research communications
A new one-dimensional NiII coordination polymer with a two-dimensional supramolecular architecture
aDepartment of Applied Chemistry, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com
A new one-dimensional NiII coordination polymer of 1,3,5-tris(imidazol-1-ylmethyl)benzene, namely catena-poly[[aqua(sulfato-κO)hemi(μ-ethane-1,2-diol-κ2O:O′)[μ3-1,3,5-tris(1H-imidazol-1-ylmethyl)benzene-κ3N3,N3′,N3′′]nickel(II)] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiII cation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3 coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands link the NiII cations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H⋯O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001) plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ions via O—H⋯O hydrogen bonds.
Keywords: crystal structure; coordination polymer; nickel complex; one-dimensional coordination polymer.
CCDC reference: 1470095
1. Chemical context
In recent years, the self-assembly of coordination polymers and crystal engineering of metal-organic coordination frameworks have attracted great interest, owing to their intriguing molecular topologies and the potential applications of these polymers as functional materials (Pan et al., 2004; Jiang et al., 2011; Du et al., 2014). Previously reported studies a major strategy to be the use of multidentate organic ligands and metal ions to construct inorganic–organic hybrid materials through metal–ligand coordination and hydrogen-bonding interactions. Imidazole-containing multidentate ligands that contain an aromatic core have received much attention, such as 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (Fan et al., 2003), 2,4,6-tris[4-(imidazol-1-ylmethyl)phenyl-1,3,5-triazine (Wan et al., 2004), 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (Zhao et al., 2004), 4,4′-bis(imidazol-1-ylmethyl)biphenyl (Carlucci et al., 2008), 1,3,5-tri(1-imidazolyl)benzene (Su et al., 2010), 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene (Hua et al., 2010) and 1,3,5-tris(imidazol-1-ylmethyl)benzene (Xu et al., 2009; Zhong, 2014).
Hydrothermal (solvothermal) synthesis is an effective method for the construction of new metal–organic coordination polymers because it can provide ideal conditions for crystal growth due to the enhanced transport ability of solvents in superheated systems. In the present work, we carried out the solvothermal reaction between NiSO4·6H2O and imidazole-containing multidentate ligands, 1,3,5-tris(imidazol-1-ylmethyl)benzene (timb) and successfully obtained a new NiII one-dimensional coordination polymer, {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, (I). Herein we report its and its elemental and IR spectroscopic analysis data.
2. Structural commentary
The title complex (I) crystallizes in the triclinic P and the of the structure consists of one NiII ion, one sulfate anion, one timb ligand, half a coordinating ethane-1,2-diol molecule, one coordinating water molecules, one additional lattice water molecule and one non-coordinating ethane-1,2-diol solvent molecule. As shown in Fig. 1, each NiII cation exhibits an irregular octahedral NiN3O3 coordination geometry and is coordinated by three N atoms (N1, N5i and N3ii) from three different tripodal timb ligands and three O atoms (O1W, O1 and O5) from a coordinating water molecule, a sulfate anion and a coordinating ethane-1,2-diol molecule, respectively (see Fig. 1 and Table 1 for symmetry codes). The Ni—O [2.0904 (12)–2.1458 (12) Å; Table 1] and Ni—N bond lengths [2.0597 (15)–2.0777 (15) Å] are in accord with corresponding bond lengths found in previously reported NiII coordination polymers {[Ni(tib)(H2O)2(SO4)]·EtOH·H2O}n [tib = 1,3,5-tris(imidazol-1-ylmethyl) benzene; Ni—O = 2.0911 (14)–2.1368 (12) Å and Ni—N = 2.0709 (15)–2.0728 (14) Å; Xu et al., 2009] and [Ni(timpt)2](ClO4)2 [timpt = 2,4,6-tri[4-(imidazol-1-ylmethyl)phenyl]-1,3,5-triazine; Ni—N = 2.097 (5)–2.151 (4) Å; Wan et al., 2004].
