research communications
Ring-expansion synthesis and b]indole-2,3-dicarboxylate
of dimethyl 4-ethyl-1,4,5,6,7,8-hexahydroazonino[5,6-aInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, bGraduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, cOrganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, eNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, fInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and gX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: ngvtuyen@hotmail.com
The title compound, C20H24N2O4, is the product of a ring-expansion reaction from a seven-membered hexahydroazepine to a nine-membered azonine. The azonine ring of the molecule adopts a chair–boat conformation. In the crystal, molecules are linked by bifurcated N—H⋯(O,O) hydrogen bonds, generating [010] zigzag chains. The title compound shows inhibitory activity against acetylcholinesterase and butyrylcholinesterase, and might be considered as a candidate for the design of new types of anti-Alzheimer's drugs.
Keywords: crystal structure; synchrotron radiation; natural alkaloids; azoninoindoles; Alzheimer's disease.
CCDC reference: 1530378
1. Chemical context
The azonine moiety has long been known as a building block of natural et al., 1959, 1962; Uprety & Bhakuni, 1975). Azonine derivatives are known to act as ligands towards different receptors, thus demonstrating diverse types of biological activity (Magnus et al., 1987; Kuehne, Bornman et al., 2003; Kuehne, He et al., 2003; Afsah et al., 2009; Rostom, 2010; Tanaka et al., 2014; Soldi et al., 2015; Hartman & Kuduk, 2016).
(NeussThe direct synthesis of such systems from acyclic precursors is difficult due to thermodynamic and kinetic limitations and hence the search for novel and efficient synthetic routes to medium-sized rings has attracted appreciable attention in recent years. Earlier, we elaborated a ring-expansion reaction from a six-membered tetrahydropyridine ring to an eight-membered azocine ring under the action of activated et al., 2004; Voskressensky, Borisova et al., 2006).
applicable to fused tetrahydropyridines (VoskressenskyHerewith, we report on the synthesis of nine-membered azonine ring from a seven-membered hexahydroazepine precursor using a similar reaction. More specifically, the initial 2-ethyl-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole in a methanol solution at room temperature under the action of dimethyl acetylenedicarboxylate undergoes a series of tandem transformations involving the hexahydroazepine ring giving rise to azoninoindole (I) and 3-methoxymethyl-substituted indole (II) (Fig. 1).
The title compound (I) has been tested in vitro for acetylcholinesterase and butyrylcholinesterase inhibition and demonstrated the inhibitor activity of 33.1 µM and 89.1 µM against acetylcholinesterase and butyrylcholinesterase, respectively. Thus, azoninoindoles might be considered as candidates for the design of new types of anti-Alzheimer's drugs.
2. Structural commentary
The title compound (I) is the product of the ring expansion described above. Its molecular structure is unambiguously confirmed by the X-ray diffraction study (Fig. 2).
The nine-membered azonine ring of the molecule adopts a chair–boat conformation (the basal planes are C5–C6/C7A–C12B and N4–C5/C1–C12B, respectively). It should be noted that the analogous nine-membered azonine ring in the related compound methyl 4-ethyl-11-methyl-1,4,5,6,7,8-hexahydroazonino [5,6-b]indole-2-carboxylate adopts a twisted boat conformation (Voskressensky, Akbulatov et al., 2006). The C2=C3 and C3—N4 bond lengths [1.361 (2) and 1.401 (2) Å, respectively] in (I) indicate the presence of conjugation within the enamine C2=C3—N4 fragment. The substituent planes at the C2=C3 double bond are twisted by 18.12 (13)°, presumably due to steric reasons. The N4 nitrogen atom has a trigonal-pyramidal configuration (sum of the bond angles is 345.5°). The interplanar angle between the carboxylate substituents is 59.74 (6)°.
3. Supramolecular features
In the crystal, molecules of (I) form zigzag chains propagating in the [010] direction by bifurcated N—H⋯(O,O) hydrogen-bonding interactions (Table 1) which are further packed in stacks toward [100] (Fig. 3).
