research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new one-dimensional NiII coordination polymer with a two-dimensional supra­molecular architecture

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

Edited by M. Zeller, Purdue University, USA (Received 18 December 2016; accepted 10 January 2017; online 13 January 2017)

A new one-dimensional NiII coordination polymer of 1,3,5-tris­(imidazol-1-ylmeth­yl)benzene, namely catena-poly[[aqua­(sulfato-κO)hemi(μ-ethane-1,2-diol-κ2O:O′)[μ3-1,3,5-tris­(1H-imidazol-1-ylmeth­yl)benzene-κ3N3,N3′,N3′′]nickel(II)] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiII cation is coordinated by three N atoms of three different 1,3,5-tris­(imidazol-1-ylmeth­yl)benzene ligands, one O atom of an ethane-1,2-diol mol­ecule, by a sulfate anion and a water mol­ecule, forming a distorted octa­hedral NiN3O3 coordination geometry. The tripodal 1,3,5-tris­(imidazol-1-ylmeth­yl)benzene ligands link the NiII cations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H⋯O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001) plane. Another water mol­ecule and a second ethane-1,2-diol mol­ecule are non-coordinating and are linked to the coordinating sulfate ions via O—H⋯O hydrogen bonds.

1. Chemical context

In recent years, the self-assembly of coordination polymers and crystal engineering of metal-organic coordination frameworks have attracted great inter­est, owing to their intriguing mol­ecular topologies and the potential applications of these polymers as functional materials (Pan et al., 2004[Pan, L., Sander, M.-B., Huang, X.-Y., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J.-K. (2004). J. Am. Chem. Soc. 126, 1308-1309.]; Jiang et al., 2011[Jiang, H.-L., Liu, B., Lan, Y.-Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F. & Xu, Q. (2011). J. Am. Chem. Soc. 133, 11854-11857.]; Du et al., 2014[Du, M., Li, C.-P., Chen, M., Ge, Z.-W., Wang, X., Wang, L. & Liu, C.-S. (2014). J. Am. Chem. Soc. 136, 10906-10909.]). Previously reported studies a major strategy to be the use of multidentate organic ligands and metal ions to construct inorganic–organic hybrid materials through metal–ligand coordination and hydrogen-bonding inter­actions. Imidazole-containing multidentate ligands that contain an aromatic core have received much attention, such as 1,3-bis­(1-imidazol­yl)-5-(imidazol-1-ylmeth­yl)benzene (Fan et al., 2003[Fan, J., Sun, W.-Y., Okamura, T., Tang, W.-X. & Ueyama, N. (2003). Inorg. Chem. 42, 3168-3175.]), 2,4,6-tris­[4-(imidazol-1-ylmeth­yl)phenyl-1,3,5-triazine (Wan et al., 2004[Wan, S.-Y., Huang, Y.-T., Li, Y.-Z. & Sun, W.-Y. (2004). Microporous Mesoporous Mater. 73, 101-108.]), 1,3,5-tris­(imidazol-1-ylmeth­yl)-2,4,6-tri­methyl­benzene (Zhao et al., 2004[Zhao, W., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2004). J. Solid State Chem. 177, 2358-2365.]), 4,4′-bis­(imidazol-1-ylmeth­yl)biphenyl (Carlucci et al., 2008[Carlucci, L., Ciani, G., Maggini, S. & Proserpio, D. M. (2008). CrystEngComm, 10, 1191-1203.]), 1,3,5-tri(1-imidazol­yl)benzene (Su et al., 2010[Su, Z., Wang, Z.-B. & Sun, W.-Y. (2010). Inorg. Chem. Commun. 13, 1278-1280.]), 1,2,4,5-tetra­kis­(imidazol-1-ylmeth­yl)benzene (Hua et al., 2010[Hua, Q., Su, Z., Zhao, Y., Okamura, T., Xu, G.-C., Sun, W.-Y. & Ueyama, N. (2010). Inorg. Chim. Acta, 363, 3550-3557.]) and 1,3,5-tris­(imidazol-1-ylmeth­yl)benzene (Xu et al., 2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395-403.]; Zhong, 2014[Zhong, K.-L. (2014). Acta Cryst. C70, 189-193.]).