Each NiII atom is coordinated to three individual timb ligands and each timb ligand in turn connects three nickel(II) atoms to generate an infinite laddered chain along the [010] direction (Fig. 2). Each timb ligand adopts cis, cis, cis substituent conformations and coordinates to three NiII atoms (Ni1, Ni1i and Ni1ii), as observed in the Ni compound reported by Xu et al. (2009). The metal–metal distances (Ni⋯Ni) in the above-mentioned chain are 7.1003 (4) Å (Ni1⋯Ni1i), 8.7577 (4) Å (Ni1⋯Ni1ii) and 11.7296 (6) Å (Ni1i⋯Niii) (see Fig. 2 for symmetry codes). The three imidazole groups within each timb ligand are inclined to the central benzene ring plane at dihedral angles of 67.60 (6)° (N2/C12/N1/C11/C10), 77.54 (6)° (N4/C15/N3/C14/C13) and 71.75 (6)° (N6/C18/N5/C17/C16), which are different from the values found in a previously reported tib–cadmium compound with the same cis, cis, cis ligand conformations (66.15, 75.58 and 86.33°; Xu et al., 2009). The three least-square planes of the terminal imidazole rings of the timb ligand are oriented with respect to each other at 56.46 (6)° (N2/C12/N1/C11/C10 and N4/C15/N3/C14/C13), 74.95 (7)° (N2/C12/N1/C11/C10 and N6/C18/N5/C17/C16) and 75.78 (7)° (N4/C15/N3/C14/C13 and N6/C18/N5/C17/C16), respectively.
It can be seen clearly that one 17-membered macrocyclic ring (A) and one 24-membered macrocyclic ring (B) exist in the above-mentioned chain (see Fig. 2), which are evidently different from that observed in the previously noted nickel compound {[Ni(tib)(H2O)2(SO4)]·EtOH·(H2O)}n in which A and B are 24-membered macrocyclic rings (Xu et al., 2009).
3. Supramolecular features
In the water—H⋯Osulfate hydrogen bonds (O1W—H1WB⋯O2iii), giving rise to a two-dimensional supermolecular structure running parallel to (001) plane (Fig. 3). Other O—H⋯O hydrogen-bonding interactions involve the coordinating water and ethane-1,2-diol molecules, the lattice water molecule, the solvent ethane-1,2-diol molecule and the sulfate anion, viz. O1W—H1WA⋯O6iii, O2W—H2WA⋯O3iv, O2W—H2WB⋯O3, O5—H1A⋯O3, and O7—H7C⋯O4iv (see Table 2 for symmetry codes).
of the title compound, the above-mentioned neighbouring chains are further connected to each other by O
|
4. Synthesis and crystallization
NiSO4·6H2O (0.1 mmol), 1,3,5-tris(imidazol-1-ylmethyl)benzene (0.1 mmol), water (6 ml) and ethane-1,2-diol (2 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 72 h. After cooling to room temperature, blue block-shaped crystals (45% yield, based on Ni) suitable for X-ray analysis were obtained. Elemental analysis calculated for C21H31N6NiO9S: C 41.86, H 5.15, N 13.95%; found: C 41.90, H 5.12, N 13.86%. IR (KBr disc, ν, cm−1): 3378 (s), 1612 (m), 1521 (s), 1445 (m), 1400 (w), 1283 (w), 1234 (m), 1119 (s), 1055 (s), 963 (w), 830 (m), 750 (s), 661 (s), 637 (m).
5. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C). O-bound H atoms of the water and ethane-1,2-diol molecules were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bonding network, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H⋯H distances [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1470095
https://doi.org/10.1107/S2056989017000470/zl2688sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017000470/zl2688Isup2.hkl
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O | Z = 2 |
Mr = 602.29 | F(000) = 630 |
Triclinic, P1 | Dx = 1.593 Mg m−3 |
a = 8.6910 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7296 (5) Å | Cell parameters from 5689 reflections |
c = 13.1200 (6) Å | θ = 3.6–27.5° |
α = 83.922 (1)° | µ = 0.92 mm−1 |
β = 77.829 (1)° | T = 223 K |
γ = 74.064 (1)° | Block, blue |
V = 1255.53 (10) Å3 | 0.30 × 0.25 × 0.20 mm |
Rigaku Mercury CCD diffractometer | 5701 independent reflections |
Radiation source: fine-focus sealed tube | 5102 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.015 |
ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −11→3 |
Tmin = 0.770, Tmax = 0.837 | k = −15→14 |
10288 measured reflections | l = −17→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0339P)2 + 0.5937P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
5701 reflections | Δρmax = 0.64 e Å−3 |
346 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.04969 (2) | 0.26468 (2) | 0.69398 (2) | 0.02264 (7) | |
S1 | 0.39700 (5) | 0.31684 (4) | 0.73486 (3) | 0.02532 (10) | |
N1 | 0.17497 (17) | 0.15324 (13) | 0.57365 (11) | 0.0264 (3) | |
N2 | 0.35427 (17) | 0.07352 (13) | 0.43798 (11) | 0.0272 (3) | |
N3 | −0.00592 (17) | −0.12373 (13) | 0.20513 (11) | 0.0275 (3) | |
N4 | 0.12631 (18) | −0.00981 (14) | 0.09797 (11) | 0.0288 (3) | |
N5 | 0.08774 (18) | 0.61960 (13) | 0.19341 (11) | 0.0280 (3) | |
N6 | 0.28790 (17) | 0.48786 (13) | 0.10352 (11) | 0.0271 (3) | |
O1 | 0.27204 (14) | 0.25000 (12) | 0.74691 (10) | 0.0332 (3) | |
O1W | −0.16019 (15) | 0.28607 (13) | 0.63045 (10) | 0.0375 (3) | |
H1WA | −0.1485 | 0.2805 | 0.5674 | 0.045* | |
H1WB | −0.2450 | 0.2694 | 0.6602 | 0.045* | |
O2 | 0.55747 (16) | 0.23427 (14) | 0.72399 (15) | 0.0551 (5) | |
O2W | 0.4836 (2) | 0.61941 (19) | 0.57640 (16) | 0.0644 (5) | |
H2WA | 0.5186 | 0.6125 | 0.5127 | 0.091 (12)* | |
H2WB | 0.4695 | 0.5551 | 0.6032 | 0.19 (2)* | |
O4 | 0.3645 (2) | 0.39103 (17) | 0.82364 (12) | 0.0585 (5) | |
O3 | 0.38778 (17) | 0.39792 (13) | 0.63970 (11) | 0.0405 (3) | |
O5 | 0.10109 (15) | 0.40988 (11) | 0.59967 (10) | 0.0309 (3) | |
H1A | 0.1896 | 0.4142 | 0.6075 | 0.066 (8)* | |
O7 | 0.7848 (2) | 0.36115 (16) | 0.21737 (13) | 0.0581 (4) | |
H7C | 0.7487 | 0.4328 | 0.2068 | 0.087* | |
O6 | 0.8462 (2) | 0.27266 (19) | 0.42207 (12) | 0.0641 (5) | |
H6B | 0.7551 | 0.3036 | 0.4092 | 0.096* | |
C1 | 0.44203 (19) | 0.11243 (16) | 0.24838 (13) | 0.0270 (4) | |
