047 (2) |
C14 | 0.0433 (19) | 0.0330 (18) | 0.049 (2) | 0.0118 (15) | 0.0124 (16) | −0.0060 (15) |
C7' | 0.055 (2) | 0.043 (2) | 0.039 (2) | −0.0142 (17) | 0.0121 (17) | −0.0122 (16) |
C9' | 0.051 (2) | 0.088 (3) | 0.052 (3) | 0.021 (2) | 0.001 (2) | −0.006 (2) |
C8' | 0.108 (4) | 0.073 (3) | 0.050 (3) | −0.021 (3) | 0.034 (3) | −0.027 (2) |
S1—C5 | 1.749 (3) | C5'B—C4'B | 1.491 (7) |
S1—C2 | 1.756 (3) | C5'B—C7' | 1.555 (8) |
N1—C1' | 1.286 (4) | C5'B—H5'B | 1.0000 |
N1—N2 | 1.405 (3) | C4'B—C3' | 1.486 (5) |
N2—C2 | 1.274 (3) | C4'B—H4'3 | 0.9900 |
N3—C4 | 1.393 (3) | C4'B—H4'4 | 0.9900 |
N3—C2 | 1.398 (3) | C3'—C2' | 1.330 (4) |
N3—C7 | 1.423 (3) | C3'—H3' | 0.9500 |
O4—C4 | 1.208 (3) | C2'—C17 | 1.500 (4) |
O11—C11 | 1.206 (3) | C17—H17A | 0.9800 |
O12—C11 | 1.331 (3) | C17—H17B | 0.9800 |
O12—C12 | 1.446 (3) | C17—H17C | 0.9800 |
O61—C6 | 1.193 (3) | C6—C7 | 1.508 (4) |
O62—C6 | 1.329 (3) | C7—C8 | 1.322 (4) |
O62—C14 | 1.441 (4) | C8—C9 | 1.480 (4) |
O91—C9 | 1.193 (4) | C8—H8 | 0.9500 |
O92—C9 | 1.337 (4) | C10—C11 | 1.469 (4) |
O92—C13 | 1.447 (4) | C10—H10 | 0.9500 |
C4—C5 | 1.481 (4) | C12—H12A | 0.9800 |
C5—C10 | 1.331 (4) | C12—H12B | 0.9800 |
C1'—C2' | 1.472 (4) | C12—H12C | 0.9800 |
C1'—C6'A | 1.492 (14) | C13—H13A | 0.9800 |
C1'—C6'B | 1.531 (14) | C13—H13B | 0.9800 |
C6'A—C5'A | 1.519 (9) | C13—H13C | 0.9800 |
C6'A—H6'1 | 0.9900 | C14—H14A | 0.9800 |
C6'A—H6'2 | 0.9900 | C14—H14B | 0.9800 |
C5'A—C4'A | 1.517 (7) | C14—H14C | 0.9800 |
C5'A—C7' | 1.547 (7) | C7'—C8' | 1.383 (6) |
C5'A—H5'A | 1.0000 | C7'—C9' | 1.425 (6) |
C4'A—C3' | 1.486 (5) | C9'—H9'1 | 0.9800 |
C4'A—H4'1 | 0.9900 | C9'—H9'2 | 0.9800 |
C4'A—H4'2 | 0.9900 | C9'—H9'3 | 0.9800 |
C6'B—C5'B | 1.516 (10) | C8'—H8'1 | 0.9500 |
C6'B—H6'3 | 0.9900 | C8'—H8'2 | 0.9500 |
C6'B—H6'4 | 0.9900 | ||
C5—S1—C2 | 90.20 (12) | C2'—C3'—H3' | 117.7 |
C1'—N1—N2 | 113.9 (2) | C4'A—C3'—H3' | 117.7 |
C2—N2—N1 | 110.0 (2) | C3'—C2'—C1' | 119.1 (3) |
C4—N3—C2 | 114.9 (2) | C3'—C2'—C17 | 123.1 (3) |
C4—N3—C7 | 123.6 (2) | C1'—C2'—C17 | 117.8 (3) |
C2—N3—C7 | 121.6 (2) | C2'—C17—H17A | 109.5 |
C11—O12—C12 | 114.8 (2) | C2'—C17—H17B | 109.5 |
C6—O62—C14 | 115.3 (2) | H17A—C17—H17B | 109.5 |
C9—O92—C13 | 115.4 (3) | C2'—C17—H17C | 109.5 |
N2—C2—N3 | 120.4 (2) | H17A—C17—H17C | 109.5 |
N2—C2—S1 | 126.7 (2) | H17B—C17—H17C | 109.5 |
N3—C2—S1 | 112.80 (18) | O61—C6—O62 | 125.7 (3) |
O4—C4—N3 | 125.0 (2) | O61—C6—C7 | 123.8 (3) |
O4—C4—C5 | 125.3 (2) | O62—C6—C7 | 110.5 (2) |
N3—C4—C5 | 109.7 (2) | C8—C7—N3 | 119.4 (2) |
C10—C5—C4 | 120.1 (2) | C8—C7—C6 | 124.1 (2) |
C10—C5—S1 | 127.5 (2) | N3—C7—C6 | 116.4 (2) |
C4—C5—S1 | 112.35 (19) | C7—C8—C9 | 124.6 (3) |
N1—C1'—C2' | 116.8 (3) | C7—C8—H8 | 117.7 |
N1—C1'—C6'A | 123.9 (5) | C9—C8—H8 | 117.7 |
C2'—C1'—C6'A | 118.5 (5) | O91—C9—O92 | 124.3 (3) |
N1—C1'—C6'B | 124.6 (4) | O91—C9—C8 | 126.6 (3) |
C2'—C1'—C6'B | 117.4 (5) | O92—C9—C8 | 108.9 (3) |
C1'—C6'A—C5'A | 111.6 (8) | C5—C10—C11 | 121.3 (2) |
C1'—C6'A—H6'1 | 109.3 | C5—C10—H10 | 119.3 |
C5'A—C6'A—H6'1 | 109.3 | C11—C10—H10 | 119.3 |
C1'—C6'A—H6'2 | 109.3 | O11—C11—O12 | 124.7 (3) |
C5'A—C6'A—H6'2 | 109.3 | O11—C11—C10 | 123.8 (3) |
H6'1—C6'A—H6'2 | 108.0 | O12—C11—C10 | 111.4 (2) |
C4'A—C5'A—C6'A | 110.3 (6) | O12—C12—H12A | 109.5 |
C4'A—C5'A—C7' | 111.9 (4) | O12—C12—H12B | 109.5 |
C6'A—C5'A—C7' | 110.5 (7) | H12A—C12—H12B | 109.5 |
C4'A—C5'A—H5'A | 108.0 | O12—C12—H12C | 109.5 |
C6'A—C5'A—H5'A | 108.0 | H12A—C12—H12C | 109.5 |
C7'—C5'A—H5'A | 108.0 | H12B—C12—H12C | 109.5 |
C3'—C4'A—C5'A | 113.1 (3) | O92—C13—H13A | 109.5 |
C3'—C4'A—H4'1 | 109.0 | O92—C13—H13B | 109.5 |
C5'A—C4'A—H4'1 | 109.0 | H13A—C13—H13B | 109.5 |
C3'—C4'A—H4'2 | 109.0 | O92—C13—H13C | 109.5 |
C5'A—C4'A—H4'2 | 109.0 | H13A—C13—H13C | 109.5 |
H4'1—C4'A—H4'2 | 107.8 | H13B—C13—H13C | 109.5 |
C5'B—C6'B—C1' | 111.8 (8) | O62—C14—H14A | 109.5 |
C5'B—C6'B—H6'3 | 109.3 | O62—C14—H14B | 109.5 |
C1'—C6'B—H6'3 | 109.3 | H14A—C14—H14B | 109.5 |
C5'B—C6'B—H6'4 | 109.3 | O62—C14—H14C | 109.5 |
C1'—C6'B—H6'4 | 109.3 | H14A—C14—H14C | 109.5 |
H6'3—C6'B—H6'4 | 107.9 | H14B—C14—H14C | 109.5 |
C4'B—C5'B—C6'B | 111.7 (7) | C8'—C7'—C9' | 120.9 (4) |
C4'B—C5'B—C7' | 112.8 (5) | C8'—C7'—C5'A | 127.0 (4) |
C6'B—C5'B—C7' | 106.7 (7) | C9'—C7'—C5'A | 110.3 (4) |
C4'B—C5'B—H5'B | 108.5 | C8'—C7'—C5'B | 111.9 (4) |
C6'B—C5'B—H5'B | 108.5 | C9'—C7'—C5'B | 125.9 (4) |
C7'—C5'B—H5'B | 108.5 | C7'—C9'—H9'1 | 109.5 |
C3'—C4'B—C5'B | 115.7 (4) | C7'—C9'—H9'2 | 109.5 |
C3'—C4'B—H4'3 | 108.4 | H9'1—C9'—H9'2 | 109.5 |
C5'B—C4'B—H4'3 | 108.4 | C7'—C9'—H9'3 | 109.5 |
C3'—C4'B—H4'4 | 108.4 | H9'1—C9'—H9'3 | 109.5 |
C5'B—C4'B—H4'4 | 108.4 | H9'2—C9'—H9'3 | 109.5 |
H4'3—C4'B—H4'4 | 107.4 | C7'—C8'—H8'1 | 120.0 |
C2'—C3'—C4'A | 124.7 (3) | C7'—C8'—H8'2 | 120.0 |
C2'—C3'—C4'B | 124.7 (3) | H8'1—C8'—H8'2 | 120.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C6′A—H6′2···O12i | 0.99 | 2.56 | 3.349 (8) | 136 |
C3′—H3′···O4ii | 0.95 | 2.57 | 3.510 (3) | 170 |
C4′B—H4′4···O11iii | 0.99 | 2.45 | 3.414 (4) | 164 |
C10—H10···O62iv | 0.95 | 2.47 | 3.244 (3) | 138 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+2, −z+1. |
For the meaning of symbols D, see scheme 2. |
Refcode | D1 | D2 | D3 | D4 | D5 | Torsion | |
MUDRIO | 1.406 | 1.277 | 1.287 | 1.769 | 1.386 | 179.0 | |
FOTQEM | 1.417 | 1.269 | 1.292 | 1.756 | 1.380 | 173.8 | |
MIZJUC | 1.407 | 1.281 | 1.291 | 1.761 | 1.392 | 179.4 | |
ROMXUN | 1.414 | 1.278 | 1.278 | 1.749 | 1.367 | -177.3 | |
WISTAV | 1.429 | 1.256 | 1.278 | 1.753 | 1.413 | -177.6 | |
WISTAV | 1.412 | 1.290 | 1.288 | 1.758 | 1.354 | 177.2 | |
WURVAI | 1.410 | 1.279 | 1.279 | 1.768 | 1.364 | 174.9 | |
This study | 1.405 (3) | 1.274 (3) | 1.286 (4) | 1.756 (3) | 1.398 (3) | -168.9 (2) |
Reference: MUDRIO: Mohamed et al. (2015); FOTQEM: Gautam & Chaudhary (2015); MIZJUC: Mague et al. (2014); ROMXUN: Ramachandran et al. (2009); WISTAV: Gupta & Chaudhary (2013); WURVAI: Gautam et al. (2013). |
References
Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gautam, D. & Chaudhary, R. P. (2015). J. Mol. Struct. 1080, 137–144. CrossRef CAS Google Scholar
Gautam, D., Gautam, P. & Chaudhary, R. P. (2013). Heterocycl. Commun. 19, 43–47. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gupta, R. & Chaudhary, R. P. (2013). Phosphorus Sulfur Silicon, 188, 1296–1304. CrossRef CAS Google Scholar
Hirai, K. & Sugimoto, H. (1977). Chem. Pharm. Bull. 25, 2292–2299. CrossRef CAS Google Scholar
Le Flohic, A., Meyer, C. & Cossy, J. (2005). Org. Lett. 7, 339–342. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o436–o437. CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Mague, J. T., Akkurt, M. & Albayati, M. R. (2015). Private communication (refcode MUDRIO). CCDC, Cambridge, England. Google Scholar
Nielsen, D. S., Hoang, H. N., Lohman, R., Diness, F. & Fairlie, D. P. (2012). Org. Lett. 14, 5720–5723. CrossRef CAS Google Scholar
Ramachandran, R., Rani, M. & Kabilan, S. (2009). Acta Cryst. E65, o584. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uchikawa, O., Fukatsu, K., Suno, M., Aono, T. & Doi, T. (1996). Chem. Pharm. Bull. 44, 2070–2077. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.