Hydro­thermal (solvothermal) synthesis is an effective method for the construction of new metal–organic coordination polymers because it can provide ideal conditions for crystal growth due to the enhanced transport ability of solvents in superheated systems. In the present work, we carried out the solvothermal reaction between NiSO4·6H2O and imidazole-containing multidentate ligands, 1,3,5-tris(imidazol-1-ylmeth­yl)benzene (timb) and successfully obtained a new NiII one-dimensional coordination polymer, {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, (I)[link]. Herein we report its crystal structure and its elemental and IR spectroscopic analysis data.

[Scheme 1]

2. Structural commentary

The title complex (I)[link] crystallizes in the triclinic space group P[\overline{1}] and the asymmetric unit of the structure consists of one NiII ion, one sulfate anion, one timb ligand, half a coordinating ethane-1,2-diol mol­ecule, one coordinating water mol­ecules, one additional lattice water mol­ecule and one non-coordinating ethane-1,2-diol solvent mol­ecule. As shown in Fig. 1[link], each NiII cation exhibits an irregular octa­hedral NiN3O3 coordination geometry and is coordinated by three N atoms (N1, N5i and N3ii) from three different tripodal timb ligands and three O atoms (O1W, O1 and O5) from a coord­inating water mol­ecule, a sulfate anion and a coordinating ethane-1,2-diol mol­ecule, respectively (see Fig. 1[link] and Table 1[link] for symmetry codes). The Ni—O [2.0904 (12)–2.1458 (12) Å; Table 1[link]] and Ni—N bond lengths [2.0597 (15)–2.0777 (15) Å] are in accord with corresponding bond lengths found in previously reported NiII coordination polymers {[Ni(tib)(H2O)2(SO4)]·EtOH·H2O}n [tib = 1,3,5-tris­(imidazol-1-ylmeth­yl) benzene; Ni—O = 2.0911 (14)–2.1368 (12) Å and Ni—N = 2.0709 (15)–2.0728 (14) Å; Xu et al., 2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395-403.]] and [Ni(timpt)2](ClO4)2 [timpt = 2,4,6-tri[4-(imid­azol-1-ylmeth­yl)phen­yl]-1,3,5-triazine; Ni—N = 2.097 (5)–2.151 (4) Å; Wan et al., 2004[Wan, S.-Y., Huang, Y.-T., Li, Y.-Z. & Sun, W.-Y. (2004). Microporous Mesoporous Mater. 73, 101-108.]].

Table 1
Selected geometric parameters (Å, °)

Ni1—N5i 2.0597 (15) Ni1—O5 2.0904 (12)
Ni1—N3ii 2.0735 (15) Ni1—O1W 2.1048 (12)
Ni1—N1 2.0777 (15) Ni1—O1 2.1458 (12)
       
N5i—Ni1—N3ii 89.38 (6) N1—Ni1—O1W 87.11 (5)
N5i—Ni1—N1 175.70 (6) O5—Ni1—O1W 89.54 (5)
N3ii—Ni1—N1 92.36 (6) N5i—Ni1—O1 93.10 (6)
N5i—Ni1—O5 88.70 (6) N3ii—Ni1—O1 90.67 (5)
N3ii—Ni1—O5 176.18 (5) N1—Ni1—O1 90.82 (5)
N1—Ni1—O5 89.79 (5) O5—Ni1—O1 86.13 (5)
N5i—Ni1—O1W 88.85 (6) O1W—Ni1—O1 175.21 (5)
N3ii—Ni1—O1W 93.73 (6)    
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-numbering scheme and with displacement ellipsoids drawn at the 25% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) −x, −y, 1 − z.]

Each NiII atom is coordinated to three individual timb ligands and each timb ligand in turn connects three nickel(II) atoms to generate an infinite laddered chain along the [010] direction (Fig. 2[link]). Each timb ligand adopts cis, cis, cis substit­uent conformations and coordinates to three NiII atoms (Ni1, Ni1i and Ni1ii), as observed in the Ni compound reported by Xu et al. (2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395-403.]). The metal–metal distances (Ni⋯Ni) in the above-mentioned chain are 7.1003 (4) Å (Ni1⋯Ni1i), 8.7577 (4) Å (Ni1⋯Ni1ii) and 11.7296 (6) Å (Ni1i⋯Niii) (see Fig. 2[link] for symmetry codes). The three imidazole groups within each timb ligand are inclined to the central benzene ring plane at dihedral angles of 67.60 (6)° (N2/C12/N1/C11/C10), 77.54 (6)° (N4/C15/N3/C14/C13) and 71.75 (6)° (N6/C18/N5/C17/C16), which are different from the values found in a previously reported tib–cadmium compound with the same cis, cis, cis ligand conformations (66.15, 75.58 and 86.33°; Xu et al., 2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395-403.]). The three least-square planes of the terminal imidazole rings of the timb ligand are oriented with respect to each other at 56.46 (6)° (N2/C12/N1/C11/C10 and N4/C15/N3/C14/C13), 74.95 (7)° (N2/C12/N1/C11/C10 and N6/C18/N5/C17/C16) and 75.78 (7)° (N4/C15/N3/C14/C13 and N6/C18/N5/C17/C16), respectively.