C2 | 0.3776 (2) | 0.05094 (16) | 0.19147 (13) | 0.0281 (4) | |
H2A | 0.3650 | −0.0240 | 0.2159 | 0.034* | |
C3 | 0.3312 (2) | 0.10036 (16) | 0.09739 (13) | 0.0267 (3) | |
C4 | 0.3538 (2) | 0.21075 (16) | 0.06059 (13) | 0.0272 (3) | |
H4A | 0.3251 | 0.2435 | −0.0026 | 0.033* | |
C5 | 0.4194 (2) | 0.27334 (15) | 0.11748 (14) | 0.0264 (3) | |
C6 | 0.4632 (2) | 0.22389 (16) | 0.21129 (14) | 0.0290 (4) | |
H6A | 0.5068 | 0.2653 | 0.2496 | 0.035* | |
C7 | 0.4926 (2) | 0.05685 (18) | 0.34988 (13) | 0.0321 (4) | |
H7A | 0.5418 | −0.0274 | 0.3423 | 0.039* | |
H7B | 0.5740 | 0.0920 | 0.3645 | 0.039* | |
C8 | 0.2624 (2) | 0.03201 (19) | 0.03467 (14) | 0.0349 (4) | |
H8A | 0.2253 | 0.0826 | −0.0235 | 0.042* | |
H8B | 0.3478 | −0.0356 | 0.0064 | 0.042* | |
C9 | 0.4402 (2) | 0.39447 (16) | 0.07772 (15) | 0.0306 (4) | |
H9A | 0.5237 | 0.4113 | 0.1080 | 0.037* | |
H9B | 0.4765 | 0.3949 | 0.0025 | 0.037* | |
C10 | 0.2496 (2) | 0.00224 (17) | 0.46746 (14) | 0.0323 (4) | |
H10A | 0.2531 | −0.0665 | 0.4367 | 0.039* | |
C11 | 0.1396 (2) | 0.05254 (17) | 0.55086 (14) | 0.0307 (4) | |
H11A | 0.0532 | 0.0232 | 0.5872 | 0.037* | |
C12 | 0.3053 (2) | 0.16280 (16) | 0.50339 (13) | 0.0270 (3) | |
H12A | 0.3563 | 0.2236 | 0.4998 | 0.032* | |
C13 | −0.0332 (2) | 0.05429 (17) | 0.12110 (15) | 0.0337 (4) | |
H13A | −0.0776 | 0.1313 | 0.0968 | 0.040* | |
C14 | −0.1129 (2) | −0.01670 (17) | 0.18614 (14) | 0.0329 (4) | |
H14A | −0.2239 | 0.0037 | 0.2141 | 0.040* | |
C15 | 0.1375 (2) | −0.11575 (16) | 0.15006 (14) | 0.0299 (4) | |
H15A | 0.2336 | −0.1758 | 0.1478 | 0.036* | |
C16 | 0.1711 (2) | 0.52835 (18) | 0.04308 (15) | 0.0362 (4) | |
H16A | 0.1747 | 0.5047 | −0.0230 | 0.043* | |
C17 | 0.0496 (2) | 0.60986 (18) | 0.09903 (15) | 0.0356 (4) | |
H17A | −0.0456 | 0.6528 | 0.0767 | 0.043* | |
C18 | 0.2324 (2) | 0.54442 (16) | 0.19310 (14) | 0.0298 (4) | |
H18A | 0.2886 | 0.5322 | 0.2480 | 0.036* | |
C20 | 0.0760 (2) | 0.45061 (18) | 0.49659 (15) | 0.0349 (4) | |
H20A | 0.0660 | 0.3861 | 0.4600 | 0.042* | |
H20B | 0.1682 | 0.4783 | 0.4581 | 0.042* | |
C21 | 0.9401 (3) | 0.3387 (2) | 0.24521 (18) | 0.0498 (5) | |
H21A | 0.9519 | 0.4103 | 0.2700 | 0.060* | |
H21B | 1.0250 | 0.3158 | 0.1844 | 0.060* | |
C22 | 0.9574 (3) | 0.2421 (2) | 0.32855 (19) | 0.0533 (6) | |
H22A | 0.9415 | 0.1718 | 0.3039 | 0.064* | |
H22B | 1.0673 | 0.2225 | 0.3422 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02106 (11) | 0.02523 (12) | 0.02195 (11) | −0.00719 (8) | −0.00350 (8) | −0.00055 (8) |
S1 | 0.02180 (18) | 0.0309 (2) | 0.0249 (2) | −0.00984 (16) | −0.00678 (15) | 0.00368 (16) |
N1 | 0.0254 (7) | 0.0282 (8) | 0.0252 (7) | −0.0072 (6) | −0.0043 (6) | −0.0008 (6) |
N2 | 0.0267 (7) | 0.0305 (8) | 0.0220 (7) | −0.0043 (6) | −0.0040 (5) | 0.0001 (6) |
N3 | 0.0269 (7) | 0.0299 (8) | 0.0263 (7) | −0.0102 (6) | −0.0022 (6) | −0.0016 (6) |
N4 | 0.0317 (7) | 0.0313 (8) | 0.0263 (7) | −0.0151 (6) | −0.0040 (6) | 0.0008 (6) |
N5 | 0.0293 (7) | 0.0287 (8) | 0.0261 (7) | −0.0077 (6) | −0.0049 (6) | −0.0026 (6) |
N6 | 0.0296 (7) | 0.0239 (7) | 0.0265 (7) | −0.0075 (6) | −0.0019 (6) | −0.0011 (6) |
O1 | 0.0261 (6) | 0.0392 (8) | 0.0386 (7) | −0.0155 (5) | −0.0128 (5) | 0.0111 (6) |
O1W | 0.0257 (6) | 0.0619 (9) | 0.0279 (7) | −0.0159 (6) | −0.0043 (5) | −0.0058 (6) |
O2 | 0.0231 (6) | 0.0416 (9) | 0.0939 (13) | −0.0063 (6) | −0.0090 (7) | 0.0162 (9) |
O2W | 0.0637 (11) | 0.0762 (14) | 0.0583 (12) | −0.0359 (10) | 0.0060 (9) | −0.0144 (10) |
O4 | 0.0787 (12) | 0.0705 (12) | 0.0375 (8) | −0.0353 (10) | −0.0087 (8) | −0.0141 (8) |
O3 | 0.0393 (7) | 0.0474 (9) | 0.0394 (8) | −0.0212 (6) | −0.0143 (6) | 0.0181 (6) |
O5 | 0.0320 (6) | 0.0338 (7) | 0.0301 (6) | −0.0112 (5) | −0.0153 (5) | 0.0098 (5) |
O7 | 0.0763 (12) | 0.0541 (10) | 0.0512 (10) | −0.0234 (9) | −0.0231 (9) | 0.0046 (8) |
O6 | 0.0594 (10) | 0.1007 (15) | 0.0345 (8) | −0.0213 (10) | −0.0141 (7) | −0.0020 (9) |
C1 | 0.0224 (7) | 0.0313 (9) | 0.0232 (8) | −0.0035 (7) | −0.0013 (6) | 0.0014 (7) |
C2 | 0.0307 (8) | 0.0271 (9) | 0.0251 (8) | −0.0096 (7) | −0.0017 (7) | 0.0035 (7) |
C3 | 0.0269 (8) | 0.0295 (9) | 0.0235 (8) | −0.0107 (7) | −0.0004 (6) | −0.0004 (7) |
C4 | 0.0273 (8) | 0.0291 (9) | 0.0240 (8) | −0.0074 (7) | −0.0044 (6) | 0.0036 (7) |
C5 | 0.0238 (7) | 0.0234 (8) | 0.0297 (9) | −0.0061 (6) | −0.0010 (6) | 0.0005 (7) |
C6 | 0.0278 (8) | 0.0313 (9) | 0.0291 (9) | −0.0088 (7) | −0.0048 (7) | −0.0043 (7) |
C7 | 0.0254 (8) | 0.0403 (11) | 0.0236 (8) | 0.0001 (7) | −0.0024 (7) | 0.0019 (7) |
C8 | 0.0425 (10) | 0.0416 (11) | 0.0259 (9) | −0.0241 (9) | −0.0008 (8) | −0.0013 (8) |
C9 | 0.0279 (8) | 0.0256 (9) | 0.0351 (10) | −0.0081 (7) | 0.0020 (7) | −0.0005 (7) |
C10 | 0.0376 (9) | 0.0329 (10) | 0.0296 (9) | −0.0125 (8) | −0.0077 (7) | −0.0037 (7) |
C11 | 0.0309 (8) | 0.0357 (10) | 0.0290 (9) | −0.0155 (8) | −0.0047 (7) | −0.0012 (7) |
C12 | 0.0273 (8) | 0.0270 (9) | 0.0264 (8) | −0.0075 (7) | −0.0049 (7) | 0.0010 (7) |
C13 | 0.0361 (9) | 0.0311 (10) | 0.0319 (9) | −0.0042 (8) | −0.0092 (8) | 0.0007 (8) |
C14 | 0.0273 (8) | 0.0389 (11) | 0.0297 (9) | −0.0056 (8) | −0.0030 (7) | −0.0019 (8) |
C15 | 0.0279 (8) | 0.0290 (9) | 0.0330 (9) | −0.0106 (7) | −0.0028 (7) | −0.0006 (7) |
C16 | 0.0407 (10) | 0.0413 (11) | 0.0262 (9) | −0.0067 (9) | −0.0087 (8) | −0.0063 (8) |
C17 | 0.0344 (9) | 0.0411 (11) | 0.0307 (9) | −0.0032 (8) | −0.0120 (8) | −0.0047 (8) |
C18 | 0.0325 (9) | 0.0299 (9) | 0.0273 (9) | −0.0069 (7) | −0.0071 (7) | −0.0030 (7) |
C20 | 0.0366 (10) | 0.0364 (10) | 0.0298 (9) | −0.0055 (8) | −0.0102 (8) | 0.0031 (8) |
C21 | 0.0546 (13) | 0.0468 (13) | 0.0463 (13) | −0.0177 (11) | 0.0023 (10) | −0.0065 (10) |
C22 | 0.0651 (15) | 0.0489 (14) | 0.0455 (13) | −0.0091 (12) | −0.0142 (11) | −0.0077 (11) |
Ni1—N5i | 2.0597 (15) | C1—C6 | 1.393 (3) |
Ni1—N3ii | 2.0735 (15) | C1—C7 | 1.516 (2) |
Ni1—N1 | 2.0777 (15) | C2—C3 | 1.397 (2) |
Ni1—O5 | 2.0904 (12) | C2—H2A | 0.9300 |
Ni1—O1W | 2.1048 (12) | C3—C4 | 1.384 (2) |
Ni1—O1 | 2.1458 (12) | C3—C8 | 1.513 (2) |
S1—O2 | 1.4516 (14) | C4—C5 | 1.395 (2) |
S1—O4 | 1.4611 (16) | C4—H4A | 0.9300 |
S1—O1 | 1.4792 (12) | C5—C6 | 1.386 (2) |
S1—O3 | 1.4895 (13) | C5—C9 | 1.506 (2) |
N1—C12 | 1.324 (2) | C6—H6A | 0.9300 |
N1—C11 | 1.375 (2) | C7—H7A | 0.9700 |
N2—C12 | 1.344 (2) | C7—H7B | 0.9700 |
N2—C10 | 1.370 (2) | C8—H8A | 0.9700 |
N2—C7 | 1.467 (2) | C8—H8B | 0.9700 |
N3—C15 | 1.325 (2) | C9—H9A | 0.9700 |
N3—C14 | 1.376 (2) | C9—H9B | 0.9700 |
N3—Ni1ii | 2.0736 (15) | C10—C11 | 1.358 (3) |
N4—C15 | 1.343 (2) | C10—H10A | 0.9300 |
N4—C13 | 1.371 (2) | C11—H11A | 0.9300 |
N4—C8 | 1.465 (2) | C12—H12A | 0.9300 |
N5—C18 | 1.322 (2) | C13—C14 | 1.348 (3) |
N5—C17 | 1.371 (2) | C13—H13A | 0.9300 |
N5—Ni1i | 2.0597 (15) | C14—H14A | 0.9300 |
N6—C18 | 1.343 (2) | C15—H15A | 0.9300 |
N6—C16 | 1.371 (2) | C16—C17 | 1.355 (3) |
N6—C9 | 1.469 (2) | C16—H16A | 0.9300 |
O1W—H1WA | 0.8187 | C17—H17A | 0.9300 |
O1W—H1WB | 0.8219 | C18—H18A | 0.9300 |
O2W—H2WA | 0.8318 | C20—C20i | 1.492 (4) |
O2W—H2WB | 0.8269 | C20—H20A | 0.9700 |
O5—C20 | 1.427 (2) | C20—H20B | 0.9700 |
O5—H1A | 0.8129 | C21—C22 | 1.489 (3) |
O7—C21 | 1.420 (3) | C21—H21A | 0.9700 |
O7—H7C | 0.8200 | C21—H21B | 0.9700 |
O6—C22 | 1.404 (3) | C22—H22A | 0.9700 |
O6—H6B | 0.8200 | C22—H22B | 0.9700 |
C1—C2 | 1.379 (3) | ||
N5i—Ni1—N3ii | 89.38 (6) | C5—C6—H6A | 119.9 |
N5i—Ni1—N1 | 175.70 (6) | C1—C6—H6A | 119.9 |
N3ii—Ni1—N1 | 92.36 (6) | N2—C7—C1 | 112.19 (14) |
N5i—Ni1—O5 | 88.70 (6) | N2—C7—H7A | 109.2 |
N3ii—Ni1—O5 | 176.18 (5) | C1—C7—H7A | 109.2 |
N1—Ni1—O5 | 89.79 (5) | N2—C7—H7B | 109.2 |
N5i—Ni1—O1W | 88.85 (6) | C1—C7—H7B | 109.2 |
N3ii—Ni1—O1W | 93.73 (6) | H7A—C7—H7B | 107.9 |
N1—Ni1—O1W | 87.11 (5) | N4—C8—C3 | 112.00 (15) |
O5—Ni1—O1W | 89.54 (5) | N4—C8—H8A | 109.2 |
N5i—Ni1—O1 | 93.10 (6) | C3—C8—H8A | 109.2 |
N3ii—Ni1—O1 | 90.67 (5) | N4—C8—H8B | 109.2 |
N1—Ni1—O1 | 90.82 (5) | C3—C8—H8B | 109.2 |
O5—Ni1—O1 | 86.13 (5) | H8A—C8—H8B | 107.9 |
O1W—Ni1—O1 | 175.21 (5) | N6—C9—C5 | 111.96 (14) |
O2—S1—O4 | 111.46 (11) | N6—C9—H9A | 109.2 |
O2—S1—O1 | 109.44 (9) | C5—C9—H9A | 109.2 |
O4—S1—O1 | 110.26 (9) | N6—C9—H9B | 109.2 |
O2—S1—O3 | 109.46 (9) | C5—C9—H9B | 109.2 |
O4—S1—O3 | 107.10 (10) | H9A—C9—H9B | 107.9 |
O1—S1—O3 | 109.06 (7) | C11—C10—N2 | 105.93 (16) |
C12—N1—C11 | 105.32 (15) | C11—C10—H10A | 127.0 |
C12—N1—Ni1 | 127.89 (12) | N2—C10—H10A | 127.0 |
C11—N1—Ni1 | 126.79 (12) | C10—C11—N1 | 109.93 (16) |
C12—N2—C10 | 107.46 (14) | C10—C11—H11A | 125.0 |
C12—N2—C7 | 126.22 (16) | N1—C11—H11A | 125.0 |
C10—N2—C7 | 126.31 (16) | N1—C12—N2 | 111.36 (15) |
C15—N3—C14 | 105.22 (15) | N1—C12—H12A | 124.3 |
C15—N3—Ni1ii | 126.02 (12) | N2—C12—H12A | 124.3 |
C14—N3—Ni1ii | 128.61 (12) | C14—C13—N4 | 106.18 (16) |
C15—N4—C13 | 107.33 (15) | C14—C13—H13A | 126.9 |
C15—N4—C8 | 125.92 (16) | N4—C13—H13A | 126.9 |
C13—N4—C8 | 126.61 (16) | C13—C14—N3 | 110.02 (16) |
C18—N5—C17 | 105.44 (15) | C13—C14—H14A | 125.0 |
C18—N5—Ni1i | 128.44 (12) | N3—C14—H14A | 125.0 |
C17—N5—Ni1i | 126.04 (12) | N3—C15—N4 | 111.25 (16) |
C18—N6—C16 | 107.12 (15) | N3—C15—H15A | 124.4 |
C18—N6—C9 | 126.52 (15) | N4—C15—H15A | 124.4 |
C16—N6—C9 | 126.24 (15) | C17—C16—N6 | 106.14 (16) |
S1—O1—Ni1 | 138.40 (8) | C17—C16—H16A | 126.9 |
Ni1—O1W—H1WA | 118.1 | N6—C16—H16A | 126.9 |
Ni1—O1W—H1WB | 126.3 | C16—C17—N5 | 109.86 (16) |
H1WA—O1W—H1WB | 109.6 | C16—C17—H17A | 125.1 |
H2WA—O2W—H2WB | 108.8 | N5—C17—H17A | 125.1 |
C20—O5—Ni1 | 131.31 (12) | N5—C18—N6 | 111.43 (15) |
C20—O5—H1A | 110.7 | N5—C18—H18A | 124.3 |
Ni1—O5—H1A | 106.8 | N6—C18—H18A | 124.3 |
C21—O7—H7C | 109.5 | O5—C20—C20i | 108.89 (19) |
C22—O6—H6B | 109.5 | O5—C20—H20A | 109.9 |
C2—C1—C6 | 119.90 (16) | C20i—C20—H20A | 109.9 |
C2—C1—C7 | 119.62 (16) | O5—C20—H20B | 109.9 |
C6—C1—C7 | 120.47 (16) | C20i—C20—H20B | 109.9 |
C1—C2—C3 | 120.49 (16) | H20A—C20—H20B | 108.3 |
C1—C2—H2A | 119.8 | O7—C21—C22 | 109.84 (19) |
C3—C2—H2A | 119.8 | O7—C21—H21A | 109.7 |
C4—C3—C2 | 119.28 (16) | C22—C21—H21A | 109.7 |
C4—C3—C8 | 120.40 (16) | O7—C21—H21B | 109.7 |
C2—C3—C8 | 120.29 (16) | C22—C21—H21B | 109.7 |
C3—C4—C5 | 120.59 (16) | H21A—C21—H21B | 108.2 |
C3—C4—H4A | 119.7 | O6—C22—C21 | 113.0 (2) |
C5—C4—H4A | 119.7 | O6—C22—H22A | 109.0 |
C6—C5—C4 | 119.54 (16) | C21—C22—H22A | 109.0 |
C6—C5—C9 | 120.37 (16) | O6—C22—H22B | 109.0 |
C4—C5—C9 | 120.09 (16) | C21—C22—H22B | 109.0 |
C5—C6—C1 | 120.19 (16) | H22A—C22—H22B | 107.8 |
O2—S1—O1—Ni1 | −139.62 (13) | C7—N2—C10—C11 | −178.79 (16) |
O4—S1—O1—Ni1 | 97.44 (15) | N2—C10—C11—N1 | −0.3 (2) |
O3—S1—O1—Ni1 | −19.90 (16) | C12—N1—C11—C10 | 0.3 (2) |
C6—C1—C2—C3 | −0.9 (3) | Ni1—N1—C11—C10 | −179.26 (12) |
C7—C1—C2—C3 | −179.63 (15) | C11—N1—C12—N2 | −0.27 (19) |
C1—C2—C3—C4 | 1.4 (3) | Ni1—N1—C12—N2 | 179.31 (11) |
C1—C2—C3—C8 | 179.31 (16) | C10—N2—C12—N1 | 0.12 (19) |
C2—C3—C4—C5 | −1.2 (3) | C7—N2—C12—N1 | 179.00 (15) |
C8—C3—C4—C5 | −179.09 (16) | C15—N4—C13—C14 | −0.6 (2) |
C3—C4—C5—C6 | 0.5 (3) | C8—N4—C13—C14 | −176.31 (17) |
C3—C4—C5—C9 | −178.73 (15) | N4—C13—C14—N3 | 0.7 (2) |
C4—C5—C6—C1 | 0.1 (3) | C15—N3—C14—C13 | −0.5 (2) |
C9—C5—C6—C1 | 179.27 (15) | Ni1ii—N3—C14—C13 | 175.22 (13) |
C2—C1—C6—C5 | 0.2 (3) | C14—N3—C15—N4 | 0.1 (2) |
C7—C1—C6—C5 | 178.86 (15) | Ni1ii—N3—C15—N4 | −175.73 (11) |
C12—N2—C7—C1 | −92.6 (2) | C13—N4—C15—N3 | 0.3 (2) |
C10—N2—C7—C1 | 86.1 (2) | C8—N4—C15—N3 | 176.05 (16) |
C2—C1—C7—N2 | −82.8 (2) | C18—N6—C16—C17 | 0.8 (2) |
C6—C1—C7—N2 | 98.5 (2) | C9—N6—C16—C17 | 177.19 (17) |
C15—N4—C8—C3 | −92.2 (2) | N6—C16—C17—N5 | −0.7 (2) |
C13—N4—C8—C3 | 82.8 (2) | C18—N5—C17—C16 | 0.4 (2) |
C4—C3—C8—N4 | −129.77 (17) | Ni1i—N5—C17—C16 | 177.31 (13) |
C2—C3—C8—N4 | 52.4 (2) | C17—N5—C18—N6 | 0.1 (2) |
C18—N6—C9—C5 | 85.2 (2) | Ni1i—N5—C18—N6 | −176.68 (12) |
C16—N6—C9—C5 | −90.5 (2) | C16—N6—C18—N5 | −0.6 (2) |
C6—C5—C9—N6 | −97.28 (19) | C9—N6—C18—N5 | −176.97 (15) |
C4—C5—C9—N6 | 81.9 (2) | Ni1—O5—C20—C20i | 99.0 (2) |
C12—N2—C10—C11 | 0.09 (19) | O7—C21—C22—O6 | −64.0 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O6iii | 0.82 | 1.93 | 2.743 (2) | 172 |
O1W—H1WB···O2iii | 0.82 | 1.88 | 2.6995 (19) | 178 |
O2W—H2WA···O3iv | 0.83 | 2.00 | 2.827 (2) | 176 |
O2W—H2WB···O3 | 0.83 | 2.13 | 2.928 (2) | 163 |
O5—H1A···O3 | 0.81 | 1.81 | 2.6168 (18) | 169 |
O7—H7C···O4iv | 0.82 | 2.07 | 2.884 (3) | 174 |
Symmetry codes: (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Scientific Research Foundation of Nanjing Polytechnic Institute (award No. NHKY-2016–11).
References
Carlucci, L., Ciani, G., Maggini, S. & Proserpio, D. M. (2008). CrystEngComm, 10, 1191–1203. Web of Science CSD CrossRef CAS Google Scholar
Du, M., Li, C.-P., Chen, M., Ge, Z.-W., Wang, X., Wang, L. & Liu, C.-S. (2014). J. Am. Chem. Soc. 136, 10906–10909. Web of Science CSD CrossRef CAS PubMed Google Scholar
Fan, J., Sun, W.-Y., Okamura, T., Tang, W.-X. & Ueyama, N. (2003). Inorg. Chem. 42, 3168–3175. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hua, Q., Su, Z., Zhao, Y., Okamura, T., Xu, G.-C., Sun, W.-Y. & Ueyama, N. (2010). Inorg. Chim. Acta, 363, 3550–3557. Web of Science CSD CrossRef CAS Google Scholar
Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA. Google Scholar
Jiang, H.-L., Liu, B., Lan, Y.-Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F. & Xu, Q. (2011). J. Am. Chem. Soc. 133, 11854–11857. Web of Science CrossRef CAS PubMed Google Scholar
Pan, L., Sander, M.-B., Huang, X.-Y., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J.-K. (2004). J. Am. Chem. Soc. 126, 1308–1309. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Su, Z., Wang, Z.-B. & Sun, W.-Y. (2010). Inorg. Chem. Commun. 13, 1278–1280. Web of Science CSD CrossRef CAS Google Scholar
Wan, S.-Y., Huang, Y.-T., Li, Y.-Z. & Sun, W.-Y. (2004). Microporous Mesoporous Mater. 73, 101–108. Web of Science CSD CrossRef CAS Google Scholar
Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). Cryst. Growth Des. 9, 395–403. Web of Science CSD CrossRef CAS Google Scholar
Zhao, W., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2004). J. Solid State Chem. 177, 2358–2365. Web of Science CSD CrossRef CAS Google Scholar
Zhong, K.-L. (2014). Acta Cryst. C70, 189–193. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.