research communications
H-1,2,4-triazol-3-yl]sulfanyl}acetate
and Hirshfeld surface analysis of ethyl 2-{[4-ethyl-5-(quinolin-8-yloxymethyl)-4aLaboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bCentre de Recherche Scientifique et Technique en Analyses, Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, and cLaboratory of Applied Organic Synthesis(LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1 – Ahmed Ben Bella, 31000 Oran, Algeria
*Correspondence e-mail: achouaih@gmail.com
In the title compound, C18H20N4O3S, the 1,2,4-triazole ring is twisted with respect to the mean plane of quinoline moiety at 65.24 (4)°. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming the three-dimensional supramolecular packing. π–π stacking between the quinoline ring systems of neighbouring molecules is also observed, the centroid-to-centroid distance being 3.6169 (6) Å. Hirshfeld surface (HS) analyses were performed.
Keywords: crystal structure; hydrogen bonding; π–π stacking; 1,2,4-triazole; Hirshfeld surface analysis.
CCDC reference: 1477670
1. Chemical context
Quinoline derivatives are a very important class of nitrogen-containing heterocycles, which display a broad range of biological activities (Srikanth et al., 2010). In addition, quinolines have suitable electron mobility and other important properties which are crucial for their use in organic light-emitting diodes (OLEDs) (Chen & Shi, 1998; Kulkarni et al., 2004). They are also used in the synthesis of molecules having non-linear optical properties (MacDiarmid et al., 1997; Epstein, 1997). The 1,2,4-triazole ring is also a major five-membered heterocyclic ring, which serves as the core component of many substances that display a wide range of biological activities (Mathew et al., 2007; Pelz et al., 2001). This heterocycle is an important structural motif in the design of new drugs (Catarzi et al., 2004). Here we report the molecular and of the title 1,2,4-triazole derivative.
2. Structural commentary
The molecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The geometric parameters of the ester group are within normal ranges. Likewise, the S1—C12 and S1—C13 distances, being of 1.7480 (9) and 1.8082 (10) Å, are in agreement with single thioether C—S bonds. The C12—S1 bond is shorter than C13—S1 due to the presence of a delocalized π-electronic system throughout the triazole ring. The C—C bond lengths in the quinoline moiety are in the range 1.3691 (16)– 1.4328 (12) Å. The bond lengths are consistent with previous studies (Cabrera et al., 2015; Sunitha et al., 2015). The ethyl group C—C bond lengths are in the range 1.5083 (13)–1.5232 (13) Å and are consistent with previously reported values (Alshawi et al., 2015). The C1—N1, C11—N2 and C12—N3 bonds have double-bond character with bond lengths of 1.3222 (13), 1.3142 (12) and 1.3205 (12) Å, respectively, while the other C—N bonds in the triazole and quinoline rings (C9—N1, C11—N4 and C12—N4) have single-bond character with bond lengths of 1.3662 (12), 1.3699 (11) and 1.3647 (11) Å, respectively. The C14–O3 bond length [1.3326 (12) Å] is notably shorter than the normal C—O single bond (1.427 Å; Wan et al., 2008) due to conjugation. The C15—O3 bond length [1.4605 (12) Å)] is normal for a C—O single bond. The 1,2,4-triazole ring is almost planar (r.m.s. deviation for the non-H atoms = 0.172 Å) and the ethyl acetate fragment adopts a fully extended conformation. The quinoline ring system and the 1,2,4 triazole ring are not coplanar but inclined to one another by 65.24 (4)°.
3. Supramolecular features
In the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds (Table 1, Fig. 2) link the molecules into a three dimensional supramolecular architecture. π–π stacking involving the quinoline rings is also observed, with the intercentroid distance being 3.6169 (6) Å.
4. Hirshfeld surface analysis
To understand the different interactions and contacts in the Crystal Explorer (Wolff et al., 2007). The three-dimensional Hirshfeld surface generated for the structure of the title crystal is presented in Fig. 3, which shows surfaces that have been mapped over a dnorm range of −0.191 to 1.247 Å. The large deep-red spots on the dnorm HS indicate the close-contact interactions, which are mainly responsible for significant hydrogen-bonding contacts. The 2D fingerprint plot is depicted in Fig. 4. This indicates that the most important contacts on the surface, which are necessary for organic molecules, are the H⋯H contacts with a percent contribution of 47.7% to the HS area of the title molecule.
it is necessary to represent Hirshfeld surface (HS) and generate fingerprint plots which provide quantitative information for each intermolecular interaction. In order to highlight all intra- and intermolecular interactions, HS analyses were performed and fingerprint plots were drawn using5. Synthesis and crystallization
The synthesis of the title compound was performed according to the scheme in Fig. 5. Ethyl(quinoline-8-yloxy)acetate (2) was synthesized by condensation of 8-hydroxyquinoline (0.01 mol) (1) with ethyl bromoacetate (0.01 mol) in dry acetone for 12 h in the presence of anhydrous K2CO3. A mixture of compound (2) (0.01 mol) and hydrazine hydrate (0.02 mol) in ethanol was refluxed for 1 h. After cooling, the resulting solid was washed, dried and recrystallized from ethanol to afford 2-(quinolin-8-yloxy)acetohydrazide (3). Compound (3), on reaction with ethyl thiocyanate gave (quinolin-8-yloxy)-acetic acid N′-thiopropionyl-hydrazide (4). To a solution of compound (4) (0.01 mol) in absolute ethanol and (2 eq) of anhydrous CH3COONa, ethyl bromoacetate (0.01 mol) was added. After refluxing for 12 h, the formed precipitate was filtered off and recrystallized from ethanol to give the title compound (5) with moderate yield (75%, m.p. 284 K). Single crystals of the title compound suitable for X-ray diffraction were obtained from ethanol solution.
IR (KBr, cm−1): 2967(CH3), 1730 (C=O), 1618–1486 (C=C), 1429 (C=N), 1174 (N—N), 819 (C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 1.12 (t, 3H, J = 7.20 Hz, OCH2CH3), 1.27 (t, 3H, J = 7.21 Hz, NCH2CH3), 4.00 (s, 2H, S—CH2), 4.07 (q, 2H, J = 7.17 Hz, N—CH2), 4.16 (q, 2H, J = 7.25 Hz, O—CH2CH3), 5.50 (s, 2H, O—CH2), 7.28–7.34 (m, 4H, Ar—H), 7.03 (dd, 1H, J = 1.56 Hz, J = 8.26 Hz, Ar—H), 8.81 (dd, 1H, J = 1.56 Hz, J = 4.13 Hz, Ar—H). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 14.03 (CH3), 15.35(CH3), 35.02(N—CH2), 39.89 (S—CH2), 61.41(O—CH2), 62.09 (O—CH2CH3), 110.80, 121.08, 121.75, 126.72, 129.49, 136.02, 1140.15, 149.41, 150.75, 151.45, 153.04, 168.26 (C=O).
6. Refinement
Crystal data, data collection and structure . H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1477670
https://doi.org/10.1107/S205698901700041X/xu5898sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901700041X/xu5898Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901700041X/xu5898Isup3.cml
Data collection: KappaCCD Nonius (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C18H20N4O3S | F(000) = 392 |
Mr = 372.44 | Dx = 1.416 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.0880 (3) Å | Cell parameters from 100 reflections |
b = 21.2246 (15) Å | θ = 2–29° |
c = 10.2037 (7) Å | µ = 0.21 mm−1 |
β = 99.407 (3)° | T = 100 K |
V = 873.43 (11) Å3 | Prism, yellow |
Z = 2 | 0.55 × 0.10 × 0.09 mm |
Nonius KappaCCD diffractometer | 12491 reflections with I > 2σ(I) |
θ/2θ scans | Rint = 0.045 |
Absorption correction: ψ scan (North et al., 1968) | θmax = 45.4°, θmin = 1.9° |
Tmin = 0.973, Tmax = 0.981 | h = −7→7 |
75160 measured reflections | k = −42→42 |
14165 independent reflections | l = −20→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0281P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.41 e Å−3 |
14165 reflections | Δρmin = −0.25 e Å−3 |
237 parameters | Absolute structure: Flack x determined using 5451 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.253 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.9172 (2) | 0.02368 (4) | 0.62203 (8) | 0.01693 (13) | |
C1 | 1.0744 (3) | −0.03017 (5) | 0.61284 (11) | 0.02013 (16) | |
H1 | 1.1114 | −0.0430 | 0.5272 | 0.024* | |
C2 | 1.1915 (3) | −0.07009 (5) | 0.72130 (12) | 0.02139 (17) | |
H2 | 1.3007 | −0.1086 | 0.7084 | 0.026* | |
C3 | 1.1431 (3) | −0.05183 (5) | 0.84577 (11) | 0.01943 (16) | |
H3 | 1.2234 | −0.0772 | 0.9209 | 0.023* | |
C4 | 0.9726 (2) | 0.00508 (4) | 0.86158 (9) | 0.01551 (13) | |
C5 | 0.9089 (3) | 0.02636 (5) | 0.98684 (10) | 0.01889 (15) | |
H5 | 0.9840 | 0.0024 | 1.0646 | 0.023* | |
C6 | 0.7390 (3) | 0.08139 (5) | 0.99544 (9) | 0.01881 (15) | |
H6 | 0.6948 | 0.0950 | 1.0795 | 0.023* | |
C7 | 0.6280 (3) | 0.11840 (5) | 0.88129 (9) | 0.01619 (13) | |
H7 | 0.5097 | 0.1564 | 0.8890 | 0.019* | |
C8 | 0.6921 (2) | 0.09907 (4) | 0.75895 (9) | 0.01349 (12) | |
C9 | 0.8639 (2) | 0.04117 (4) | 0.74566 (9) | 0.01360 (12) | |
O1 | 0.6071 (2) | 0.13178 (3) | 0.64335 (7) | 0.01586 (11) | |
C10 | 0.4482 (2) | 0.19139 (4) | 0.65147 (9) | 0.01451 (12) | |
H10A | 0.5765 | 0.2178 | 0.7217 | 0.017* | |
H10B | 0.2217 | 0.1856 | 0.6720 | 0.017* | |
C11 | 0.4356 (2) | 0.22133 (4) | 0.51895 (8) | 0.01328 (12) | |
N4 | 0.26324 (19) | 0.19754 (3) | 0.40309 (7) | 0.01236 (10) | |
C12 | 0.3301 (2) | 0.23854 (4) | 0.30789 (8) | 0.01341 (12) | |
N3 | 0.5287 (2) | 0.28427 (4) | 0.36011 (8) | 0.01678 (13) | |
N2 | 0.5964 (2) | 0.27277 (4) | 0.49637 (8) | 0.01664 (12) | |
S1 | 0.17236 (6) | 0.22776 (2) | 0.13959 (2) | 0.01548 (4) | |
C13 | 0.3319 (2) | 0.30058 (4) | 0.08308 (9) | 0.01582 (13) | |
H13A | 0.2351 | 0.3369 | 0.1241 | 0.019* | |
H13B | 0.5758 | 0.3021 | 0.1094 | 0.019* | |
C14 | 0.2422 (2) | 0.30408 (4) | −0.06611 (9) | 0.01528 (13) | |
O2 | 0.0756 (3) | 0.26564 (5) | −0.13459 (9) | 0.02499 (16) | |
O3 | 0.3753 (2) | 0.35520 (4) | −0.11198 (8) | 0.02008 (13) | |
C15 | 0.3339 (3) | 0.36198 (5) | −0.25619 (10) | 0.01947 (16) | |
H15A | 0.0978 | 0.3570 | −0.2961 | 0.023* | |
H15B | 0.4652 | 0.3296 | −0.2945 | 0.023* | |
C16 | 0.4544 (3) | 0.42708 (6) | −0.28335 (12) | 0.02388 (19) | |
H16A | 0.4462 | 0.4326 | −0.3792 | 0.036* | |
H16B | 0.6831 | 0.4324 | −0.2379 | 0.036* | |
H16C | 0.3122 | 0.4586 | −0.2506 | 0.036* | |
C17 | 0.0521 (2) | 0.14137 (4) | 0.38461 (9) | 0.01435 (12) | |
H17A | −0.1426 | 0.1503 | 0.3158 | 0.017* | |
H17B | −0.0302 | 0.1322 | 0.4687 | 0.017* | |
C18 | 0.2296 (3) | 0.08330 (4) | 0.34364 (10) | 0.01737 (14) | |
H18A | 0.0760 | 0.0475 | 0.3327 | 0.026* | |
H18B | 0.4194 | 0.0734 | 0.4124 | 0.026* | |
H18C | 0.3076 | 0.0916 | 0.2594 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0207 (3) | 0.0149 (3) | 0.0152 (3) | 0.0034 (2) | 0.0031 (2) | 0.0000 (2) |
C1 | 0.0242 (4) | 0.0164 (4) | 0.0196 (4) | 0.0053 (3) | 0.0030 (3) | −0.0012 (3) |
C2 | 0.0238 (4) | 0.0144 (4) | 0.0248 (4) | 0.0045 (3) | 0.0007 (3) | 0.0004 (3) |
C3 | 0.0217 (4) | 0.0139 (3) | 0.0215 (4) | 0.0020 (3) | 0.0000 (3) | 0.0033 (3) |
C4 | 0.0176 (3) | 0.0123 (3) | 0.0157 (3) | −0.0008 (2) | 0.0000 (2) | 0.0022 (2) |
C5 | 0.0236 (4) | 0.0184 (4) | 0.0140 (3) | −0.0005 (3) | 0.0011 (3) | 0.0033 (3) |
C6 | 0.0238 (4) | 0.0196 (4) | 0.0131 (3) | −0.0006 (3) | 0.0032 (3) | 0.0011 (3) |
C7 | 0.0203 (4) | 0.0156 (3) | 0.0129 (3) | 0.0003 (3) | 0.0035 (2) | −0.0001 (2) |
C8 | 0.0161 (3) | 0.0118 (3) | 0.0125 (3) | 0.0002 (2) | 0.0022 (2) | 0.0009 (2) |
C9 | 0.0157 (3) | 0.0113 (3) | 0.0136 (3) | −0.0002 (2) | 0.0015 (2) | 0.0008 (2) |
O1 | 0.0231 (3) | 0.0119 (2) | 0.0129 (2) | 0.0043 (2) | 0.0036 (2) | 0.00195 (19) |
C10 | 0.0182 (3) | 0.0113 (3) | 0.0142 (3) | 0.0022 (2) | 0.0029 (2) | 0.0004 (2) |
C11 | 0.0160 (3) | 0.0102 (3) | 0.0134 (3) | 0.0002 (2) | 0.0018 (2) | 0.0003 (2) |
N4 | 0.0143 (3) | 0.0096 (2) | 0.0132 (2) | −0.00051 (18) | 0.00228 (19) | 0.00067 (19) |
C12 | 0.0161 (3) | 0.0104 (3) | 0.0136 (3) | −0.0003 (2) | 0.0020 (2) | 0.0013 (2) |
N3 | 0.0229 (4) | 0.0119 (3) | 0.0148 (3) | −0.0035 (2) | 0.0009 (2) | 0.0014 (2) |
N2 | 0.0221 (3) | 0.0121 (3) | 0.0150 (3) | −0.0029 (2) | 0.0010 (2) | 0.0005 (2) |
S1 | 0.01887 (9) | 0.01298 (8) | 0.01402 (8) | −0.00283 (6) | 0.00099 (6) | 0.00105 (7) |
C13 | 0.0207 (4) | 0.0117 (3) | 0.0144 (3) | −0.0014 (2) | 0.0011 (2) | 0.0015 (2) |
C14 | 0.0183 (3) | 0.0127 (3) | 0.0147 (3) | −0.0004 (2) | 0.0022 (2) | 0.0008 (2) |
O2 | 0.0335 (4) | 0.0221 (4) | 0.0177 (3) | −0.0115 (3) | −0.0007 (3) | −0.0001 (3) |
O3 | 0.0313 (4) | 0.0147 (3) | 0.0141 (2) | −0.0057 (2) | 0.0032 (2) | 0.0012 (2) |
C15 | 0.0256 (4) | 0.0186 (4) | 0.0142 (3) | −0.0015 (3) | 0.0034 (3) | 0.0018 (3) |
C16 | 0.0293 (5) | 0.0200 (4) | 0.0235 (4) | 0.0006 (3) | 0.0078 (4) | 0.0068 (4) |
C17 | 0.0139 (3) | 0.0121 (3) | 0.0173 (3) | −0.0022 (2) | 0.0032 (2) | −0.0002 (2) |
C18 | 0.0204 (4) | 0.0112 (3) | 0.0206 (4) | −0.0017 (2) | 0.0038 (3) | −0.0023 (3) |
N1—C1 | 1.3222 (13) | N4—C12 | 1.3647 (11) |
N1—C9 | 1.3662 (12) | N4—C17 | 1.4660 (11) |
C1—C2 | 1.4137 (15) | C12—N3 | 1.3205 (12) |
C1—H1 | 0.9500 | C12—S1 | 1.7480 (9) |
C2—C3 | 1.3728 (17) | N3—N2 | 1.3941 (12) |
C2—H2 | 0.9500 | S1—C13 | 1.8082 (10) |
C3—C4 | 1.4168 (14) | C13—C14 | 1.5083 (13) |
C3—H3 | 0.9500 | C13—H13A | 0.9900 |
C4—C9 | 1.4183 (12) | C13—H13B | 0.9900 |
C4—C5 | 1.4192 (14) | C14—O2 | 1.2092 (13) |
C5—C6 | 1.3691 (16) | C14—O3 | 1.3326 (12) |
C5—H5 | 0.9500 | O3—C15 | 1.4605 (12) |
C6—C7 | 1.4166 (14) | C15—C16 | 1.5078 (16) |
C6—H6 | 0.9500 | C15—H15A | 0.9900 |
C7—C8 | 1.3792 (12) | C15—H15B | 0.9900 |
C7—H7 | 0.9500 | C16—H16A | 0.9800 |
C8—O1 | 1.3638 (11) | C16—H16B | 0.9800 |
C8—C9 | 1.4328 (12) | C16—H16C | 0.9800 |
O1—C10 | 1.4309 (11) | C17—C18 | 1.5232 (13) |
C10—C11 | 1.4872 (12) | C17—H17A | 0.9900 |
C10—H10A | 0.9900 | C17—H17B | 0.9900 |
C10—H10B | 0.9900 | C18—H18A | 0.9800 |
C11—N2 | 1.3142 (12) | C18—H18B | 0.9800 |
C11—N4 | 1.3699 (11) | C18—H18C | 0.9800 |
C1—N1—C9 | 116.95 (9) | N3—C12—N4 | 111.28 (8) |
N1—C1—C2 | 124.67 (10) | N3—C12—S1 | 126.62 (7) |
N1—C1—H1 | 117.7 | N4—C12—S1 | 122.08 (7) |
C2—C1—H1 | 117.7 | C12—N3—N2 | 106.41 (7) |
C3—C2—C1 | 118.26 (9) | C11—N2—N3 | 107.27 (8) |
C3—C2—H2 | 120.9 | C12—S1—C13 | 96.14 (4) |
C1—C2—H2 | 120.9 | C14—C13—S1 | 108.85 (6) |
C2—C3—C4 | 119.60 (9) | C14—C13—H13A | 109.9 |
C2—C3—H3 | 120.2 | S1—C13—H13A | 109.9 |
C4—C3—H3 | 120.2 | C14—C13—H13B | 109.9 |
C3—C4—C9 | 117.29 (9) | S1—C13—H13B | 109.9 |
C3—C4—C5 | 122.68 (9) | H13A—C13—H13B | 108.3 |
C9—C4—C5 | 120.03 (9) | O2—C14—O3 | 124.76 (9) |
C6—C5—C4 | 119.93 (9) | O2—C14—C13 | 124.82 (9) |
C6—C5—H5 | 120.0 | O3—C14—C13 | 110.41 (8) |
C4—C5—H5 | 120.0 | C14—O3—C15 | 116.57 (8) |
C5—C6—C7 | 121.20 (9) | O3—C15—C16 | 106.73 (9) |
C5—C6—H6 | 119.4 | O3—C15—H15A | 110.4 |
C7—C6—H6 | 119.4 | C16—C15—H15A | 110.4 |
C8—C7—C6 | 119.76 (9) | O3—C15—H15B | 110.4 |
C8—C7—H7 | 120.1 | C16—C15—H15B | 110.4 |
C6—C7—H7 | 120.1 | H15A—C15—H15B | 108.6 |
O1—C8—C7 | 124.90 (8) | C15—C16—H16A | 109.5 |
O1—C8—C9 | 114.47 (7) | C15—C16—H16B | 109.5 |
C7—C8—C9 | 120.63 (8) | H16A—C16—H16B | 109.5 |
N1—C9—C4 | 123.21 (8) | C15—C16—H16C | 109.5 |
N1—C9—C8 | 118.36 (8) | H16A—C16—H16C | 109.5 |
C4—C9—C8 | 118.42 (8) | H16B—C16—H16C | 109.5 |
C8—O1—C10 | 117.00 (7) | N4—C17—C18 | 113.36 (7) |
O1—C10—C11 | 105.89 (7) | N4—C17—H17A | 108.9 |
O1—C10—H10A | 110.6 | C18—C17—H17A | 108.9 |
C11—C10—H10A | 110.6 | N4—C17—H17B | 108.9 |
O1—C10—H10B | 110.6 | C18—C17—H17B | 108.9 |
C11—C10—H10B | 110.6 | H17A—C17—H17B | 107.7 |
H10A—C10—H10B | 108.7 | C17—C18—H18A | 109.5 |
N2—C11—N4 | 110.87 (8) | C17—C18—H18B | 109.5 |
N2—C11—C10 | 124.77 (8) | H18A—C18—H18B | 109.5 |
N4—C11—C10 | 124.31 (8) | C17—C18—H18C | 109.5 |
C12—N4—C11 | 104.16 (7) | H18A—C18—H18C | 109.5 |
C12—N4—C17 | 127.54 (8) | H18B—C18—H18C | 109.5 |
C11—N4—C17 | 128.29 (7) | ||
C9—N1—C1—C2 | −0.45 (17) | O1—C10—C11—N4 | 63.40 (11) |
N1—C1—C2—C3 | −0.74 (19) | N2—C11—N4—C12 | −0.21 (10) |
C1—C2—C3—C4 | 1.42 (17) | C10—C11—N4—C12 | −178.06 (8) |
C2—C3—C4—C9 | −0.95 (15) | N2—C11—N4—C17 | −179.65 (8) |
C2—C3—C4—C5 | 178.93 (11) | C10—C11—N4—C17 | 2.50 (14) |
C3—C4—C5—C6 | −179.14 (10) | C11—N4—C12—N3 | 0.06 (10) |
C9—C4—C5—C6 | 0.74 (15) | C17—N4—C12—N3 | 179.50 (9) |
C4—C5—C6—C7 | −0.84 (16) | C11—N4—C12—S1 | 178.60 (7) |
C5—C6—C7—C8 | −0.22 (16) | C17—N4—C12—S1 | −1.95 (13) |
C6—C7—C8—O1 | −177.76 (9) | N4—C12—N3—N2 | 0.10 (11) |
C6—C7—C8—C9 | 1.37 (14) | S1—C12—N3—N2 | −178.36 (7) |
C1—N1—C9—C4 | 0.96 (15) | N4—C11—N2—N3 | 0.27 (11) |
C1—N1—C9—C8 | −179.58 (9) | C10—C11—N2—N3 | 178.12 (8) |
C3—C4—C9—N1 | −0.28 (14) | C12—N3—N2—C11 | −0.22 (11) |
C5—C4—C9—N1 | 179.84 (9) | N3—C12—S1—C13 | −6.16 (10) |
C3—C4—C9—C8 | −179.73 (9) | N4—C12—S1—C13 | 175.53 (8) |
C5—C4—C9—C8 | 0.38 (14) | C12—S1—C13—C14 | 178.01 (7) |
O1—C8—C9—N1 | −1.71 (12) | S1—C13—C14—O2 | 3.55 (14) |
C7—C8—C9—N1 | 179.08 (9) | S1—C13—C14—O3 | −175.82 (7) |
O1—C8—C9—C4 | 177.77 (8) | O2—C14—O3—C15 | −4.60 (16) |
C7—C8—C9—C4 | −1.44 (13) | C13—C14—O3—C15 | 174.77 (9) |
C7—C8—O1—C10 | 1.90 (14) | C14—O3—C15—C16 | 171.18 (10) |
C9—C8—O1—C10 | −177.28 (8) | C12—N4—C17—C18 | 83.62 (11) |
C8—O1—C10—C11 | 170.64 (8) | C11—N4—C17—C18 | −97.06 (11) |
O1—C10—C11—N2 | −114.16 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N3i | 0.95 | 2.51 | 3.4444 (14) | 167 |
C10—H10A···O2ii | 0.99 | 2.52 | 3.4637 (13) | 159 |
C15—H15B···N2iii | 0.99 | 2.58 | 3.4636 (14) | 148 |
C17—H17B···O1iv | 0.99 | 2.50 | 3.4481 (12) | 161 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x+1, y, z+1; (iii) x, y, z−1; (iv) x−1, y, z. |
Acknowledgements
Professor Dr Werner F. Kuhs and Dr S. Saouane from Georg-August-Universität Göttingen, GZG, Abt. Kristallographie (Germany) are gratefully acknowledged for the X-ray data collection.
Funding information
Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifiquehttps://doi.org/10.13039/501100002717 (award No. CNEPRU).
References
Alshawi, J., Yousif, M., Timco, G., Vitorica Yrezabal, I. J., Winpenny, R. & Al-Jeboori, M. J. (2015). Acta Cryst. E71, o259–o260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, o939. Web of Science CSD CrossRef IUCr Journals Google Scholar
Catarzi, D., Colotta, V., Varano, F., Calabri, F. R., Filacchioni, G., Galli, A., Costagli, C. & Carlà, V. (2004). J. Med. Chem. 47, 262–272. Web of Science CrossRef CAS Google Scholar
Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174. Web of Science CrossRef CAS Google Scholar
Epstein, A. J. (1997). MRS Bull. 22, 16–23. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kulkarni, A. P., Tonzola, J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573. Web of Science CrossRef CAS Google Scholar
MacDiarmid, A. G. & Epstein, A. J. (1997). Photonic and Optoelectronic Polymers, edited by S. A. Jenekhe & K. J. Wynne, p. 395. Washington, DC: American Chemical Society. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pelz, K. R., Hendrix, C. W., Swoboda, S. M., Diener-West, M., Merz, W. G., Hammond, J. & Lipsett, P. A. (2001). Ann. Surg. 233, 542–548. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srikanth, L., Raghunandan, N., Srinivas, P. & Reddy, G. A. (2010). Int. J. Pharm. Bio. Sci. 1, 120–131. CAS Google Scholar
Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackmann, M. A. (2007). Crystal Explorer. University of Western Australia, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.