[Figure 2]
Figure 2
The one-dimensional polymeric chain along the [010] direction. The 17-membered (A) and 24-membered (B) macrocyclic rings are indicated. [Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) −x, −y, 1 − z.]

It can be seen clearly that one 17-membered macrocyclic ring (A) and one 24-membered macrocyclic ring (B) exist in the above-mentioned chain (see Fig. 2[link]), which are evidently different from that observed in the previously noted nickel compound {[Ni(tib)(H2O)2(SO4)]·EtOH·(H2O)}n in which A and B are 24-membered macrocyclic rings (Xu et al., 2009[Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395-403.]).

3. Supra­molecular features

In the crystal structure of the title compound, the above-mentioned neighbouring chains are further connected to each other by Owater—H⋯Osulfate hydrogen bonds (O1W—H1WB⋯O2iii), giving rise to a two-dimensional supermolecular structure running parallel to (001) plane (Fig. 3[link]). Other O—H⋯O hydrogen-bonding inter­actions involve the coordinating water and ethane-1,2-diol mol­ecules, the lattice water mol­ecule, the solvent ethane-1,2-diol mol­ecule and the sulfate anion, viz. O1W—H1WA⋯O6iii, O2W—H2WA⋯O3iv, O2W—H2WB⋯O3, O5—H1A⋯O3, and O7—H7C⋯O4iv (see Table 2[link] for symmetry codes).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6iii 0.82 1.93 2.743 (2) 172
O1W—H1WB⋯O2iii 0.82 1.88 2.6995 (19) 178
O2W—H2WA⋯O3iv 0.83 2.00 2.827 (2) 176
O2W—H2WB⋯O3 0.83 2.13 2.928 (2) 163
O5—H1A⋯O3 0.81 1.81 2.6168 (18) 169
O7—H7C⋯O4iv 0.82 2.07 2.884 (3) 174
Symmetry codes: (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Two-dimensional structure of (I)[link], running parallel to (001) plane. Hydrogen bonds are represented by dashed lines. All lattice water and solvent ethane-1,2-diol mol­ecules have been omitted for clarity.

4. Synthesis and crystallization

NiSO4·6H2O (0.1 mmol), 1,3,5-tris­(imidazol-1-ylmeth­yl)benzene (0.1 mmol), water (6 ml) and ethane-1,2-diol (2 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 72 h. After cooling to room temperature, blue block-shaped crystals (45% yield, based on Ni) suitable for X-ray analysis were obtained. Elemental analysis calculated for C21H31N6NiO9S: C 41.86, H 5.15, N 13.95%; found: C 41.90, H 5.12, N 13.86%. IR (KBr disc, ν, cm−1): 3378 (s), 1612 (m), 1521 (s), 1445 (m), 1400 (w), 1283 (w), 1234 (m), 1119 (s), 1055 (s), 963 (w), 830 (m), 750 (s), 661 (s), 637 (m).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geom­etrically and allowed to ride on their parent atoms, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C). O-bound H atoms of the water and ethane-1,2-diol mol­ecules were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bonding network, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H⋯H distances [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O
Mr 602.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 8.6910 (4), 11.7296 (5), 13.1200 (6)
α, β, γ (°) 83.922 (1), 77.829 (1), 74.064 (1)
V3) 1255.53 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.])
Tmin, Tmax 0.770, 0.837
No. of measured, independent and observed [I > 2σ(I)] reflections 10288, 5701, 5102
Rint 0.015
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.05
No. of reflections 5701
No. of parameters 346
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.35
Computer programs: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

catena-Poly[[aqua(sulfato-κO)hemi(µ-ethane-1,2-diol-κ2O:O')[µ3-1,3,5-tris(1H-imidazol-1-ylmethyl)benzene-κ3N3,N3',N3'']nickel(II)] ethane-1,2-diol monosolvate monohydrate] top
Crystal data top
[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2OZ = 2
Mr = 602.29F(000) = 630
Triclinic, P1Dx = 1.593 Mg m3
a = 8.6910 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7296 (5) ÅCell parameters from 5689 reflections
c = 13.1200 (6) Åθ = 3.6–27.5°
α = 83.922 (1)°µ = 0.92 mm1
β = 77.829 (1)°T = 223 K
γ = 74.064 (1)°Block, blue
V = 1255.53 (10) Å30.30 × 0.25 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5701 independent reflections
Radiation source: fine-focus sealed tube5102 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.015
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 113
Tmin = 0.770, Tmax = 0.837k = 1514
10288 measured reflectionsl = 1716
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.5937P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5701 reflectionsΔρmax = 0.64 e Å3
346 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.04969 (2)0.26468 (2)0.69398 (2)0.02264 (7)
S10.39700 (5)0.31684 (4)0.73486 (3)0.02532 (10)
N10.17497 (17)0.15324 (13)0.57365 (11)0.0264 (3)
N20.35427 (17)0.07352 (13)0.43798 (11)0.0272 (3)
N30.00592 (17)0.12373 (13)0.20513 (11)0.0275 (3)
N40.12631 (18)0.00981 (14)0.09797 (11)0.0288 (3)
N50.08774 (18)0.61960 (13)0.19341 (11)0.0280 (3)
N60.28790 (17)0.48786 (13)0.10352 (11)0.0271 (3)
O10.27204 (14)0.25000 (12)0.74691 (10)0.0332 (3)
O1W0.16019 (15)0.28607 (13)0.63045 (10)0.0375 (3)
H1WA0.14850.28050.56740.045*
H1WB0.24500.26940.66020.045*
O20.55747 (16)0.23427 (14)0.72399 (15)0.0551 (5)
O2W0.4836 (2)0.61941 (19)0.57640 (16)0.0644 (5)
H2WA0.51860.61250.51270.091 (12)*
H2WB0.46950.55510.60320.19 (2)*
O40.3645 (2)0.39103 (17)0.82364 (12)0.0585 (5)
O30.38778 (17)0.39792 (13)0.63970 (11)0.0405 (3)
O50.10109 (15)0.40988 (11)0.59967 (10)0.0309 (3)
H1A0.18960.41420.60750.066 (8)*
O70.7848 (2)0.36115 (16)0.21737 (13)0.0581 (4)
H7C0.74870.43280.20680.087*
O60.8462 (2)0.27266 (19)0.42207 (12)0.0641 (5)
H6B0.75510.30360.40920.096*
C10.44203 (19)0.11243 (16)0.24838 (13)0.0270 (4)
C20.3776 (2)0.05094 (16)0.19147 (13)0.0281 (4)
H2A0.36500.02400.21590.034*
C30.3312 (2)0.10036 (16)0.09739 (13)0.0267 (3)
C40.3538 (2)0.21075 (16)0.06059 (13)0.0272 (3)
H4A0.32510.24350.00260.033*
C50.4194 (2)0.27334 (15)0.11748 (14)0.0264 (3)
C60.4632 (2)0.22389 (16)0.21129 (14)0.0290 (4)
H6A0.50680.26530.24960.035*
C70.4926 (2)0.05685 (18)0.34988 (13)0.0321 (4)
H7A0.54180.02740.34230.039*
H7B0.57400.09200.36450.039*
C80.2624 (2)0.03201 (19)0.03467 (14)0.0349 (4)
H8A0.22530.08260.02350.042*
H8B0.34780.03560.00640.042*
C90.4402 (2)0.39447 (16)0.07772 (15)0.0306 (4)
H9A0.52370.41130.10800.037*
H9B0.47650.39490.00250.037*
C100.2496 (2)0.00224 (17)0.46746 (14)0.0323 (4)
H10A0.25310.06650.43670.039*
C110.1396 (2)0.05254 (17)0.55086 (14)0.0307 (4)
H11A0.05320.02320.58720.037*
C120.3053 (2)0.16280 (16)0.50339 (13)0.0270 (3)
H12A0.35630.22360.49980.032*
C130.0332 (2)0.05429 (17)0.12110 (15)0.0337 (4)
H13A0.07760.13130.09680.040*
C140.1129 (2)0.01670 (17)0.18614 (14)0.0329 (4)
H14A0.22390.00370.21410.040*
C150.1375 (2)0.11575 (16)0.15006 (14)0.0299 (4)
H15A0.23360.17580.14780.036*
C160.1711 (2)0.52835 (18)0.04308 (15)0.0362 (4)
H16A0.17470.50470.02300.043*
C170.0496 (2)0.60986 (18)0.09903 (15)0.0356 (4)
H17A0.04560.65280.07670.043*
C180.2324 (2)0.54442 (16)0.19310 (14)0.0298 (4)
H18A0.28860.53220.24800.036*
C200.0760 (2)0.45061 (18)0.49659 (15)0.0349 (4)
H20A0.06600.38610.46000.042*
H20B0.16820.47830.45810.042*
C210.9401 (3)0.3387 (2)0.24521 (18)0.0498 (5)
H21A0.95190.41030.27000.060*
H21B1.02500.31580.18440.060*
C220.9574 (3)0.2421 (2)0.32855 (19)0.0533 (6)
H22A0.94150.17180.30390.064*
H22B1.06730.22250.34220.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02106 (11)0.02523 (12)0.02195 (11)0.00719 (8)0.00350 (8)0.00055 (8)
S10.02180 (18)0.0309 (2)0.0249 (2)0.00984 (16)0.00678 (15)0.00368 (16)
N10.0254 (7)0.0282 (8)0.0252 (7)0.0072 (6)0.0043 (6)0.0008 (6)
N20.0267 (7)0.0305 (8)0.0220 (7)0.0043 (6)0.0040 (5)0.0001 (6)
N30.0269 (7)0.0299 (8)0.0263 (7)0.0102 (6)0.0022 (6)0.0016 (6)
N40.0317 (7)0.0313 (8)0.0263 (7)0.0151 (6)0.0040 (6)0.0008 (6)
N50.0293 (7)0.0287 (8)0.0261 (7)0.0077 (6)0.0049 (6)0.0026 (6)
N60.0296 (7)0.0239 (7)0.0265 (7)0.0075 (6)0.0019 (6)0.0011 (6)
O10.0261 (6)0.0392 (8)0.0386 (7)0.0155 (5)0.0128 (5)0.0111 (6)
O1W0.0257 (6)0.0619 (9)0.0279 (7)0.0159 (6)0.0043 (5)0.0058 (6)
O20.0231 (6)0.0416 (9)0.0939 (13)0.0063 (6)0.0090 (7)0.0162 (9)
O2W0.0637 (11)0.0762 (14)0.0583 (12)0.0359 (10)0.0060 (9)0.0144 (10)
O40.0787 (12)0.0705 (12)0.0375 (8)0.0353 (10)0.0087 (8)0.0141 (8)
O30.0393 (7)0.0474 (9)0.0394 (8)0.0212 (6)0.0143 (6)0.0181 (6)
O50.0320 (6)0.0338 (7)0.0301 (6)0.0112 (5)0.0153 (5)0.0098 (5)
O70.0763 (12)0.0541 (10)0.0512 (10)0.0234 (9)0.0231 (9)0.0046 (8)
O60.0594 (10)0.1007 (15)0.0345 (8)0.0213 (10)0.0141 (7)0.0020 (9)
C10.0224 (7)0.0313 (9)0.0232 (8)0.0035 (7)0.0013 (6)0.0014 (7)
C20.0307 (8)0.0271 (9)0.0251 (8)0.0096 (7)0.0017 (7)0.0035 (7)
C30.0269 (8)0.0295 (9)0.0235 (8)0.0107 (7)0.0004 (6)0.0004 (7)
C40.0273 (8)0.0291 (9)0.0240 (8)0.0074 (7)0.0044 (6)0.0036 (7)
C50.0238 (7)0.0234 (8)0.0297 (9)0.0061 (6)0.0010 (6)0.0005 (7)
C60.0278 (8)0.0313 (9)0.0291 (9)0.0088 (7)0.0048 (7)0.0043 (7)
C70.0254 (8)0.0403 (11)0.0236 (8)0.0001 (7)0.0024 (7)0.0019 (7)
C80.0425 (10)0.0416 (11)0.0259 (9)0.0241 (9)0.0008 (8)0.0013 (8)
C90.0279 (8)0.0256 (9)0.0351 (10)0.0081 (7)0.0020 (7)0.0005 (7)
C100.0376 (9)0.0329 (10)0.0296 (9)0.0125 (8)0.0077 (7)0.0037 (7)
C110.0309 (8)0.0357 (10)0.0290 (9)0.0155 (8)0.0047 (7)0.0012 (7)
C120.0273 (8)0.0270 (9)0.0264 (8)0.0075 (7)0.0049 (7)0.0010 (7)
C130.0361 (9)0.0311 (10)0.0319 (9)0.0042 (8)0.0092 (8)0.0007 (8)
C140.0273 (8)0.0389 (11)0.0297 (9)0.0056 (8)0.0030 (7)0.0019 (8)
C150.0279 (8)0.0290 (9)0.0330 (9)0.0106 (7)0.0028 (7)0.0006 (7)
C160.0407 (10)0.0413 (11)0.0262 (9)0.0067 (9)0.0087 (8)0.0063 (8)
C170.0344 (9)0.0411 (11)0.0307 (9)0.0032 (8)0.0120 (8)0.0047 (8)
C180.0325 (9)0.0299 (9)0.0273 (9)0.0069 (7)0.0071 (7)0.0030 (7)
C200.0366 (10)0.0364 (10)0.0298 (9)0.0055 (8)0.0102 (8)0.0031 (8)
C210.0546 (13)0.0468 (13)0.0463 (13)0.0177 (11)0.0023 (10)0.0065 (10)
C220.0651 (15)0.0489 (14)0.0455 (13)0.0091 (12)0.0142 (11)0.0077 (11)
Geometric parameters (Å, º) top
Ni1—N5i2.0597 (15)C1—C61.393 (3)
Ni1—N3ii2.0735 (15)C1—C71.516 (2)
Ni1—N12.0777 (15)C2—C31.397 (2)
Ni1—O52.0904 (12)C2—H2A0.9300
Ni1—O1W2.1048 (12)C3—C41.384 (2)
Ni1—O12.1458 (12)C3—C81.513 (2)
S1—O21.4516 (14)C4—C51.395 (2)
S1—O41.4611 (16)C4—H4A0.9300
S1—O11.4792 (12)C5—C61.386 (2)
S1—O31.4895 (13)C5—C91.506 (2)
N1—C121.324 (2)C6—H6A0.9300
N1—C111.375 (2)C7—H7A0.9700
N2—C121.344 (2)C7—H7B0.9700
N2—C101.370 (2)C8—H8A0.9700
N2—C71.467 (2)C8—H8B0.9700
N3—C151.325 (2)C9—H9A0.9700
N3—C141.376 (2)C9—H9B0.9700
N3—Ni1ii2.0736 (15)C10—C111.358 (3)
N4—C151.343 (2)C10—H10A0.9300
N4—C131.371 (2)C11—H11A0.9300
N4—C81.465 (2)C12—H12A0.9300
N5—C181.322 (2)C13—C141.348 (3)
N5—C171.371 (2)C13—H13A0.9300
N5—Ni1i2.0597 (15)C14—H14A0.9300
N6—C181.343 (2)C15—H15A0.9300
N6—C161.371 (2)C16—C171.355 (3)
N6—C91.469 (2)C16—H16A0.9300
O1W—H1WA0.8187C17—H17A0.9300
O1W—H1WB0.8219C18—H18A0.9300
O2W—H2WA0.8318C20—C20i1.492 (4)
O2W—H2WB0.8269C20—H20A0.9700
O5—C201.427 (2)C20—H20B0.9700
O5—H1A0.8129C21—C221.489 (3)
O7—C211.420 (3)C21—H21A0.9700
O7—H7C0.8200C21—H21B0.9700
O6—C221.404 (3)C22—H22A0.9700
O6—H6B0.8200C22—H22B0.9700
C1—C21.379 (3)
N5i—Ni1—N3ii89.38 (6)C5—C6—H6A119.9
N5i—Ni1—N1175.70 (6)C1—C6—H6A119.9
N3ii—Ni1—N192.36 (6)N2—C7—C1112.19 (14)
N5i—Ni1—O588.70 (6)N2—C7—H7A109.2
N3ii—Ni1—O5176.18 (5)C1—C7—H7A109.2
N1—Ni1—O589.79 (5)N2—C7—H7B109.2
N5i—Ni1—O1W88.85 (6)C1—C7—H7B109.2
N3ii—Ni1—O1W93.73 (6)H7A—C7—H7B107.9
N1—Ni1—O1W87.11 (5)N4—C8—C3112.00 (15)
O5—Ni1—O1W89.54 (5)N4—C8—H8A109.2
N5i—Ni1—O193.10 (6)C3—C8—H8A109.2
N3ii—Ni1—O190.67 (5)N4—C8—H8B109.2
N1—Ni1—O190.82 (5)C3—C8—H8B109.2
O5—Ni1—O186.13 (5)H8A—C8—H8B107.9
O1W—Ni1—O1175.21 (5)N6—C9—C5111.96 (14)
O2—S1—O4111.46 (11)N6—C9—H9A109.2
O2—S1—O1109.44 (9)C5—C9—H9A109.2
O4—S1—O1110.26 (9)N6—C9—H9B109.2
O2—S1—O3109.46 (9)C5—C9—H9B109.2
O4—S1—O3107.10 (10)H9A—C9—H9B107.9
O1—S1—O3109.06 (7)C11—C10—N2105.93 (16)
C12—N1—C11105.32 (15)C11—C10—H10A127.0
C12—N1—Ni1127.89 (12)N2—C10—H10A127.0
C11—N1—Ni1126.79 (12)C10—C11—N1109.93 (16)
C12—N2—C10107.46 (14)C10—C11—H11A125.0
C12—N2—C7126.22 (16)N1—C11—H11A125.0
C10—N2—C7126.31 (16)N1—C12—N2111.36 (15)
C15—N3—C14105.22 (15)N1—C12—H12A124.3
C15—N3—Ni1ii126.02 (12)N2—C12—H12A124.3
C14—N3—Ni1ii128.61 (12)C14—C13—N4106.18 (16)
C15—N4—C13107.33 (15)C14—C13—H13A126.9
C15—N4—C8125.92 (16)N4—C13—H13A126.9
C13—N4—C8126.61 (16)C13—C14—N3110.02 (16)
C18—N5—C17105.44 (15)C13—C14—H14A125.0
C18—N5—Ni1i128.44 (12)N3—C14—H14A125.0
C17—N5—Ni1i126.04 (12)N3—C15—N4111.25 (16)
C18—N6—C16107.12 (15)N3—C15—H15A124.4
C18—N6—C9126.52 (15)N4—C15—H15A124.4
C16—N6—C9126.24 (15)C17—C16—N6106.14 (16)
S1—O1—Ni1138.40 (8)C17—C16—H16A126.9
Ni1—O1W—H1WA118.1N6—C16—H16A126.9
Ni1—O1W—H1WB126.3C16—C17—N5109.86 (16)
H1WA—O1W—H1WB109.6C16—C17—H17A125.1
H2WA—O2W—H2WB108.8N5—C17—H17A125.1
C20—O5—Ni1131.31 (12)N5—C18—N6111.43 (15)
C20—O5—H1A110.7N5—C18—H18A124.3
Ni1—O5—H1A106.8N6—C18—H18A124.3
C21—O7—H7C109.5O5—C20—C20i108.89 (19)
C22—O6—H6B109.5O5—C20—H20A109.9
C2—C1—C6119.90 (16)C20i—C20—H20A109.9
C2—C1—C7119.62 (16)O5—C20—H20B109.9
C6—C1—C7120.47 (16)C20i—C20—H20B109.9
C1—C2—C3120.49 (16)H20A—C20—H20B108.3
C1—C2—H2A119.8O7—C21—C22109.84 (19)
C3—C2—H2A119.8O7—C21—H21A109.7
C4—C3—C2119.28 (16)C22—C21—H21A109.7
C4—C3—C8120.40 (16)O7—C21—H21B109.7
C2—C3—C8120.29 (16)C22—C21—H21B109.7
C3—C4—C5120.59 (16)H21A—C21—H21B108.2
C3—C4—H4A119.7O6—C22—C21113.0 (2)
C5—C4—H4A119.7O6—C22—H22A109.0
C6—C5—C4119.54 (16)C21—C22—H22A109.0
C6—C5—C9120.37 (16)O6—C22—H22B109.0
C4—C5—C9120.09 (16)C21—C22—H22B109.0
C5—C6—C1120.19 (16)H22A—C22—H22B107.8
O2—S1—O1—Ni1139.62 (13)C7—N2—C10—C11178.79 (16)
O4—S1—O1—Ni197.44 (15)N2—C10—C11—N10.3 (2)
O3—S1—O1—Ni119.90 (16)C12—N1—C11—C100.3 (2)
C6—C1—C2—C30.9 (3)Ni1—N1—C11—C10179.26 (12)
C7—C1—C2—C3179.63 (15)C11—N1—C12—N20.27 (19)
C1—C2—C3—C41.4 (3)Ni1—N1—C12—N2179.31 (11)
C1—C2—C3—C8179.31 (16)C10—N2—C12—N10.12 (19)
C2—C3—C4—C51.2 (3)C7—N2—C12—N1179.00 (15)
C8—C3—C4—C5179.09 (16)C15—N4—C13—C140.6 (2)
C3—C4—C5—C60.5 (3)C8—N4—C13—C14176.31 (17)
C3—C4—C5—C9178.73 (15)N4—C13—C14—N30.7 (2)
C4—C5—C6—C10.1 (3)C15—N3—C14—C130.5 (2)
C9—C5—C6—C1179.27 (15)Ni1ii—N3—C14—C13175.22 (13)
C2—C1—C6—C50.2 (3)C14—N3—C15—N40.1 (2)
C7—C1—C6—C5178.86 (15)Ni1ii—N3—C15—N4175.73 (11)
C12—N2—C7—C192.6 (2)C13—N4—C15—N30.3 (2)
C10—N2—C7—C186.1 (2)C8—N4—C15—N3176.05 (16)
C2—C1—C7—N282.8 (2)C18—N6—C16—C170.8 (2)
C6—C1—C7—N298.5 (2)C9—N6—C16—C17177.19 (17)
C15—N4—C8—C392.2 (2)N6—C16—C17—N50.7 (2)
C13—N4—C8—C382.8 (2)C18—N5—C17—C160.4 (2)
C4—C3—C8—N4129.77 (17)Ni1i—N5—C17—C16177.31 (13)
C2—C3—C8—N452.4 (2)C17—N5—C18—N60.1 (2)
C18—N6—C9—C585.2 (2)Ni1i—N5—C18—N6176.68 (12)
C16—N6—C9—C590.5 (2)C16—N6—C18—N50.6 (2)
C6—C5—C9—N697.28 (19)C9—N6—C18—N5176.97 (15)
C4—C5—C9—N681.9 (2)Ni1—O5—C20—C20i99.0 (2)
C12—N2—C10—C110.09 (19)O7—C21—C22—O664.0 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6iii0.821.932.743 (2)172
O1W—H1WB···O2iii0.821.882.6995 (19)178
O2W—H2WA···O3iv0.832.002.827 (2)176
O2W—H2WB···O30.832.132.928 (2)163
O5—H1A···O30.811.812.6168 (18)169
O7—H7C···O4iv0.822.072.884 (3)174
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Scientific Research Foundation of Nanjing Polytechnic Institute (award No. NHKY-2016–11).

References

First citationCarlucci, L., Ciani, G., Maggini, S. & Proserpio, D. M. (2008). CrystEngComm, 10, 1191–1203.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Li, C.-P., Chen, M., Ge, Z.-W., Wang, X., Wang, L. & Liu, C.-S. (2014). J. Am. Chem. Soc. 136, 10906–10909.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFan, J., Sun, W.-Y., Okamura, T., Tang, W.-X. & Ueyama, N. (2003). Inorg. Chem. 42, 3168–3175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHua, Q., Su, Z., Zhao, Y., Okamura, T., Xu, G.-C., Sun, W.-Y. & Ueyama, N. (2010). Inorg. Chim. Acta, 363, 3550–3557.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJiang, H.-L., Liu, B., Lan, Y.-Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F. & Xu, Q. (2011). J. Am. Chem. Soc. 133, 11854–11857.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPan, L., Sander, M.-B., Huang, X.-Y., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J.-K. (2004). J. Am. Chem. Soc. 126, 1308–1309.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, Z., Wang, Z.-B. & Sun, W.-Y. (2010). Inorg. Chem. Commun. 13, 1278–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationWan, S.-Y., Huang, Y.-T., Li, Y.-Z. & Sun, W.-Y. (2004). Microporous Mesoporous Mater. 73, 101–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395–403.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, W., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2004). J. Solid State Chem. 177, 2358–2365.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, K.-L. (2014). Acta Cryst. C70, 189–193.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds