research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2-{[4-ethyl-5-(quinolin-8-yloxymeth­yl)-4H-1,2,4-triazol-3-yl]sulfan­yl}acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bCentre de Recherche Scientifique et Technique en Analyses, Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, and cLaboratory of Applied Organic Synthesis(LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1 – Ahmed Ben Bella, 31000 Oran, Algeria
*Correspondence e-mail: achouaih@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 December 2016; accepted 9 January 2017; online 13 January 2017)

In the title compound, C18H20N4O3S, the 1,2,4-triazole ring is twisted with respect to the mean plane of quinoline moiety at 65.24 (4)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming the three-dimensional supra­molecular packing. ππ stacking between the quinoline ring systems of neighbouring mol­ecules is also observed, the centroid-to-centroid distance being 3.6169 (6) Å. Hirshfeld surface (HS) analyses were performed.

1. Chemical context

Quinoline derivatives are a very important class of nitro­gen-containing heterocycles, which display a broad range of biological activities (Srikanth et al., 2010[Srikanth, L., Raghunandan, N., Srinivas, P. & Reddy, G. A. (2010). Int. J. Pharm. Bio. Sci. 1, 120-131.]). In addition, quinolines have suitable electron mobility and other important properties which are crucial for their use in organic light-emitting diodes (OLEDs) (Chen & Shi, 1998[Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.]; Kulkarni et al., 2004[Kulkarni, A. P., Tonzola, J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556-4573.]). They are also used in the synthesis of mol­ecules having non-linear optical properties (MacDiarmid et al., 1997[MacDiarmid, A. G. & Epstein, A. J. (1997). Photonic and Optoelectronic Polymers, edited by S. A. Jenekhe & K. J. Wynne, p. 395. Washington, DC: American Chemical Society.]; Epstein, 1997[Epstein, A. J. (1997). MRS Bull. 22, 16-23.]). The 1,2,4-triazole ring is also a major five-membered heterocyclic ring, which serves as the core component of many substances that display a wide range of biological activities (Mathew et al., 2007[Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823-840.]; Pelz et al., 2001[Pelz, K. R., Hendrix, C. W., Swoboda, S. M., Diener-West, M., Merz, W. G., Hammond, J. & Lipsett, P. A. (2001). Ann. Surg. 233, 542-548.]). This heterocycle is an important structural motif in the design of new drugs (Catarzi et al., 2004[Catarzi, D., Colotta, V., Varano, F., Calabri, F. R., Filacchioni, G., Galli, A., Costagli, C. & Carlà, V. (2004). J. Med. Chem. 47, 262-272.]). Here we report the mol­ecular and crystal structure of the title 1,2,4-triazole derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure with atomic numbering scheme for the title compound is given in Fig. 1[link]. The geometric parameters of the ester group are within normal ranges. Likewise, the S1—C12 and S1—C13 distances, being of 1.7480 (9) and 1.8082 (10) Å, are in agreement with single thio­ether C—S bonds. The C12—S1 bond is shorter than C13—S1 due to the presence of a delocalized π-electronic system throughout the triazole ring. The C—C bond lengths in the quinoline moiety are in the range 1.3691 (16)– 1.4328 (12) Å. The bond lengths are consistent with previous studies (Cabrera et al., 2015[Cabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, o939.]; Sunitha et al., 2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]). The ethyl group C—C bond lengths are in the range 1.5083 (13)–1.5232 (13) Å and are consistent with previously reported values (Alshawi et al., 2015[Alshawi, J., Yousif, M., Timco, G., Vitorica Yrezabal, I. J., Winpenny, R. & Al-Jeboori, M. J. (2015). Acta Cryst. E71, o259-o260.]). The C1—N1, C11—N2 and C12—N3 bonds have double-bond character with bond lengths of 1.3222 (13), 1.3142 (12) and 1.3205 (12) Å, respectively, while the other C—N bonds in the triazole and quinoline rings (C9—N1, C11—N4 and C12—N4) have single-bond character with bond lengths of 1.3662 (12), 1.3699 (11) and 1.3647 (11) Å, respectively. The C14–O3 bond length [1.3326 (12) Å] is notably shorter than the normal C—O single bond (1.427 Å; Wan et al., 2008[Wan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795.]) due to conjugation. The C15—O3 bond length [1.4605 (12) Å)] is normal for a C—O single bond. The 1,2,4-triazole ring is almost planar (r.m.s. deviation for the non-H atoms = 0.172 Å) and the ethyl acetate fragment adopts a fully extended conformation. The quinoline ring system and the 1,2,4 triazole ring are not coplanar but inclined to one another by 65.24 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing the atomic numbering scheme (displacement ellipsoids are drawn at the 65% probability level). H atoms are shown as small spheres of arbitrary radii.

3. Supra­molecular features

In the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link], Fig. 2[link]) link the mol­ecules into a three dimensional supra­molecular architecture. ππ stacking involving the quinoline rings is also observed, with the intercentroid distance being 3.6169 (6) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.95 2.51 3.4444 (14) 167
C10—H10A⋯O2ii 0.99 2.52 3.4637 (13) 159
C15—H15B⋯N2iii 0.99 2.58 3.4636 (14) 148
C17—H17B⋯O1iv 0.99 2.50 3.4481 (12) 161
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z+1; (iii) x, y, z-1; (iv) x-1, y, z.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound viewed along the c axis with hydrogen bonds shown as dashed lines.

4. Hirshfeld surface analysis

To understand the different inter­actions and contacts in the crystal structure, it is necessary to represent Hirshfeld surface (HS) and generate fingerprint plots which provide qu­anti­tative information for each inter­molecular inter­action. In order to highlight all intra- and inter­molecular inter­actions, HS analyses were performed and fingerprint plots were drawn using Crystal Explorer (Wolff et al., 2007[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackmann, M. A. (2007). Crystal Explorer. University of Western Australia, Australia.]). The three-dimensional Hirshfeld surface generated for the structure of the title crystal is presented in Fig. 3[link], which shows surfaces that have been mapped over a dnorm range of −0.191 to 1.247 Å. The large deep-red spots on the dnorm HS indicate the close-contact inter­actions, which are mainly responsible for significant hydrogen-bonding contacts. The 2D fingerprint plot is depicted in Fig. 4[link]. This indicates that the most important contacts on the surface, which are necessary for organic mol­ecules, are the H⋯H contacts with a percent contribution of 47.7% to the HS area of the title mol­ecule.

[Figure 3]
Figure 3
HS mapped over dnorm.
[Figure 4]
Figure 4
The two-dimensional fingerprint plot of the title mol­ecule.

5. Synthesis and crystallization

The synthesis of the title compound was performed according to the scheme in Fig. 5[link]. Eth­yl(quinoline-8-yl­oxy)acetate (2) was synthesized by condensation of 8-hy­droxy­quinoline (0.01 mol) (1) with ethyl bromo­acetate (0.01 mol) in dry acetone for 12 h in the presence of anhydrous K2CO3. A mixture of compound (2) (0.01 mol) and hydrazine hydrate (0.02 mol) in ethanol was refluxed for 1 h. After cooling, the resulting solid was washed, dried and recrystallized from ethanol to afford 2-(quinolin-8-yl­oxy)acetohydrazide (3). Compound (3), on reaction with ethyl thio­cyanate gave (quinolin-8-yl­oxy)-acetic acid N′-thio­propionyl-hydrazide (4). To a solution of compound (4) (0.01 mol) in absolute ethanol and (2 eq) of anhydrous CH3COONa, ethyl bromo­acetate (0.01 mol) was added. After refluxing for 12 h, the formed precipitate was filtered off and recrystallized from ethanol to give the title compound (5) with moderate yield (75%, m.p. 284 K). Single crystals of the title compound suitable for X-ray diffraction were obtained from ethanol solution.

[Figure 5]
Figure 5
Chemical pathway showing the formation of the title compound.

IR (KBr, cm−1): 2967(CH3), 1730 (C=O), 1618–1486 (C=C), 1429 (C=N), 1174 (N—N), 819 (C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 1.12 (t, 3H, J = 7.20 Hz, OCH2CH3), 1.27 (t, 3H, J = 7.21 Hz, NCH2CH3), 4.00 (s, 2H, S—CH2), 4.07 (q, 2H, J = 7.17 Hz, N—CH2), 4.16 (q, 2H, J = 7.25 Hz, O—CH2CH3), 5.50 (s, 2H, O—CH2), 7.28–7.34 (m, 4H, Ar—H), 7.03 (dd, 1H, J = 1.56 Hz, J = 8.26 Hz, Ar—H), 8.81 (dd, 1H, J = 1.56 Hz, J = 4.13 Hz, Ar—H). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 14.03 (CH3), 15.35(CH3), 35.02(N—CH2), 39.89 (S—CH2), 61.41(O—CH2), 62.09 (O—CH2CH3), 110.80, 121.08, 121.75, 126.72, 129.49, 136.02, 1140.15, 149.41, 150.75, 151.45, 153.04, 168.26 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C18H20N4O3S
Mr 372.44
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 4.0880 (3), 21.2246 (15), 10.2037 (7)
β (°) 99.407 (3)
V3) 873.43 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.55 × 0.10 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.973, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 75160, 14165, 12491
Rint 0.045
(sin θ/λ)max−1) 1.002
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.06
No. of reflections 14165
No. of parameters 237
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.25
Absolute structure Flack x determined using 5451 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.253 (3)
Computer programs: KappaCCD Nonius (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: KappaCCD Nonius (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Ethyl 2-{[4-ethyl-5-(quinolin-8-yloxymethyl)-4H-1,2,4-triazol-3-yl]sulfanyl}acetate top
Crystal data top
C18H20N4O3SF(000) = 392
Mr = 372.44Dx = 1.416 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.0880 (3) ÅCell parameters from 100 reflections
b = 21.2246 (15) Åθ = 2–29°
c = 10.2037 (7) ŵ = 0.21 mm1
β = 99.407 (3)°T = 100 K
V = 873.43 (11) Å3Prism, yellow
Z = 20.55 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
12491 reflections with I > 2σ(I)
θ/2θ scansRint = 0.045
Absorption correction: ψ scan
(North et al., 1968)
θmax = 45.4°, θmin = 1.9°
Tmin = 0.973, Tmax = 0.981h = 77
75160 measured reflectionsk = 4242
14165 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0281P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.41 e Å3
14165 reflectionsΔρmin = 0.25 e Å3
237 parametersAbsolute structure: Flack x determined using 5451 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.253 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9172 (2)0.02368 (4)0.62203 (8)0.01693 (13)
C11.0744 (3)0.03017 (5)0.61284 (11)0.02013 (16)
H11.11140.04300.52720.024*
C21.1915 (3)0.07009 (5)0.72130 (12)0.02139 (17)
H21.30070.10860.70840.026*
C31.1431 (3)0.05183 (5)0.84577 (11)0.01943 (16)
H31.22340.07720.92090.023*
C40.9726 (2)0.00508 (4)0.86158 (9)0.01551 (13)
C50.9089 (3)0.02636 (5)0.98684 (10)0.01889 (15)
H50.98400.00241.06460.023*
C60.7390 (3)0.08139 (5)0.99544 (9)0.01881 (15)
H60.69480.09501.07950.023*
C70.6280 (3)0.11840 (5)0.88129 (9)0.01619 (13)
H70.50970.15640.88900.019*
C80.6921 (2)0.09907 (4)0.75895 (9)0.01349 (12)
C90.8639 (2)0.04117 (4)0.74566 (9)0.01360 (12)
O10.6071 (2)0.13178 (3)0.64335 (7)0.01586 (11)
C100.4482 (2)0.19139 (4)0.65147 (9)0.01451 (12)
H10A0.57650.21780.72170.017*
H10B0.22170.18560.67200.017*
C110.4356 (2)0.22133 (4)0.51895 (8)0.01328 (12)
N40.26324 (19)0.19754 (3)0.40309 (7)0.01236 (10)
C120.3301 (2)0.23854 (4)0.30789 (8)0.01341 (12)
N30.5287 (2)0.28427 (4)0.36011 (8)0.01678 (13)
N20.5964 (2)0.27277 (4)0.49637 (8)0.01664 (12)
S10.17236 (6)0.22776 (2)0.13959 (2)0.01548 (4)
C130.3319 (2)0.30058 (4)0.08308 (9)0.01582 (13)
H13A0.23510.33690.12410.019*
H13B0.57580.30210.10940.019*
C140.2422 (2)0.30408 (4)0.06611 (9)0.01528 (13)
O20.0756 (3)0.26564 (5)0.13459 (9)0.02499 (16)
O30.3753 (2)0.35520 (4)0.11198 (8)0.02008 (13)
C150.3339 (3)0.36198 (5)0.25619 (10)0.01947 (16)
H15A0.09780.35700.29610.023*
H15B0.46520.32960.29450.023*
C160.4544 (3)0.42708 (6)0.28335 (12)0.02388 (19)
H16A0.44620.43260.37920.036*
H16B0.68310.43240.23790.036*
H16C0.31220.45860.25060.036*
C170.0521 (2)0.14137 (4)0.38461 (9)0.01435 (12)
H17A0.14260.15030.31580.017*
H17B0.03020.13220.46870.017*
C180.2296 (3)0.08330 (4)0.34364 (10)0.01737 (14)
H18A0.07600.04750.33270.026*
H18B0.41940.07340.41240.026*
H18C0.30760.09160.25940.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (3)0.0149 (3)0.0152 (3)0.0034 (2)0.0031 (2)0.0000 (2)
C10.0242 (4)0.0164 (4)0.0196 (4)0.0053 (3)0.0030 (3)0.0012 (3)
C20.0238 (4)0.0144 (4)0.0248 (4)0.0045 (3)0.0007 (3)0.0004 (3)
C30.0217 (4)0.0139 (3)0.0215 (4)0.0020 (3)0.0000 (3)0.0033 (3)
C40.0176 (3)0.0123 (3)0.0157 (3)0.0008 (2)0.0000 (2)0.0022 (2)
C50.0236 (4)0.0184 (4)0.0140 (3)0.0005 (3)0.0011 (3)0.0033 (3)
C60.0238 (4)0.0196 (4)0.0131 (3)0.0006 (3)0.0032 (3)0.0011 (3)
C70.0203 (4)0.0156 (3)0.0129 (3)0.0003 (3)0.0035 (2)0.0001 (2)
C80.0161 (3)0.0118 (3)0.0125 (3)0.0002 (2)0.0022 (2)0.0009 (2)
C90.0157 (3)0.0113 (3)0.0136 (3)0.0002 (2)0.0015 (2)0.0008 (2)
O10.0231 (3)0.0119 (2)0.0129 (2)0.0043 (2)0.0036 (2)0.00195 (19)
C100.0182 (3)0.0113 (3)0.0142 (3)0.0022 (2)0.0029 (2)0.0004 (2)
C110.0160 (3)0.0102 (3)0.0134 (3)0.0002 (2)0.0018 (2)0.0003 (2)
N40.0143 (3)0.0096 (2)0.0132 (2)0.00051 (18)0.00228 (19)0.00067 (19)
C120.0161 (3)0.0104 (3)0.0136 (3)0.0003 (2)0.0020 (2)0.0013 (2)
N30.0229 (4)0.0119 (3)0.0148 (3)0.0035 (2)0.0009 (2)0.0014 (2)
N20.0221 (3)0.0121 (3)0.0150 (3)0.0029 (2)0.0010 (2)0.0005 (2)
S10.01887 (9)0.01298 (8)0.01402 (8)0.00283 (6)0.00099 (6)0.00105 (7)
C130.0207 (4)0.0117 (3)0.0144 (3)0.0014 (2)0.0011 (2)0.0015 (2)
C140.0183 (3)0.0127 (3)0.0147 (3)0.0004 (2)0.0022 (2)0.0008 (2)
O20.0335 (4)0.0221 (4)0.0177 (3)0.0115 (3)0.0007 (3)0.0001 (3)
O30.0313 (4)0.0147 (3)0.0141 (2)0.0057 (2)0.0032 (2)0.0012 (2)
C150.0256 (4)0.0186 (4)0.0142 (3)0.0015 (3)0.0034 (3)0.0018 (3)
C160.0293 (5)0.0200 (4)0.0235 (4)0.0006 (3)0.0078 (4)0.0068 (4)
C170.0139 (3)0.0121 (3)0.0173 (3)0.0022 (2)0.0032 (2)0.0002 (2)
C180.0204 (4)0.0112 (3)0.0206 (4)0.0017 (2)0.0038 (3)0.0023 (3)
Geometric parameters (Å, º) top
N1—C11.3222 (13)N4—C121.3647 (11)
N1—C91.3662 (12)N4—C171.4660 (11)
C1—C21.4137 (15)C12—N31.3205 (12)
C1—H10.9500C12—S11.7480 (9)
C2—C31.3728 (17)N3—N21.3941 (12)
C2—H20.9500S1—C131.8082 (10)
C3—C41.4168 (14)C13—C141.5083 (13)
C3—H30.9500C13—H13A0.9900
C4—C91.4183 (12)C13—H13B0.9900
C4—C51.4192 (14)C14—O21.2092 (13)
C5—C61.3691 (16)C14—O31.3326 (12)
C5—H50.9500O3—C151.4605 (12)
C6—C71.4166 (14)C15—C161.5078 (16)
C6—H60.9500C15—H15A0.9900
C7—C81.3792 (12)C15—H15B0.9900
C7—H70.9500C16—H16A0.9800
C8—O11.3638 (11)C16—H16B0.9800
C8—C91.4328 (12)C16—H16C0.9800
O1—C101.4309 (11)C17—C181.5232 (13)
C10—C111.4872 (12)C17—H17A0.9900
C10—H10A0.9900C17—H17B0.9900
C10—H10B0.9900C18—H18A0.9800
C11—N21.3142 (12)C18—H18B0.9800
C11—N41.3699 (11)C18—H18C0.9800
C1—N1—C9116.95 (9)N3—C12—N4111.28 (8)
N1—C1—C2124.67 (10)N3—C12—S1126.62 (7)
N1—C1—H1117.7N4—C12—S1122.08 (7)
C2—C1—H1117.7C12—N3—N2106.41 (7)
C3—C2—C1118.26 (9)C11—N2—N3107.27 (8)
C3—C2—H2120.9C12—S1—C1396.14 (4)
C1—C2—H2120.9C14—C13—S1108.85 (6)
C2—C3—C4119.60 (9)C14—C13—H13A109.9
C2—C3—H3120.2S1—C13—H13A109.9
C4—C3—H3120.2C14—C13—H13B109.9
C3—C4—C9117.29 (9)S1—C13—H13B109.9
C3—C4—C5122.68 (9)H13A—C13—H13B108.3
C9—C4—C5120.03 (9)O2—C14—O3124.76 (9)
C6—C5—C4119.93 (9)O2—C14—C13124.82 (9)
C6—C5—H5120.0O3—C14—C13110.41 (8)
C4—C5—H5120.0C14—O3—C15116.57 (8)
C5—C6—C7121.20 (9)O3—C15—C16106.73 (9)
C5—C6—H6119.4O3—C15—H15A110.4
C7—C6—H6119.4C16—C15—H15A110.4
C8—C7—C6119.76 (9)O3—C15—H15B110.4
C8—C7—H7120.1C16—C15—H15B110.4
C6—C7—H7120.1H15A—C15—H15B108.6
O1—C8—C7124.90 (8)C15—C16—H16A109.5
O1—C8—C9114.47 (7)C15—C16—H16B109.5
C7—C8—C9120.63 (8)H16A—C16—H16B109.5
N1—C9—C4123.21 (8)C15—C16—H16C109.5
N1—C9—C8118.36 (8)H16A—C16—H16C109.5
C4—C9—C8118.42 (8)H16B—C16—H16C109.5
C8—O1—C10117.00 (7)N4—C17—C18113.36 (7)
O1—C10—C11105.89 (7)N4—C17—H17A108.9
O1—C10—H10A110.6C18—C17—H17A108.9
C11—C10—H10A110.6N4—C17—H17B108.9
O1—C10—H10B110.6C18—C17—H17B108.9
C11—C10—H10B110.6H17A—C17—H17B107.7
H10A—C10—H10B108.7C17—C18—H18A109.5
N2—C11—N4110.87 (8)C17—C18—H18B109.5
N2—C11—C10124.77 (8)H18A—C18—H18B109.5
N4—C11—C10124.31 (8)C17—C18—H18C109.5
C12—N4—C11104.16 (7)H18A—C18—H18C109.5
C12—N4—C17127.54 (8)H18B—C18—H18C109.5
C11—N4—C17128.29 (7)
C9—N1—C1—C20.45 (17)O1—C10—C11—N463.40 (11)
N1—C1—C2—C30.74 (19)N2—C11—N4—C120.21 (10)
C1—C2—C3—C41.42 (17)C10—C11—N4—C12178.06 (8)
C2—C3—C4—C90.95 (15)N2—C11—N4—C17179.65 (8)
C2—C3—C4—C5178.93 (11)C10—C11—N4—C172.50 (14)
C3—C4—C5—C6179.14 (10)C11—N4—C12—N30.06 (10)
C9—C4—C5—C60.74 (15)C17—N4—C12—N3179.50 (9)
C4—C5—C6—C70.84 (16)C11—N4—C12—S1178.60 (7)
C5—C6—C7—C80.22 (16)C17—N4—C12—S11.95 (13)
C6—C7—C8—O1177.76 (9)N4—C12—N3—N20.10 (11)
C6—C7—C8—C91.37 (14)S1—C12—N3—N2178.36 (7)
C1—N1—C9—C40.96 (15)N4—C11—N2—N30.27 (11)
C1—N1—C9—C8179.58 (9)C10—C11—N2—N3178.12 (8)
C3—C4—C9—N10.28 (14)C12—N3—N2—C110.22 (11)
C5—C4—C9—N1179.84 (9)N3—C12—S1—C136.16 (10)
C3—C4—C9—C8179.73 (9)N4—C12—S1—C13175.53 (8)
C5—C4—C9—C80.38 (14)C12—S1—C13—C14178.01 (7)
O1—C8—C9—N11.71 (12)S1—C13—C14—O23.55 (14)
C7—C8—C9—N1179.08 (9)S1—C13—C14—O3175.82 (7)
O1—C8—C9—C4177.77 (8)O2—C14—O3—C154.60 (16)
C7—C8—C9—C41.44 (13)C13—C14—O3—C15174.77 (9)
C7—C8—O1—C101.90 (14)C14—O3—C15—C16171.18 (10)
C9—C8—O1—C10177.28 (8)C12—N4—C17—C1883.62 (11)
C8—O1—C10—C11170.64 (8)C11—N4—C17—C1897.06 (11)
O1—C10—C11—N2114.16 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.952.513.4444 (14)167
C10—H10A···O2ii0.992.523.4637 (13)159
C15—H15B···N2iii0.992.583.4636 (14)148
C17—H17B···O1iv0.992.503.4481 (12)161
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x1, y, z.
 

Acknowledgements

Professor Dr Werner F. Kuhs and Dr S. Saouane from Georg-August-Universität Göttingen, GZG, Abt. Kristallographie (Germany) are gratefully acknowledged for the X-ray data collection.

Funding information

Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (award No. CNEPRU).

References

First citationAlshawi, J., Yousif, M., Timco, G., Vitorica Yrezabal, I. J., Winpenny, R. & Al-Jeboori, M. J. (2015). Acta Cryst. E71, o259–o260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, o939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCatarzi, D., Colotta, V., Varano, F., Calabri, F. R., Filacchioni, G., Galli, A., Costagli, C. & Carlà, V. (2004). J. Med. Chem. 47, 262–272.  Web of Science CrossRef CAS Google Scholar
First citationChen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174.  Web of Science CrossRef CAS Google Scholar
First citationEpstein, A. J. (1997). MRS Bull. 22, 16–23.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKulkarni, A. P., Tonzola, J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.  Web of Science CrossRef CAS Google Scholar
First citationMacDiarmid, A. G. & Epstein, A. J. (1997). Photonic and Optoelectronic Polymers, edited by S. A. Jenekhe & K. J. Wynne, p. 395. Washington, DC: American Chemical Society.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPelz, K. R., Hendrix, C. W., Swoboda, S. M., Diener-West, M., Merz, W. G., Hammond, J. & Lipsett, P. A. (2001). Ann. Surg. 233, 542–548.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrikanth, L., Raghunandan, N., Srinivas, P. & Reddy, G. A. (2010). Int. J. Pharm. Bio. Sci. 1, 120–131.  CAS Google Scholar
First citationSunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D. & Spackmann, M. A. (2007). Crystal Explorer. University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds