research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(4-Dec­yl­oxy-2-oxido­benzyl­­idene)-3-hy­dr­oxy-2-naphtho­hydrazidato-κ3N,O,O′]di­methyl­tin(IV): crystal structure and Hirshfeld surface analysis

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom, and dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 February 2017; accepted 11 February 2017; online 17 February 2017)

The title diorganotin compound, [Sn(CH3)2(C28H32N2O4)], features a distorted SnC2NO2 coordination geometry almost inter­mediate between ideal trigonal–bipyramidal and square-pyramidal. The dianionic Schiff base ligand coordinates in a tridentate fashion via two alkoxide O and hydrazinyl N atoms; an intra­molecular hy­droxy-O—H⋯N(hydrazin­yl) hydrogen bond is noted. The alk­oxy chain has an all-trans conformation, and to the first approximation, the mol­ecule has local mirror symmetry relating the two Sn-bound methyl groups. Supra­molecular layers sustained by imine-C—H⋯O(hy­droxy), ππ [between dec­yloxy-substituted benzene rings with an inter-centroid separation of 3.7724 (13) Å], C—H⋯π(arene) and C—H⋯π(chelate ring) inter­actions are formed in the crystal; layers stack along the c axis with no directional inter­actions between them. The presence of C—H⋯π(chelate ring) inter­actions in the crystal is clearly evident from an analysis of the calculated Hirshfeld surface.

1. Chemical context

Organotin(IV) compounds with Schiff base ligands have been actively studied because of their versatile chemistry, e.g. solution versus solid-state structures, and their potential as biologically active compounds such as in anti-cancer and anti-microbial applications (Davies et al., 2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Editors. Tin Chemistry: Fundamentals, Frontiers and Applications, pp. 1-492. London: Wiley.]; Nath & Saini, 2011[Nath, M. & Saini, P. K. (2011). Dalton Trans. 40, 7077-7121.]). Among these Schiff base ligands, those derived from 3-hy­droxy-2-napthoic hydrazide have long been known to have promising anti-microbial (Dogan et al., 1998b[Dogan, H. N., Rollas, S. & Erdeniz, H. (1998b). Farmaco, 53, 462-467.]) and anti-convulsant activities (Dogan et al., 1998a[Dogan, H. N., Duran, A., Rollas, S., Şener, G., Armutak, Y. & Uysal, M. K. (1998a). Med. Sci. Res. 26, 755-758.]). Subsequently, various organotin compounds derived from these Schiff base ligands have been prepared and their anti-cancer potential explored (Lee et al., 2012[Lee, S. M., Mohd Ali, H., Sim, K. S., Abdul Malek, S. N. & Lo, K. M. (2012). Appl. Organomet. Chem. 26, 310-319.], 2013[Lee, S. M., Mohd Ali, H., Sim, K. S., Abdul Malek, S. N. & Lo, K. M. (2013). Inorg. Chim. Acta, 406, 272-278.]). These studies have revealed inter­esting biological activities and often correlations were possible with their solid-state structures (Lee et al., 2009[Lee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m816.], 2010[Lee, S. M., Mohd Ali, H. & Lo, K. M. (2010). Acta Cryst. E66, m161.]). Complementary studies on vanadium complexes with these Schiff base ligands focused upon their urease inhibitory activities (You et al., 2012[You, Z.-L., Shi, D.-H., Zhang, J.-C., Ma, Y.-P., Wang, C. & Li, K. (2012). Inorg. Chim. Acta, 384, 54-61.]). In addition, the catalytic properties of vanadium (Hosseini-Monfared et al., 2010[Hosseini-Monfared, H., Bikas, R. & Mayer, P. (2010). Inorg. Chim. Acta, 363, 2574-2583.], 2014[Hosseini-Monfared, H., Bikas, R., Mahboubi-Anarjan, P., Blake, A. J., Lippolis, V., Arslan, N. B. & Kazak, C. (2014). Polyhedron, 69, 90-102.]), cerium (Jiao et al., 2014[Jiao, Y., Wang, J., Wu, P., Zhao, L., He, C., Zhang, J. & Duan, C. (2014). Chem. Eur. J. 20, 2224-2231.]) and palladium complexes (Arumugam et al., 2015[Arumugam, V., Kaminsky, W. & Nallasamy, D. (2015). RSC Adv. 5, 77948-77957.]) have been explored. Further, structural data for copper (Liu et al., 2012[Liu, M.-L., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Cui, J.-Z. (2012). Transition Met. Chem. 37, 117-124.]), molybdenum (Miao, 2012[Miao, J. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 1463-1466.]) and vanadium (Kurup et al., 2010[Kurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599-605.]) complexes are available. As part of our on-going work with these ONO tridentate ligands (Lee et al., 2013[Lee, S. M., Mohd Ali, H., Sim, K. S., Abdul Malek, S. N. & Lo, K. M. (2013). Inorg. Chim. Acta, 406, 272-278.]), we hereby describe the crystal and mol­ecular structures of the title compound, (I)[link], as well as a detailed analysis of the inter­molecular associations through a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The tin(IV) atom in (I)[link], Fig. 1[link], is complexed by a di-anionic, tridentate Schiff base ligand noteworthy for the appended fused-ring system and for the long alk­oxy chain substituent. The five-coordinate geometry is completed by two Sn-bound methyl groups, Table 1[link]. The resulting C2NO2 coordination geometry is highly distorted with the value of τ being 0.52, i.e. almost exactly inter­mediate between ideal square-pyramidal (τ = 0) and trigonal–bipyramidal (τ = 1.0) (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The widest angle at the tin atom is subtended by the two alkoxide-O atoms, i.e. 157.14 (6)°, with the other angles ranging from an acute 73.16 (6)°, for O1—Sn—O2, to 125.89 (9)°, being subtended by the two Sn-bound methyl groups.

Table 1
Selected geometric parameters (Å, °)

Sn—O1 2.1600 (15) Sn—C29 2.112 (2)
Sn—O3 2.0984 (15) Sn—C30 2.106 (2)
Sn—N2 2.1503 (16)    
       
O1—Sn—O3 157.14 (6) O3—Sn—C30 96.19 (8)
O1—Sn—N2 73.16 (6) O3—Sn—C29 94.21 (8)
O1—Sn—C30 94.86 (8) N2—Sn—C29 119.12 (8)
O1—Sn—C29 95.42 (8) N2—Sn—C30 114.72 (8)
O3—Sn—N2 84.04 (6) C29—Sn—C30 125.89 (9)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The five-membered, SnON2C chelate ring is almost planar with a r.m.s. deviation of 0.0222 Å and in the same way, the six-membered, SnONC3 ring is close to planar with a r.m.s. deviation of 0.0155 Å; the dihedral angle between the chelate rings is small, being 2.90 (4)°. The bond lengths involving the nitro­gen atoms comprising the backbone of the chelate rings suggest some conjugation, i.e. N1—C1, N1—N2 and N2—C12 are 1.317 (3), 1.397 (2) and 1.303 (3) Å, respectively. The 10 atoms of the fused-ring system appended to the five-membered chelate ring make a dihedral angle of 2.01 (3)° with the chelate ring, a conformation allowing the formation of an intra­molecular hy­droxy-O—H⋯N(hydrazin­yl) hydrogen bond to close an S(6) loop, Table 2[link]. The dihedral angle between the six-membered and fused benzene rings is 1.12 (5)°, indicating a strictly co-planar relationship. Significant planarity in the mol­ecule is indicated by the dihedral angle of 5.84 (4)° between the appended fused-ring system at C1 and the fused benzene ring. In addition, the dec­yloxy side chain has an all-trans conformation with the range of torsion angles being −174.96 (18)°, for C21—C22—C23—C24, to 179.79 (19)°, for C25—C26—C27—C28. Indeed, the r.m.s. deviation for the least-squares plane through all non-hydrogen atoms except the Sn-bound methyl groups is relatively small at 0.1179 Å, with maximum deviations being for the terminal methyl group of the alk­oxy chain, i.e. 0.296 (2) Å, and a central methyl­ene-C22 atom, i.e. 0.194 (2) Å. Hence, to a first approximation, the mol­ecule has mirror symmetry, relating the two Sn-bound methyl groups.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1–Cg4 are the centroids of the (Sn,O1,N1,N2,C1), (Sn,O3,N2,C12–C14), (C2–C4,C9–C11) and (C4—C9) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N1 0.83 (2) 1.86 (2) 2.580 (2) 145 (3)
C12—H12⋯O2i 0.95 2.52 3.386 (3) 152
C22—H22ACg1ii 0.99 2.86 3.782 (2) 155
C20—H20BCg2ii 0.99 2.76 3.650 (2) 149
C24—H24BCg3iii 0.99 2.74 3.609 (2) 146
C26—H26BCg4iii 0.99 2.78 3.696 (2) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z+1]; (ii) [x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (iii) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+{\script{3\over 2}}].

3. Supra­molecular features

Aside from participating in an intra­molecular hy­droxy-O—H⋯N(hydrazin­yl) hydrogen bond, the hy­droxy-O atom accepts an inter­action from a centrosymmetrically-related imine-H atom, Table 2[link]. This has the result that a 16-membered {⋯OC3N2CH}2 synthon is formed, which encapsulates two six-membered {⋯HOC3N} synthons formed by the intra­molecular hy­droxy-O—H⋯N(hydrazin­yl) hydrogen bonding mentioned above, Fig. 2[link]a. Centrosymmetrically related dimeric aggregates are linked via ππ inter­actions between dec­yloxy-substituted benzene rings [inter-centroid separation = 3.7724 (13) Å for symmetry operation: 1 − x, 1 − y, 1 − z]. The remaining inter­actions are of the type C—H⋯π and involve methyl­ene-C—H exclusively. While two of the inter­actions have benzene rings as acceptors, the other two have chelate rings as acceptors, i.e. are of the type C—H⋯π(chelate), a phenomenon gaining increasing attention (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2017.01.009.]); Table 2[link]. Taken alone, the C—H⋯π inter­actions lead to supra­molecular chains as illustrated in Fig. 2[link]b. The result of all of the identified inter­molecular inter­actions is the formation of supra­molecular layers that stack along the c axis with no directional inter­actions between them, Fig. 2[link]c.