4. Synthesis and crystallization
Dimethyl acetylenedicarboxylate (170 mg, 1.2 mmol) was added to 2-ethyl-1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (214 mg, 1 mmol) dissolved in methanol (10 ml). The reaction mixture was stirred for 2 h at room temperature and the progress of the reaction monitored by TLC. Then, the solvent was removed in vacuo and the residue was chromatographed over silica with ethylacetate:hexane as to yield the target azoninoindole (I) (23%) and 3-methoxymethylindole (II). Colourless prisms of (I) were grown by slow evaporation of an ethylacetate:hexane solution, m.p. 428–430 K. NMR 1H [CDCl3, δ (ppm), J (Hz)]: 1.03 (t, 3H, J = 7.2, CH3CH2), 1.77 (m, 2H, 6-CH2), 2.76 (q, 2H, J = 7.2, CH3CH2), 2.83 (m, 2H, 7-CH2), 3.08 (m, 2H, 5-CH2), 4.03 (s, 2H, 1-CH2), 3.75 (s, 3H, CO2CH3), 3.77 (s, 3H, CO2CH3), 7.09 (m, 2H, CH), 7.26 (d, 1H, J = 7.6, CH), 7.50 (d, 1H, J = 7.6, CH), 7.83 (br.s, 1H, NH). NMR 13C [DMSO-d6, δ (ppm), J (Hz)]: 15.2 (CH3), 22.6 (CH2), 24.0 (CH2), 27.0 (CH2), 44.5 (CH2), 52.2 (CH3), 52.3 (CH3), 55.6 (CH2), 108.3 (C), 111.0 (CH), 117.8 (CH), 118.7 (CH), 120.5 (CH), 124.4 (?), 128.1 (C), 135.3 (C), 135.6 (C), 151.1 (C), 166.3 (C), 169.3 (C). IR (KBr): ν (cm−1) = 1670, 3379. Found (%): C, 67.40; H, 6.79; N, 7.86. C20H24N2O4. Calculated (%): C, 67.30; H, 7.06; N, 8.00. Mass-spectrometry, m/z [Irel(%)]: 356 [M+] (60), 327 (10), 297 (60), 267 (30), 252 (10), 237 (30), 226 (10), 209 (20), 180 (30), 168 (40), 156 (60), 143 (45), 128 (20), 115 (20), 77 (10), 58 (100), 45 (30).
5. Refinement
Crystal data, data collection and structure . The amino-H atom was localized in Fourier syntheses and its position freely refined. The C-bound H atoms were placed in calculated positions with C—H = 0.95 Å (aryl-H), 0.96 Å (methyl-H), and 0.98 Å (methylene-H) and refined in the riding-model approximation with the constraint Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C or N) for all other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1530378
https://doi.org/10.1107/S205698901700161X/hb7645sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901700161X/hb7645Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901700161X/hb7645Isup3.cml
Data collection: Automar (MarXperts, 2015); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2015); program(s) used to refine structure: SHELXTL (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).C20H24N2O4 | F(000) = 760 |
Mr = 356.41 | Dx = 1.290 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
a = 8.5900 (17) Å | Cell parameters from 600 reflections |
b = 10.450 (2) Å | θ = 3.8–38.0° |
c = 20.670 (4) Å | µ = 0.19 mm−1 |
β = 98.45 (3)° | T = 100 K |
V = 1835.3 (6) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.08 × 0.05 mm |
Rayonix SX165 CCD diffractometer | 3123 reflections with I > 2σ(I) |
/f scan | Rint = 0.068 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 38.5°, θmin = 3.8° |
Tmin = 0.960, Tmax = 0.990 | h = −10→10 |
20559 measured reflections | k = −13→12 |
3894 independent reflections | l = −26→26 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.484P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3894 reflections | Δρmax = 0.34 e Å−3 |
242 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0139 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.63858 (11) | 0.12498 (9) | 0.59679 (5) | 0.0243 (3) | |
O2 | 0.85193 (11) | 0.25114 (9) | 0.61630 (4) | 0.0223 (3) | |
O3 | 0.27706 (12) | 0.17391 (10) | 0.54825 (5) | 0.0265 (3) | |
O4 | 0.45470 (11) | 0.26071 (9) | 0.49055 (4) | 0.0224 (3) | |
C1 | 0.68135 (16) | 0.46000 (13) | 0.65876 (6) | 0.0200 (3) | |
H1A | 0.7916 | 0.4641 | 0.6501 | 0.024* | |
H1B | 0.6278 | 0.5385 | 0.6402 | 0.024* | |
C2 | 0.60249 (16) | 0.34538 (13) | 0.62131 (6) | 0.0186 (3) | |
C3 | 0.44674 (16) | 0.34394 (13) | 0.59639 (6) | 0.0187 (3) | |
N4 | 0.33815 (13) | 0.42675 (11) | 0.61889 (5) | 0.0201 (3) | |
C5 | 0.30356 (16) | 0.39814 (14) | 0.68573 (6) | 0.0217 (3) | |
H5A | 0.3899 | 0.3452 | 0.7088 | 0.026* | |
H5B | 0.2055 | 0.3471 | 0.6821 | 0.026* | |
C6 | 0.28472 (17) | 0.51732 (14) | 0.72650 (6) | 0.0245 (3) | |
H6A | 0.2598 | 0.4909 | 0.7698 | 0.029* | |
H6B | 0.1950 | 0.5684 | 0.7046 | 0.029* | |
C7 | 0.43311 (17) | 0.60151 (14) | 0.73627 (6) | 0.0240 (3) | |
H7A | 0.4487 | 0.6391 | 0.6937 | 0.029* | |
H7B | 0.4179 | 0.6726 | 0.7664 | 0.029* | |
C7A | 0.57725 (16) | 0.52745 (13) | 0.76366 (6) | 0.0210 (3) | |
N8 | 0.61170 (14) | 0.50489 (12) | 0.83032 (5) | 0.0225 (3) | |
H8 | 0.5647 (19) | 0.5452 (16) | 0.8602 (8) | 0.027* | |
C8A | 0.74364 (16) | 0.42812 (14) | 0.84258 (6) | 0.0216 (3) | |
C9 | 0.82348 (17) | 0.38193 (14) | 0.90185 (6) | 0.0256 (3) | |
H9 | 0.7891 | 0.4019 | 0.9423 | 0.031* | |
C10 | 0.95495 (18) | 0.30578 (15) | 0.89926 (7) | 0.0287 (4) | |
H10 | 1.0110 | 0.2723 | 0.9387 | 0.034* | |
C11 | 1.00664 (17) | 0.27727 (15) | 0.83940 (7) | 0.0274 (3) | |
H11 | 1.0976 | 0.2256 | 0.8391 | 0.033* | |
C12 | 0.92688 (17) | 0.32340 (14) | 0.78055 (7) | 0.0237 (3) | |
H12 | 0.9627 | 0.3035 | 0.7404 | 0.028* | |
C12A | 0.79257 (16) | 0.39984 (13) | 0.78146 (6) | 0.0200 (3) | |
C12B | 0.68382 (16) | 0.46324 (13) | 0.73182 (6) | 0.0196 (3) | |
C13 | 0.69611 (15) | 0.23057 (13) | 0.60961 (6) | 0.0188 (3) | |
C14 | 0.94677 (17) | 0.13776 (14) | 0.60964 (7) | 0.0262 (3) | |
H14A | 0.9175 | 0.1012 | 0.5659 | 0.039* | |
H14B | 0.9282 | 0.0744 | 0.6426 | 0.039* | |
H14C | 1.0584 | 0.1613 | 0.6159 | 0.039* | |
C15 | 0.38326 (16) | 0.24798 (13) | 0.54379 (6) | 0.0196 (3) | |
C16 | 0.41346 (18) | 0.16510 (15) | 0.44026 (7) | 0.0284 (4) | |
H16A | 0.4619 | 0.1872 | 0.4017 | 0.043* | |
H16B | 0.2988 | 0.1622 | 0.4283 | 0.043* | |
H16C | 0.4517 | 0.0812 | 0.4568 | 0.043* | |
C17 | 0.19643 (16) | 0.46212 (14) | 0.57286 (6) | 0.0230 (3) | |
H17A | 0.1268 | 0.5155 | 0.5959 | 0.028* | |
H17B | 0.1380 | 0.3835 | 0.5575 | 0.028* | |
C18 | 0.23772 (18) | 0.53519 (15) | 0.51430 (7) | 0.0291 (4) | |
H18A | 0.1409 | 0.5590 | 0.4856 | 0.044* | |
H18B | 0.3025 | 0.4811 | 0.4901 | 0.044* | |
H18C | 0.2965 | 0.6127 | 0.5293 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0240 (6) | 0.0204 (6) | 0.0279 (5) | −0.0006 (4) | 0.0022 (4) | −0.0029 (4) |
O2 | 0.0184 (5) | 0.0221 (6) | 0.0265 (5) | 0.0014 (4) | 0.0033 (4) | −0.0013 (4) |
O3 | 0.0249 (6) | 0.0291 (6) | 0.0250 (5) | −0.0061 (4) | 0.0027 (4) | −0.0020 (4) |
O4 | 0.0268 (6) | 0.0254 (6) | 0.0151 (4) | −0.0018 (4) | 0.0037 (4) | −0.0034 (4) |
C1 | 0.0205 (7) | 0.0204 (7) | 0.0190 (6) | −0.0003 (5) | 0.0024 (5) | −0.0005 (5) |
C2 | 0.0210 (7) | 0.0206 (7) | 0.0143 (6) | 0.0001 (5) | 0.0027 (5) | 0.0003 (5) |
C3 | 0.0230 (7) | 0.0186 (7) | 0.0144 (6) | 0.0011 (5) | 0.0026 (5) | 0.0003 (5) |
N4 | 0.0205 (6) | 0.0236 (7) | 0.0157 (5) | 0.0033 (5) | 0.0007 (4) | 0.0000 (4) |
C5 | 0.0217 (7) | 0.0253 (8) | 0.0181 (6) | 0.0012 (6) | 0.0036 (5) | −0.0002 (5) |
C6 | 0.0252 (8) | 0.0287 (8) | 0.0196 (6) | 0.0047 (6) | 0.0030 (5) | −0.0025 (6) |
C7 | 0.0279 (8) | 0.0237 (8) | 0.0199 (6) | 0.0047 (6) | 0.0024 (5) | −0.0035 (5) |
C7A | 0.0259 (8) | 0.0192 (7) | 0.0172 (6) | −0.0017 (6) | 0.0012 (5) | −0.0020 (5) |
N8 | 0.0248 (7) | 0.0265 (7) | 0.0161 (5) | 0.0015 (5) | 0.0024 (5) | −0.0031 (5) |
C8A | 0.0234 (7) | 0.0213 (7) | 0.0194 (6) | −0.0045 (6) | 0.0005 (5) | −0.0005 (5) |
C9 | 0.0273 (8) | 0.0294 (9) | 0.0190 (6) | −0.0067 (6) | 0.0003 (5) | 0.0009 (6) |
C10 | 0.0297 (8) | 0.0283 (8) | 0.0248 (7) | −0.0048 (6) | −0.0066 (6) | 0.0052 (6) |
C11 | 0.0237 (8) | 0.0237 (8) | 0.0324 (8) | −0.0006 (6) | −0.0033 (6) | 0.0004 (6) |
C12 | 0.0230 (8) | 0.0232 (8) | 0.0240 (6) | −0.0033 (6) | 0.0000 (5) | −0.0022 (5) |
C12A | 0.0218 (7) | 0.0181 (7) | 0.0190 (6) | −0.0053 (5) | −0.0010 (5) | −0.0014 (5) |
C12B | 0.0212 (7) | 0.0182 (7) | 0.0187 (6) | −0.0017 (5) | 0.0004 (5) | −0.0018 (5) |
C13 | 0.0210 (7) | 0.0226 (8) | 0.0126 (6) | −0.0007 (5) | 0.0015 (5) | 0.0008 (5) |
C14 | 0.0235 (8) | 0.0254 (8) | 0.0301 (7) | 0.0049 (6) | 0.0051 (6) | −0.0011 (6) |
C15 | 0.0204 (7) | 0.0219 (7) | 0.0158 (6) | 0.0034 (5) | 0.0006 (5) | 0.0008 (5) |
C16 | 0.0307 (8) | 0.0338 (9) | 0.0195 (6) | −0.0007 (7) | 0.0004 (6) | −0.0102 (6) |
C17 | 0.0203 (7) | 0.0265 (8) | 0.0210 (6) | 0.0032 (6) | −0.0011 (5) | 0.0013 (5) |
C18 | 0.0276 (8) | 0.0320 (9) | 0.0266 (7) | 0.0043 (6) | −0.0001 (6) | 0.0070 (6) |
O1—C13 | 1.2221 (16) | C7A—N8 | 1.3862 (16) |
O2—C13 | 1.3426 (17) | N8—C8A | 1.3813 (19) |
O2—C14 | 1.4558 (17) | N8—H8 | 0.891 (17) |
O3—C15 | 1.2101 (17) | C8A—C9 | 1.3991 (18) |
O4—C15 | 1.3431 (17) | C8A—C12A | 1.4198 (19) |
O4—C16 | 1.4478 (16) | C9—C10 | 1.389 (2) |
C1—C12B | 1.5077 (18) | C9—H9 | 0.9500 |
C1—C2 | 1.5292 (18) | C10—C11 | 1.407 (2) |
C1—H1A | 0.9900 | C10—H10 | 0.9500 |
C1—H1B | 0.9900 | C11—C12 | 1.3916 (19) |
C2—C3 | 1.3612 (19) | C11—H11 | 0.9500 |
C2—C13 | 1.4838 (19) | C12—C12A | 1.406 (2) |
C3—N4 | 1.4010 (18) | C12—H12 | 0.9500 |
C3—C15 | 1.5201 (18) | C12A—C12B | 1.4432 (18) |
N4—C17 | 1.4776 (16) | C14—H14A | 0.9800 |
N4—C5 | 1.4857 (17) | C14—H14B | 0.9800 |
C5—C6 | 1.526 (2) | C14—H14C | 0.9800 |
C5—H5A | 0.9900 | C16—H16A | 0.9800 |
C5—H5B | 0.9900 | C16—H16B | 0.9800 |
C6—C7 | 1.537 (2) | C16—H16C | 0.9800 |
C6—H6A | 0.9900 | C17—C18 | 1.517 (2) |
C6—H6B | 0.9900 | C17—H17A | 0.9900 |
C7—C7A | 1.4988 (19) | C17—H17B | 0.9900 |
C7—H7A | 0.9900 | C18—H18A | 0.9800 |
C7—H7B | 0.9900 | C18—H18B | 0.9800 |
C7A—C12B | 1.378 (2) | C18—H18C | 0.9800 |
C13—O2—C14 | 115.04 (11) | C8A—C9—H9 | 121.3 |
C15—O4—C16 | 115.27 (11) | C9—C10—C11 | 121.25 (13) |
C12B—C1—C2 | 117.68 (11) | C9—C10—H10 | 119.4 |
C12B—C1—H1A | 107.9 | C11—C10—H10 | 119.4 |
C2—C1—H1A | 107.9 | C12—C11—C10 | 121.14 (14) |
C12B—C1—H1B | 107.9 | C12—C11—H11 | 119.4 |
C2—C1—H1B | 107.9 | C10—C11—H11 | 119.4 |
H1A—C1—H1B | 107.2 | C11—C12—C12A | 119.00 (14) |
C3—C2—C13 | 117.09 (12) | C11—C12—H12 | 120.5 |
C3—C2—C1 | 122.54 (13) | C12A—C12—H12 | 120.5 |
C13—C2—C1 | 120.35 (11) | C12—C12A—C8A | 118.76 (12) |
C2—C3—N4 | 122.20 (12) | C12—C12A—C12B | 134.28 (13) |
C2—C3—C15 | 120.48 (12) | C8A—C12A—C12B | 106.96 (12) |
N4—C3—C15 | 117.29 (11) | C7A—C12B—C12A | 106.86 (11) |
C3—N4—C17 | 117.81 (11) | C7A—C12B—C1 | 125.23 (12) |
C3—N4—C5 | 114.73 (11) | C12A—C12B—C1 | 127.89 (13) |
C17—N4—C5 | 113.00 (11) | O1—C13—O2 | 122.15 (13) |
N4—C5—C6 | 113.66 (12) | O1—C13—C2 | 123.62 (12) |
N4—C5—H5A | 108.8 | O2—C13—C2 | 114.19 (12) |
C6—C5—H5A | 108.8 | O2—C14—H14A | 109.5 |
N4—C5—H5B | 108.8 | O2—C14—H14B | 109.5 |
C6—C5—H5B | 108.8 | H14A—C14—H14B | 109.5 |
H5A—C5—H5B | 107.7 | O2—C14—H14C | 109.5 |
C5—C6—C7 | 112.73 (12) | H14A—C14—H14C | 109.5 |
C5—C6—H6A | 109.0 | H14B—C14—H14C | 109.5 |
C7—C6—H6A | 109.0 | O3—C15—O4 | 124.48 (12) |
C5—C6—H6B | 109.0 | O3—C15—C3 | 124.24 (12) |
C7—C6—H6B | 109.0 | O4—C15—C3 | 111.20 (11) |
H6A—C6—H6B | 107.8 | O4—C16—H16A | 109.5 |
C7A—C7—C6 | 112.15 (12) | O4—C16—H16B | 109.5 |
C7A—C7—H7A | 109.2 | H16A—C16—H16B | 109.5 |
C6—C7—H7A | 109.2 | O4—C16—H16C | 109.5 |
C7A—C7—H7B | 109.2 | H16A—C16—H16C | 109.5 |
C6—C7—H7B | 109.2 | H16B—C16—H16C | 109.5 |
H7A—C7—H7B | 107.9 | N4—C17—C18 | 111.88 (12) |
C12B—C7A—N8 | 109.40 (12) | N4—C17—H17A | 109.2 |
C12B—C7A—C7 | 129.87 (12) | C18—C17—H17A | 109.2 |
N8—C7A—C7 | 120.47 (13) | N4—C17—H17B | 109.2 |
C8A—N8—C7A | 109.31 (12) | C18—C17—H17B | 109.2 |
C8A—N8—H8 | 126.1 (10) | H17A—C17—H17B | 107.9 |
C7A—N8—H8 | 123.8 (10) | C17—C18—H18A | 109.5 |
N8—C8A—C9 | 130.12 (13) | C17—C18—H18B | 109.5 |
N8—C8A—C12A | 107.45 (11) | H18A—C18—H18B | 109.5 |
C9—C8A—C12A | 122.43 (14) | C17—C18—H18C | 109.5 |
C10—C9—C8A | 117.42 (13) | H18A—C18—H18C | 109.5 |
C10—C9—H9 | 121.3 | H18B—C18—H18C | 109.5 |
C12B—C1—C2—C3 | 89.83 (16) | C9—C8A—C12A—C12 | −0.5 (2) |
C12B—C1—C2—C13 | −91.39 (15) | N8—C8A—C12A—C12B | 0.01 (15) |
C13—C2—C3—N4 | 161.42 (12) | C9—C8A—C12A—C12B | −179.83 (13) |
C1—C2—C3—N4 | −19.8 (2) | N8—C7A—C12B—C12A | −1.40 (15) |
C13—C2—C3—C15 | −16.67 (18) | C7—C7A—C12B—C12A | −175.38 (14) |
C1—C2—C3—C15 | 162.15 (12) | N8—C7A—C12B—C1 | 177.49 (12) |
C2—C3—N4—C17 | 152.39 (13) | C7—C7A—C12B—C1 | 3.5 (2) |
C15—C3—N4—C17 | −29.46 (17) | C12—C12A—C12B—C7A | −178.33 (15) |
C2—C3—N4—C5 | −70.79 (17) | C8A—C12A—C12B—C7A | 0.85 (15) |
C15—C3—N4—C5 | 107.36 (13) | C12—C12A—C12B—C1 | 2.8 (3) |
C3—N4—C5—C6 | 141.33 (12) | C8A—C12A—C12B—C1 | −178.00 (13) |
C17—N4—C5—C6 | −79.77 (14) | C2—C1—C12B—C7A | −96.28 (16) |
N4—C5—C6—C7 | −59.93 (15) | C2—C1—C12B—C12A | 82.37 (18) |
C5—C6—C7—C7A | −53.56 (15) | C14—O2—C13—O1 | −2.25 (17) |
C6—C7—C7A—C12B | 91.06 (18) | C14—O2—C13—C2 | 175.79 (10) |
C6—C7—C7A—N8 | −82.35 (15) | C3—C2—C13—O1 | −21.88 (18) |
C12B—C7A—N8—C8A | 1.44 (16) | C1—C2—C13—O1 | 159.27 (12) |
C7—C7A—N8—C8A | 176.09 (12) | C3—C2—C13—O2 | 160.11 (11) |
C7A—N8—C8A—C9 | 178.94 (14) | C1—C2—C13—O2 | −18.73 (16) |
C7A—N8—C8A—C12A | −0.87 (15) | C16—O4—C15—O3 | −9.14 (18) |
N8—C8A—C9—C10 | −179.83 (14) | C16—O4—C15—C3 | 174.08 (11) |
C12A—C8A—C9—C10 | 0.0 (2) | C2—C3—C15—O3 | 124.43 (15) |
C8A—C9—C10—C11 | 0.6 (2) | N4—C3—C15—O3 | −53.76 (18) |
C9—C10—C11—C12 | −0.6 (2) | C2—C3—C15—O4 | −58.78 (16) |
C10—C11—C12—C12A | 0.1 (2) | N4—C3—C15—O4 | 123.03 (12) |
C11—C12—C12A—C8A | 0.5 (2) | C3—N4—C17—C18 | −62.97 (17) |
C11—C12—C12A—C12B | 179.58 (15) | C5—N4—C17—C18 | 159.50 (12) |
N8—C8A—C12A—C12 | 179.34 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8···O1i | 0.891 (17) | 2.234 (18) | 3.0690 (18) | 155.7 (14) |
N8—H8···O3i | 0.891 (17) | 2.546 (16) | 3.1029 (16) | 121.2 (12) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The work was supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008 of June 24, 2016).
References
Afsah, E. M., Fadda, A. A., Bondock, S. & Hammouda, M. M. (2009). Z. Naturforsch. Teil B, 64, 415–422. CAS Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hartman, G. D. & Kuduk, S. (2016). Patent US2016/272599A1, Novira Therapeutics, Inc., USA. Google Scholar
Kuehne, M. E., Bornmann, W. G., Markó, I., Qin, Y., LeBoulluec, K. L., Frasier, D. A., Xu, F., Mulamba, T., Ensinger, C. L., Borman, L. S., Huot, A. E., Exon, C., Bizzarro, F. T., Cheung, J. B. & Bane, S. L. (2003). Org. Biomol. Chem. 1, 2120–2136. Web of Science CrossRef PubMed CAS Google Scholar
Kuehne, M., He, L., Jokiel, P., Pace, C. J., Fleck, M. W., Maisonneuve, I. M., Glick, S. D. & Bidlack, J. M. (2003). J. Med. Chem. 46, 2716–2730. Web of Science CrossRef PubMed CAS Google Scholar
Magnus, P., Ladlow, M. & Elliott, J. (1987). J. Am. Chem. Soc. 109, 7929–7930. CrossRef CAS Web of Science Google Scholar
MarXperts (2015). Automar. MarXperts GmbH, Norderstedt, Germany. Google Scholar
Neuss, N., Gorman, M., Boaz, H. E. & Cone, N. J. (1962). J. Am. Chem. Soc. 84, 1509–1510. CrossRef CAS Web of Science Google Scholar
Neuss, N., Gorman, M., Svoboda, G. H., Maciak, G. & Beer, C. T. (1959). J. Am. Chem. Soc. 81, 4754–4755. CrossRef CAS Web of Science Google Scholar
Rostom, S. A. F. (2010). Arch. Pharm. Chem. Life Sci. 343, 73–80. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soldi, R., Horrigan, S. K., Cholody, M. W., Padia, J., Sorna, V., Bearss, J., Gilcrease, G., Bhalla, K., Verma, A., Vankayalapati, H. & Sharma, S. (2015). J. Med. Chem. 58, 5854–5862. Web of Science CrossRef CAS PubMed Google Scholar
Tanaka, Y., Gamo, K., Oyama, T., Ohashi, M., Waki, M., Matsuno, K., Matsuura, N., Tokiwa, H. & Miyachi, H. (2014). Bioorg. Med. Chem. Lett. 24, 4001–4005. Web of Science CrossRef CAS PubMed Google Scholar
Uprety, H. & Bhakuni, D. S. (1975). Tetrahedron Lett. 16, 1201–1204. CrossRef Google Scholar
Voskressensky, L. G., Akbulatov, S. V., Borisova, T. N. & Varlamov, A. V. (2006). Tetrahedron, 62, 12392–12397. Web of Science CSD CrossRef CAS Google Scholar
Voskressensky, L. G., Borisova, T. N., Kostenev, I. S., Kulikova, L. N. & Varlamov, A. V. (2006). Tetrahedron Lett. 47, 999–1001. Web of Science CSD CrossRef CAS Google Scholar
Voskressensky, L. G., Borisova, T. N., Kulikova, L. N., Varlamov, A. V., Catto, M., Altomare, C. & Carotti, A. (2004). Eur. J. Org. Chem. pp. 3128–3135. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.