[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) supra­molecular dimer sustained by imine-C—H⋯O(hy­droxy) inter­actions, shown as blue dashed lines, which incorporates two hy­droxy-O—H⋯N(hydrazin­yl) hydrogen bonds, shown as orange dashed lines, (b) view of a supra­molecular chain sustained by C—H⋯π inter­actions and (c) a view of the unit-cell contents in projection down the b axis, highlighting the stacking of supra­molecular layers along the c axis. The ππ, C—H⋯π(chelate ring) and C—H⋯π(arene) inter­actions are shown as pink, brown and purple dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis for (I)[link] was performed as described in a recent publication of a related organotin structure (Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.]). From the view of the Hirshfeld surface mapped over dnorm, in the range −0.053 to + 1.621 au, Fig. 3[link], the bright-red spots appearing near the hy­droxy-O2 and imine-H12 atoms represent the acceptor and donor of the inter­molecular C—H⋯O inter­action forming the {⋯OC3N2CH}2 synthon as discussed in the previous section; these are also viewed as blue and red regions near the H and O atoms on the Hirshfeld surface mapped over electrostatic potential (over the range ± 0.075 au), Fig. 4[link], corresponding to positive and negative potentials, respectively. In the absence of more conventional hydrogen bonds in the packing of (I)[link], the structure contains two types of C—H⋯π inter­actions. The donors and acceptors of the C—H⋯π(arene) contacts are also viewed as respective light-blue and red regions on the Hirshfeld surface mapped over electrostatic potential, Fig. 4[link]. In Fig. 5[link], the bright-orange spots enclosed within the circles around chelate (blue circle) and benzene (red) rings on the de mapped Hirshfeld surface, Fig. 5[link], illustrate all acceptors of the C—H⋯π contacts. The immediate environment about a reference mol­ecule within the Hirshfeld surface mapped with the shape-index property is illustrated in Fig. 6[link]. The C—H⋯π(chelate) and C19—H19Aπ(C13–C18) contacts at 1 − x, −y, 1 − z and their reciprocal contacts, i.e. π⋯H—C, are represented with blue and white dotted lines, respectively, in Fig. 6[link]a. The other C—H⋯π contacts involving benzene rings and ππ stacking inter­actions at 1 − x, 1 − y, 1 − z are illustrated in Fig. 6[link]b.

[Figure 3]
Figure 3
Hirshfeld surface for (I)[link], mapped over dnorm in the range −0.053 to 1.621 au.
[Figure 4]
Figure 4
A view of Hirshfeld surface for (I)[link], mapped over the electrostatic potential in the range ±0.075 au.
[Figure 5]
Figure 5
Two views of the Hirshfeld surface for (I)[link] mapped over de, showing inter­molecular C—H⋯π inter­actions involving the chelate and benzene rings of a reference mol­ecule highlighted with blue and red circles, respectively. Refer to Table 2[link] for designations of rings 1–4. Ring 5 comprises the (C13–C18) atoms.
[Figure 6]
Figure 6
Two views of Hirshfeld surface for (I)[link] mapped with shape-index property about a reference mol­ecule. The C—H⋯π and π⋯H—C inter­actions in both (a) and (b) are indicated with blue and white dotted lines, respectively. The yellow dotted lines in (b) indicate ππ stacking between benzene (C13–C18) rings.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯N and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illus­trated in Fig. 7[link]af; their relative contributions are summarized qu­anti­tatively in Table 3[link]. The most notable observation from the Hirshfeld surface analysis of the structure of (I)[link] is that hydrogen atoms are involved in the overwhelming majority of surface contacts, i.e. 97.0%.

Table 3
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface in (I)

Contact % contribution
H⋯H 63.6
C⋯H/H⋯C 20.9
O⋯H/H⋯O 8.9
N⋯H/H⋯N 3.6
C⋯C 1.8
C⋯O/O⋯C 1.1
O⋯O 0.1
[Figure 7]
Figure 7
Fingerprint plots for (I)[link]: (a) overall and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) N⋯H/H⋯N and (f) C⋯C contacts.

A pair of very short peaks at de + di ∼ 2.38 Å in the fingerprint plot delineated into H⋯H contacts, Fig. 7[link]b, is due to a short inter­atomic contact between benzene-H18 and methyl­ene-H25A atoms, Table 4[link]. The involvement of methyl­ene-H atoms in C—H⋯π inter­actions with the arene and chelate rings results in the second largest contribution to the overall Hirshfeld surface, i.e. 20.9%, in the form of C⋯H/H⋯C contacts, Fig. 7[link]c. The short inter­atomic C⋯H/H⋯C contact between the ring-C18 and methyl­ene-H19A atoms, Table 4[link], accounts for the presence of an inter­action between these atoms. Another short inter­atomic C⋯H/H⋯C contact, namely C10⋯H18 (Table 4[link]), is merged in the corresponding plot of Fig. 7[link]c. The presence of two C—H⋯π(chelate) inter­actions, Table 2[link], can be easily recognized from the fingerprint plots delineated into C⋯H/H⋯C and N⋯H/H⋯N contacts, Fig. 7[link]c and e, as their ring centroids (Cg1 and Cg2; Table 2[link]) are close to the N and C atoms of the chelate rings and so provide discernible contributions to the Hirshfeld surface. A recent study also confirmed the impact of C—H⋯π(chelate) inter­actions upon the Hirshfeld surface of a metal-organic compound (Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]). A pair of short spikes with tips at de + di ∼ 2.5 Å on the parabolic distribution of points around de + di ∼ 2.7 Å shown by a pair of red arcs in Fig. 7[link]d are the result of C—H⋯O and short inter­atomic O⋯H/H⋯O contacts, Table 4[link]. A small but recognizable contribution, i.e. 1.8%, from C⋯C contacts to the Hirshfeld surface is assigned to ππ stacking inter­actions between symmetry-related (C13–C18) benzene rings, and appears as an arrow-like distribution of points around de = di ∼ 1.9 Å in Fig. 7[link]f. The other contacts, having low percentage contribution to the surface, are likely to have a negligible effect on the mol­ecular packing.

Table 4
Short inter­atomic contacts in (I)[link].

Contact distance symmetry operation
H18⋯H25A 2.38 [{1\over 2}] + x, −y, z
O2⋯H18 2.70 [{1\over 2}] − x, y, 1 − z
C10⋯H18 2.83 [{1\over 2}] − x, y, 1 − z
C18⋯H19A 2.86 1 − x, −y, −1 + z

5. Database survey

According to a search of the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are approximately 100 diorganotin structures with Schiff base ligands having an O—C=N—N=C—C C—O backbone, as in (I)[link]. Of these, 13 have the 3-hy­droxy­naphthalene residue, reflecting the biological inter­est in these compounds (see Chemical context). Two di­methyl­tin structures are available with identical ligands apart from having a substituent in the 5-position, i.e. chloride (Lee et al., 2009[Lee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m816.]) and bromide (Lee et al., 2010[Lee, S. M., Mohd Ali, H. & Lo, K. M. (2010). Acta Cryst. E66, m161.]), rather than in the 4-position as for (I)[link]; the two halide structures are isostructural. An overlap diagram of (I)[link] and the two 5-halide derivatives is shown in Fig. 8[link], which highlights the similarity between the structures. This borne out by the values of τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), i.e. 0.47 and 0.46 for the chloride and bromide structures, respectively, cf. 0.52 for (I)[link].

[Figure 8]
Figure 8
Overlap diagram of (I)[link], red image, the 5-Cl analogue (green) and the 5-Br analogue (blue). The mol­ecules have been arranged so that the five-membered chelate rings are superimposed.

6. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification, and all reactions were carried out under ambient conditions. The melting point was determined using an Electrothermal digital melting point apparatus and was uncorrected. The IR spectrum was obtained on a Perkin Elmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to 400 cm−1. The 1H NMR spectrum was recorded at room temperature in DMSO-d6 solution on a Jeol ECA 400 MHz FT–NMR spectrometer.

N-(4-Dec­oxy-2-oxido­benzyl­idene)-3-hy­droxy-2-napthohydrazide (1.0 mmol, 0.463 g) and tri­ethyl­amine (1.0 mmol, 0.14 ml) in ethyl acetate (25 ml) were added to di­methyl­tin dichloride (1.0 mmol, 0.220 g) in ethyl acetate (10 ml). The resulting mixture was stirred and refluxed for 3 h. The filtrate was evaporated until a precipitate was obtained. The precipitate was recrystallized from di­chloro­methane:di­methyl­formamide (1:1), and yellow prismatic crystals suitable for X-ray crystallographic studies were obtained from the slow evaporation of the filtrate. Yield: 0.366 g, 60%; M.p.: 507–508 K. IR (cm−1): 3162(br), 1633(s), 1597(s), 1169(s) cm−1. 1H NMR (in DMSO-d6): δ 11.34 (s, 1H, –OH), 8.57 (s, 1H, –N=CH), 6.25–6.40, 7.07–7.20 (m, 8H, aromatic-H), 8.47 (s, 1H, aromatic-H), 3.96 (s, 2H, –OCH2–), 1.28-1.82 (m, 16H, –CH2–), 0.91, (s, 6H, Sn—CH3), 0.89 (s, 3H, –CH2CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The oxygen-bound H atom was located in a difference Fourier map but was refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O). The maximum and minimum residual electron density peaks of 0.80 and 1.32 e Å−3 were located 0.42 and 0.83 Å, respectively, from the H23B and Sn atoms.

Table 5
Experimental details

Crystal data
Chemical formula [Sn(CH3)2(C28H32N2O4)]
Mr 609.31
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 25.2622 (9), 7.4543 (2), 29.9819 (11)
β (°) 102.349 (4)
V3) 5515.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.26 × 0.21 × 0.09
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Mo at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38191, 7182, 6371
Rint 0.038
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.01
No. of reflections 7182
No. of parameters 340
No. of restraints 1
Δρmax, Δρmin (e Å−3) 0.80, −1.32
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[N'-(4-Decyloxy-2-oxidobenzylidene)-3-hydroxy-2-naphthohydrazidato-κ3N,O,O']dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C28H32N2O4)]F(000) = 2512
Mr = 609.31Dx = 1.468 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 25.2622 (9) ÅCell parameters from 14600 reflections
b = 7.4543 (2) Åθ = 2.9–29.3°
c = 29.9819 (11) ŵ = 0.96 mm1
β = 102.349 (4)°T = 100 K
V = 5515.3 (3) Å3Prism, yellow
Z = 80.26 × 0.21 × 0.09 mm
Data collection top
Rigaku SuperNova, Dual, Mo at zero, AtlasS2
diffractometer
7182 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source6371 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
ω scansθmax = 29.7°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 3334
Tmin = 0.756, Tmax = 1.000k = 109
38191 measured reflectionsl = 4041
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0376P)2 + 14.285P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.006
S = 1.01Δρmax = 0.80 e Å3
7182 reflectionsΔρmin = 1.32 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.42928 (2)0.37591 (2)0.63968 (2)0.01137 (5)
O10.35465 (6)0.4300 (2)0.66140 (5)0.0167 (3)
O20.21397 (6)0.5277 (2)0.55907 (5)0.0183 (3)
H2O0.2451 (6)0.506 (4)0.5555 (10)0.027*
O30.47942 (6)0.3222 (2)0.59379 (5)0.0181 (3)
O40.54342 (6)0.2034 (2)0.45789 (5)0.0201 (3)
N10.31505 (7)0.4446 (2)0.58481 (6)0.0129 (3)
N20.36668 (7)0.3985 (2)0.57883 (6)0.0110 (3)
C10.31320 (8)0.4565 (3)0.62829 (7)0.0124 (4)
C20.26038 (8)0.5020 (3)0.63921 (7)0.0129 (4)
C30.25664 (8)0.5125 (3)0.68442 (7)0.0133 (4)
H30.28830.49440.70760.016*
C40.20706 (8)0.5496 (3)0.69711 (7)0.0146 (4)
C50.20297 (9)0.5598 (3)0.74350 (7)0.0188 (4)
H50.23450.54370.76690.023*
C60.15430 (9)0.5926 (3)0.75491 (8)0.0214 (5)
H60.15220.60030.78610.026*
C70.10712 (9)0.6150 (3)0.72021 (8)0.0204 (5)
H70.07330.63570.72840.025*
C80.10947 (9)0.6074 (3)0.67508 (8)0.0178 (4)
H80.07740.62320.65220.021*
C90.15978 (8)0.5758 (3)0.66226 (7)0.0146 (4)
C100.16431 (8)0.5697 (3)0.61610 (7)0.0150 (4)
H100.13310.59130.59270.018*
C110.21280 (8)0.5332 (3)0.60440 (7)0.0134 (4)
C120.37054 (8)0.3749 (3)0.53660 (7)0.0121 (4)
H120.33830.39050.51400.014*
C130.41771 (8)0.3285 (3)0.52079 (7)0.0126 (4)
C140.47001 (8)0.3039 (3)0.54913 (7)0.0131 (4)
C150.51337 (8)0.2588 (3)0.52845 (7)0.0143 (4)
H150.54860.24030.54680.017*
C160.50482 (8)0.2413 (3)0.48147 (7)0.0144 (4)
C170.45295 (9)0.2635 (3)0.45328 (7)0.0173 (4)
H170.44760.24950.42110.021*
C180.41073 (8)0.3053 (3)0.47295 (7)0.0154 (4)
H180.37560.31940.45410.018*
C190.59810 (8)0.1635 (3)0.48078 (7)0.0152 (4)
H19A0.59930.06240.50240.018*
H19B0.61580.26940.49760.018*
C200.62486 (9)0.1133 (3)0.44178 (7)0.0152 (4)
H20A0.61870.21270.41930.018*
H20B0.60600.00640.42640.018*
C210.68525 (8)0.0733 (3)0.45358 (7)0.0160 (4)
H21A0.69230.03410.47340.019*
H21B0.70510.17590.47030.019*
C220.70459 (8)0.0402 (3)0.40919 (7)0.0159 (4)
H22A0.68300.05950.39270.019*
H22B0.69640.14870.38990.019*
C230.76433 (8)0.0045 (3)0.41369 (7)0.0156 (4)
H23A0.77260.12020.42990.019*
H23B0.78680.08960.43190.019*
C240.77803 (8)0.0168 (3)0.36659 (7)0.0152 (4)
H24A0.75490.11050.34880.018*
H24B0.76870.09880.35060.018*
C250.83719 (9)0.0601 (3)0.36696 (7)0.0167 (4)
H25A0.84650.17740.38210.020*
H25B0.86060.03210.38510.020*
C260.84886 (8)0.0668 (3)0.31918 (7)0.0151 (4)
H26A0.82710.16420.30170.018*
H26B0.83720.04770.30340.018*
C270.90843 (9)0.0980 (3)0.31902 (7)0.0174 (4)
H27A0.93030.00040.33620.021*
H27B0.92030.21250.33480.021*
C280.91884 (9)0.1048 (3)0.27092 (8)0.0207 (5)
H28A0.89770.20270.25390.031*
H28B0.95750.12550.27250.031*
H28C0.90800.00930.25540.031*
C290.44335 (10)0.1248 (3)0.67269 (8)0.0199 (4)
H29A0.46690.05220.65780.030*
H29B0.40880.06260.67080.030*
H29C0.46090.14300.70480.030*
C300.46626 (9)0.6203 (3)0.66410 (8)0.0199 (4)
H30A0.50180.59640.68380.030*
H30B0.44340.68350.68160.030*
H30C0.47080.69480.63820.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.00732 (7)0.01518 (8)0.01046 (7)0.00087 (5)0.00065 (5)0.00112 (5)
O10.0075 (6)0.0288 (8)0.0121 (7)0.0020 (6)0.0015 (5)0.0006 (6)
O20.0108 (7)0.0300 (9)0.0132 (7)0.0026 (6)0.0004 (6)0.0029 (6)
O30.0100 (7)0.0330 (9)0.0103 (7)0.0025 (6)0.0002 (5)0.0025 (6)
O40.0116 (7)0.0340 (9)0.0150 (7)0.0052 (7)0.0033 (6)0.0020 (7)
N10.0056 (7)0.0174 (8)0.0150 (8)0.0014 (7)0.0007 (6)0.0009 (7)
N20.0063 (7)0.0129 (8)0.0127 (8)0.0002 (6)0.0006 (6)0.0008 (6)
C10.0101 (9)0.0116 (9)0.0139 (9)0.0010 (7)0.0008 (7)0.0007 (7)
C20.0099 (9)0.0135 (9)0.0143 (9)0.0008 (7)0.0004 (7)0.0007 (8)
C30.0097 (9)0.0151 (10)0.0143 (9)0.0006 (7)0.0006 (7)0.0010 (8)
C40.0110 (9)0.0159 (10)0.0165 (9)0.0034 (8)0.0023 (7)0.0013 (8)
C50.0148 (10)0.0235 (11)0.0176 (10)0.0014 (9)0.0023 (8)0.0008 (9)
C60.0190 (11)0.0272 (12)0.0199 (11)0.0043 (9)0.0086 (9)0.0036 (9)
C70.0132 (10)0.0219 (11)0.0285 (12)0.0017 (9)0.0097 (9)0.0026 (9)
C80.0093 (9)0.0189 (11)0.0244 (11)0.0006 (8)0.0020 (8)0.0018 (9)
C90.0099 (9)0.0133 (9)0.0200 (10)0.0020 (8)0.0015 (8)0.0013 (8)
C100.0094 (9)0.0166 (10)0.0170 (10)0.0003 (8)0.0019 (7)0.0021 (8)
C110.0132 (9)0.0117 (10)0.0142 (9)0.0006 (7)0.0004 (7)0.0021 (7)
C120.0101 (9)0.0124 (9)0.0126 (9)0.0014 (7)0.0001 (7)0.0002 (7)
C130.0117 (9)0.0125 (9)0.0128 (9)0.0001 (7)0.0008 (7)0.0004 (7)
C140.0114 (9)0.0142 (9)0.0129 (9)0.0006 (8)0.0005 (7)0.0012 (8)
C150.0098 (9)0.0173 (10)0.0152 (9)0.0006 (8)0.0013 (7)0.0004 (8)
C160.0126 (9)0.0146 (10)0.0168 (10)0.0011 (8)0.0050 (8)0.0008 (8)
C170.0143 (10)0.0237 (11)0.0131 (9)0.0004 (8)0.0010 (8)0.0010 (8)
C180.0121 (9)0.0198 (10)0.0128 (9)0.0012 (8)0.0004 (7)0.0012 (8)
C190.0107 (9)0.0188 (10)0.0158 (9)0.0023 (8)0.0027 (7)0.0007 (8)
C200.0138 (10)0.0176 (10)0.0145 (9)0.0010 (8)0.0038 (8)0.0017 (8)
C210.0115 (9)0.0198 (10)0.0171 (10)0.0011 (8)0.0037 (8)0.0000 (8)
C220.0134 (10)0.0167 (10)0.0179 (10)0.0005 (8)0.0043 (8)0.0006 (8)
C230.0117 (9)0.0187 (10)0.0163 (9)0.0008 (8)0.0031 (8)0.0019 (8)
C240.0122 (9)0.0168 (10)0.0163 (9)0.0003 (8)0.0025 (8)0.0009 (8)
C250.0136 (10)0.0197 (10)0.0171 (10)0.0032 (8)0.0037 (8)0.0021 (9)
C260.0127 (9)0.0175 (10)0.0151 (9)0.0025 (8)0.0034 (8)0.0012 (8)
C270.0141 (10)0.0213 (11)0.0172 (10)0.0039 (8)0.0045 (8)0.0008 (8)
C280.0165 (11)0.0272 (12)0.0193 (10)0.0053 (9)0.0056 (8)0.0006 (9)
C290.0209 (11)0.0200 (11)0.0186 (10)0.0062 (9)0.0036 (8)0.0030 (9)
C300.0171 (10)0.0190 (11)0.0222 (11)0.0015 (9)0.0010 (8)0.0036 (9)
Geometric parameters (Å, º) top
Sn—O12.1600 (15)C17—C181.361 (3)
Sn—O32.0984 (15)C17—H170.9500
Sn—N22.1503 (16)C18—H180.9500
Sn—C292.112 (2)C19—C201.517 (3)
Sn—C302.106 (2)C19—H19A0.9900
O1—C11.295 (2)C19—H19B0.9900
O2—C111.366 (2)C20—C211.520 (3)
O2—H2O0.833 (10)C20—H20A0.9900
O3—C141.316 (2)C20—H20B0.9900
O4—C161.351 (2)C21—C221.532 (3)
O4—C191.436 (2)C21—H21A0.9900
N1—C11.317 (3)C21—H21B0.9900
N1—N21.397 (2)C22—C231.523 (3)
N2—C121.303 (3)C22—H22A0.9900
C1—C21.480 (3)C22—H22B0.9900
C2—C31.381 (3)C23—C241.527 (3)
C2—C111.432 (3)C23—H23A0.9900
C3—C41.412 (3)C23—H23B0.9900
C3—H30.9500C24—C251.527 (3)
C4—C91.422 (3)C24—H24A0.9900
C4—C51.419 (3)C24—H24B0.9900
C5—C61.367 (3)C25—C261.524 (3)
C5—H50.9500C25—H25A0.9900
C6—C71.414 (3)C25—H25B0.9900
C6—H60.9500C26—C271.524 (3)
C7—C81.368 (3)C26—H26A0.9900
C7—H70.9500C26—H26B0.9900
C8—C91.424 (3)C27—C281.521 (3)
C8—H80.9500C27—H27A0.9900
C9—C101.414 (3)C27—H27B0.9900
C10—C111.372 (3)C28—H28A0.9800
C10—H100.9500C28—H28B0.9800
C12—C131.416 (3)C28—H28C0.9800
C12—H120.9500C29—H29A0.9800
C13—C141.421 (3)C29—H29B0.9800
C13—C181.418 (3)C29—H29C0.9800
C14—C151.410 (3)C30—H30A0.9800
C15—C161.385 (3)C30—H30B0.9800
C15—H150.9500C30—H30C0.9800
C16—C171.409 (3)
O1—Sn—O3157.14 (6)O4—C19—C20102.98 (16)
O1—Sn—N273.16 (6)O4—C19—H19A111.2
O1—Sn—C3094.86 (8)C20—C19—H19A111.2
O1—Sn—C2995.42 (8)O4—C19—H19B111.2
O3—Sn—N284.04 (6)C20—C19—H19B111.2
O3—Sn—C3096.19 (8)H19A—C19—H19B109.1
O3—Sn—C2994.21 (8)C19—C20—C21117.36 (18)
N2—Sn—C29119.12 (8)C19—C20—H20A108.0
N2—Sn—C30114.72 (8)C21—C20—H20A108.0
C29—Sn—C30125.89 (9)C19—C20—H20B108.0
C1—O1—Sn114.34 (13)C21—C20—H20B108.0
C11—O2—H2O111 (2)H20A—C20—H20B107.2
C14—O3—Sn133.15 (13)C20—C21—C22108.66 (17)
C16—O4—C19121.44 (16)C20—C21—H21A110.0
C1—N1—N2112.04 (16)C22—C21—H21A110.0
C12—N2—N1115.10 (16)C20—C21—H21B110.0
C12—N2—Sn128.31 (14)C22—C21—H21B110.0
N1—N2—Sn116.60 (12)H21A—C21—H21B108.3
O1—C1—N1123.67 (18)C23—C22—C21116.88 (17)
O1—C1—C2119.01 (17)C23—C22—H22A108.1
N1—C1—C2117.32 (17)C21—C22—H22A108.1
C3—C2—C11118.88 (18)C23—C22—H22B108.1
C3—C2—C1118.98 (18)C21—C22—H22B108.1
C11—C2—C1122.14 (18)H22A—C22—H22B107.3
C2—C3—C4121.77 (19)C22—C23—C24110.33 (17)
C2—C3—H3119.1C22—C23—H23A109.6
C4—C3—H3119.1C24—C23—H23A109.6
C3—C4—C9118.88 (19)C22—C23—H23B109.6
C3—C4—C5121.97 (19)C24—C23—H23B109.6
C9—C4—C5119.14 (19)H23A—C23—H23B108.1
C6—C5—C4120.9 (2)C25—C24—C23114.90 (17)
C6—C5—H5119.6C25—C24—H24A108.5
C4—C5—H5119.6C23—C24—H24A108.5
C5—C6—C7119.9 (2)C25—C24—H24B108.5
C5—C6—H6120.0C23—C24—H24B108.5
C7—C6—H6120.0H24A—C24—H24B107.5
C8—C7—C6121.0 (2)C24—C25—C26112.70 (17)
C8—C7—H7119.5C24—C25—H25A109.1
C6—C7—H7119.5C26—C25—H25A109.1
C7—C8—C9120.3 (2)C24—C25—H25B109.1
C7—C8—H8119.9C26—C25—H25B109.1
C9—C8—H8119.9H25A—C25—H25B107.8
C4—C9—C10118.93 (19)C27—C26—C25113.44 (17)
C4—C9—C8118.8 (2)C27—C26—H26A108.9
C10—C9—C8122.23 (19)C25—C26—H26A108.9
C11—C10—C9121.36 (19)C27—C26—H26B108.9
C11—C10—H10119.3C25—C26—H26B108.9
C9—C10—H10119.3H26A—C26—H26B107.7
O2—C11—C10118.09 (18)C28—C27—C26112.29 (18)
O2—C11—C2121.78 (18)C28—C27—H27A109.1
C10—C11—C2120.13 (18)C26—C27—H27A109.1
N2—C12—C13126.98 (18)C28—C27—H27B109.1
N2—C12—H12116.5C26—C27—H27B109.1
C13—C12—H12116.5H27A—C27—H27B107.9
C14—C13—C12124.92 (18)C27—C28—H28A109.5
C14—C13—C18119.19 (18)C27—C28—H28B109.5
C12—C13—C18115.89 (18)H28A—C28—H28B109.5
O3—C14—C15118.94 (18)C27—C28—H28C109.5
O3—C14—C13122.50 (18)H28A—C28—H28C109.5
C15—C14—C13118.57 (18)H28B—C28—H28C109.5
C16—C15—C14120.18 (19)Sn—C29—H29A109.5
C16—C15—H15119.9Sn—C29—H29B109.5
C14—C15—H15119.9H29A—C29—H29B109.5
O4—C16—C15125.36 (19)Sn—C29—H29C109.5
O4—C16—C17113.16 (18)H29A—C29—H29C109.5
C15—C16—C17121.48 (19)H29B—C29—H29C109.5
C18—C17—C16118.78 (19)Sn—C30—H30A109.5
C18—C17—H17120.6Sn—C30—H30B109.5
C16—C17—H17120.6H30A—C30—H30B109.5
C17—C18—C13121.79 (19)Sn—C30—H30C109.5
C17—C18—H18119.1H30A—C30—H30C109.5
C13—C18—H18119.1H30B—C30—H30C109.5
C1—N1—N2—C12176.40 (18)C1—C2—C11—C10178.0 (2)
C1—N1—N2—Sn3.7 (2)N1—N2—C12—C13179.75 (19)
Sn—O1—C1—N12.8 (3)Sn—N2—C12—C130.2 (3)
Sn—O1—C1—C2177.56 (14)N2—C12—C13—C141.6 (3)
N2—N1—C1—O10.6 (3)N2—C12—C13—C18178.1 (2)
N2—N1—C1—C2179.12 (17)Sn—O3—C14—C15177.01 (15)
O1—C1—C2—C30.8 (3)Sn—O3—C14—C133.2 (3)
N1—C1—C2—C3178.86 (19)C12—C13—C14—O30.2 (3)
O1—C1—C2—C11179.99 (19)C18—C13—C14—O3179.6 (2)
N1—C1—C2—C110.3 (3)C12—C13—C14—C15179.6 (2)
C11—C2—C3—C41.3 (3)C18—C13—C14—C150.6 (3)
C1—C2—C3—C4177.91 (19)O3—C14—C15—C16179.0 (2)
C2—C3—C4—C90.3 (3)C13—C14—C15—C160.8 (3)
C2—C3—C4—C5179.7 (2)C19—O4—C16—C154.8 (3)
C3—C4—C5—C6178.8 (2)C19—O4—C16—C17175.49 (19)
C9—C4—C5—C60.7 (3)C14—C15—C16—O4178.2 (2)
C4—C5—C6—C70.6 (4)C14—C15—C16—C171.5 (3)
C5—C6—C7—C81.1 (4)O4—C16—C17—C18178.9 (2)
C6—C7—C8—C90.2 (3)C15—C16—C17—C180.9 (3)
C3—C4—C9—C102.0 (3)C16—C17—C18—C130.5 (3)
C5—C4—C9—C10178.5 (2)C14—C13—C18—C171.3 (3)
C3—C4—C9—C8178.0 (2)C12—C13—C18—C17178.9 (2)
C5—C4—C9—C81.5 (3)C16—O4—C19—C20174.88 (18)
C7—C8—C9—C41.0 (3)O4—C19—C20—C21176.30 (18)
C7—C8—C9—C10179.0 (2)C19—C20—C21—C22175.71 (18)
C4—C9—C10—C112.2 (3)C20—C21—C22—C23179.36 (18)
C8—C9—C10—C11177.8 (2)C21—C22—C23—C24174.96 (18)
C9—C10—C11—O2179.35 (19)C22—C23—C24—C25179.63 (18)
C9—C10—C11—C20.6 (3)C23—C24—C25—C26178.75 (18)
C3—C2—C11—O2178.89 (19)C24—C25—C26—C27176.35 (18)
C1—C2—C11—O21.9 (3)C25—C26—C27—C28179.79 (19)
C3—C2—C11—C101.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg4 are the centroids of the (Sn,O1,N1,N2,C1), (Sn,O3,N2,C12–C14), (C2–C4,C9–C11) and (C4—C9) rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.83 (2)1.86 (2)2.580 (2)145 (3)
C12—H12···O2i0.952.523.386 (3)152
C22—H22A···Cg1ii0.992.863.782 (2)155
C20—H20B···Cg2ii0.992.763.650 (2)149
C24—H24B···Cg3iii0.992.743.609 (2)146
C26—H26B···Cg4iii0.992.783.696 (2)154
Symmetry codes: (i) x+1/2, y, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y+3/2, z+3/2.
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface in (I) top
Contact% contribution
H···H63.6
C···H/H···C20.9
O···H/H···O8.9
N···H/H···N3.6
C···C1.8
C···O/O···C1.1
O···O0.1
Short interatomic contacts in (I). top
Contactdistancesymmetry operation
H18···H25A2.38-1/2 + x, -y, z
O2···H182.701/2 - x, y, 1 - z
C10···H182.831/2 - x, y, 1 - z
C18···H19A2.861 - x, -y, -1 + z
 

Footnotes

Additional correspondence author, e-mail: annielee@sunway.edu.my.

Funding information

Funding for this research was provided by: Sunway Universitythe University of Malaya (award Nos. RP017B-14AFR, PG102–2015A); the Ministry of Higher Education of Malaysia (MOHE) Fundamental Research Grant Scheme (award No. No. FP033–2014B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationArumugam, V., Kaminsky, W. & Nallasamy, D. (2015). RSC Adv. 5, 77948–77957.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Editors. Tin Chemistry: Fundamentals, Frontiers and Applications, pp. 1–492. London: Wiley.  Google Scholar
First citationDogan, H. N., Duran, A., Rollas, S., Şener, G., Armutak, Y. & Uysal, M. K. (1998a). Med. Sci. Res. 26, 755–758.  CAS Google Scholar
First citationDogan, H. N., Rollas, S. & Erdeniz, H. (1998b). Farmaco, 53, 462–467.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosseini-Monfared, H., Bikas, R., Mahboubi-Anarjan, P., Blake, A. J., Lippolis, V., Arslan, N. B. & Kazak, C. (2014). Polyhedron, 69, 90–102.  CAS Google Scholar
First citationHosseini-Monfared, H., Bikas, R. & Mayer, P. (2010). Inorg. Chim. Acta, 363, 2574–2583.  Google Scholar
First citationJiao, Y., Wang, J., Wu, P., Zhao, L., He, C., Zhang, J. & Duan, C. (2014). Chem. Eur. J. 20, 2224–2231.  CSD CrossRef CAS PubMed Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationKurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. M., Mohd Ali, H., Sim, K. S., Abdul Malek, S. N. & Lo, K. M. (2013). Inorg. Chim. Acta, 406, 272–278.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. M., Mohd Ali, H. & Lo, K. M. (2010). Acta Cryst. E66, m161.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. M., Mohd Ali, H., Sim, K. S., Abdul Malek, S. N. & Lo, K. M. (2012). Appl. Organomet. Chem. 26, 310–319.  Google Scholar
First citationLiu, M.-L., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Cui, J.-Z. (2012). Transition Met. Chem. 37, 117–124.  CSD CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiao, J. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 1463–1466.  CSD CrossRef CAS Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265.  CSD CrossRef IUCr Journals Google Scholar
First citationNath, M. & Saini, P. K. (2011). Dalton Trans. 40, 7077–7121.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2017.01.009Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L., Shi, D.-H., Zhang, J.-C., Ma, Y.-P., Wang, C. & Li, K. (2012). Inorg. Chim. Acta, 384, 54–61.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds