research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-methylbenzyl 2-[4-(propan-2-yl)benzyl­­idene]hydrazine­carbodi­thio­ato-κ2N2,S}nickel(II): crystal structure and Hirshfeld surface analysis

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 February 2017; accepted 13 February 2017; online 17 February 2017)

The complete mol­ecule of the title hydrazine carbodi­thio­ate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodi­thio­ate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C—H⋯π(benzene-iPr), iPr-C—H⋯π(p-tol­yl) and ππ inter­actions [between p-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.

1. Chemical context

Schiff bases derived from S-R-di­thio­carbazate (R = meth­yl/benz­yl/methyl­benz­yl) and heterocyclic aldehydes or ketones have received much attention in recent years owing to their cytotoxicity (Ali et al., 2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]; Beshir et al., 2008[Beshir, A. B., Guchhait, S. K., Gascón, J. A. & Fenteany, G. (2008). Bioorg. Med. Chem. Lett. 18, 498-504.]; Yusof et al., 2015a[Yusof, E. N. Md., Ravoof, T. B. S. A., Jamsari, J., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015a). Inorg. Chim. Acta, 438, 85-93.],b[Yusof, E. N. Md., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. M. I. & Ahmad, H. (2015b). Int. J. Mol. Sci. 16, 11034-11054.]), as well as their specific and selective anti-bacterial and anti-fungal properties (Low et al., 2014[Low, M. L., Maigre, L., Dorlet, P., Guillot, R., Pagès, J., Crouse, K. A., Policar, C. & Delsuc, N. (2014). Bioconjugate Chem. 25, 2269-2284.]; Maia et al., 2010[Maia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276-1282.]; Pavan et al., 2010[Pavan, F. R., Maia, P. I. da S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898-1905.]).

[Scheme 1]

Schiff bases that react with different metal ions often show different types of coordination modes. Metal complexes are versatile mol­ecules with a wide range of pharmacological properties due to the inherent characteristics of both the central metal atoms and ligands (Meggers, 2009[Meggers, E. (2009). Chem. Commun. pp. 1001-1010.]). Various transition metal complexes have been reported to induce DNA cleavage by attacking the sugar or base moieties of DNA through the formation of reactive oxygen species (ROS) (Burrows & Muller, 1998[Burrows, C. J. & Muller, J. G. (1998). Chem. Rev. 98, 1109-1152.]). A nickel(II) bis-di­thio­carbazate complex has been used in the photo-catalytic production of hydrogen as a catalyst (Wise et al., 2015[Wise, C. F., Liu, D., Mayer, K. J., Crossland, P. M., Hartley, C. L. & McNamara, W. R. (2015). Dalton Trans. 44, 14265-14271.]). Nickel(II) di­thio­carbazate has also been reported to have non-linear optical (NLO) properties (Liu et al., 2016[Liu, X., Xiao, Z., Huang, A., Wang, W., Zhang, L., Wang, R. & Sun, D. (2016). New J. Chem. 40, 5957-5965.]) with the potential to be used in signal processing (Bort et al., 2013[Bort, G., Gallavardin, T., Ogden, D. & Dalko, P. I. (2013). Angew. Chem. Int. Ed. 52, 4526-4537.]; Hales et al., 2014[Hales, J. M., Barlow, S., Kim, H., Mukhopadhyay, S., Brédas, J. L., Perry, J. W. & Marder, S. R. (2014). Chem. Mater. 26, 549-560.]), ultrafast optical communication, data storage, optical limiting (Price et al., 2015[Price, R. S., Dubinina, G., Wicks, G., Drobizhev, M., Rebane, A. & Schanze, K. S. (2015). Appl. Mater. Interfaces, 7, 10795-10805.]; Bouit et al., 2007[Bouit, P. A., Wetzel, G., Berginc, G., Loiseaux, B., Toupet, L., Feneyrou, P., Bretonnière, Y., Kamada, K., Maury, O. & Andraud, C. (2007). Chem. Mater. 19, 5325-5335.]), optical switching (Gieseking et al. 2014[Gieseking, R. L., Mukhopadhyay, S., Risko, C. & Brédas, J. L. (2014). ACS Photonics, 1, 261-269.]; Thorley et al., 2008[Thorley, K. J., Hales, J. M., Anderson, H. L. & Perry, J. W. (2008). Angew. Chem. Int. Ed. 47, 7095-7098.]), logic devices and bio-imaging (Ahn et al., 2012[Ahn, H. Y., Yao, S., Wang, X. & Belfield, K. D. (2012). Appl. Mater. Interfaces, 4, 2847-2854.]; Zhu et al., 2016[Zhu, Z., Qian, J., Zhao, X., Qin, W., Hu, R., Zhang, H., Li, D., Xu, Z., Tang, B. Z. & He, S. (2016). ACS Nano, 10, 588-597.]). In line with our inter­est in evaluating the structures of different isomeric di­thio­carbazate Schiff bases and their metal complexes, we report herein the synthesis of the title complex, (I)[link], its X-ray crystal structure determination and a detailed study of the supramolecular association by an analysis of its Hirshfeld surface.

2. Structural commentary

The NiII atom in (I)[link], Fig. 1[link], is located on a crystallographic centre of inversion and is coordinated by two S,N-chelating hydrazinecarbodi­thio­ate anions. From symmetry, the resulting N2S2 donor set has like atoms trans, and the square-planar coordination geometry is strictly planar. Distortions from the ideal geometry are related to the deviations of angles subtended at nickel by the donor atoms, Table 1[link]. The C1—N1—N2—C2 backbone of the ligand exhibits a twist as seen in the value of the torsion angle, i.e. −165.61 (17)°. Despite being involved in a formal bond to the NiII atom, the C1—S1 bond length of 1.7296 (19) Å is still significantly shorter than those formed by the S2 atom, i.e. C1—S2 = 1.7479 (18) Å and C12—S2 = 1.824 (2) Å.

Table 1
Selected bond lengths (Å)

Ni—S1 2.1747 (5) C1—S2 1.7479 (18)
Ni—N2 1.9137 (15) C12—S2 1.824 (2)
C1—S1 1.7296 (19)    
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The NiII atom is situated on a centre of inversion. Unlabelled atoms are related by the symmetry operation (1 − x, 1 − y, 1 − z).

The planarity of the N2S2 donor set does not extend to the five-membered chelate ring, which has an envelope conformation with the nickel atom lying 0.465 (2) Å above the least-squares plane through the remaining atoms [r.m.s. deviation = 0.0016 Å]. The sequence of C1=N1, N1—N2 and N2=C2 bond lengths of 1.294 (2), 1.408 (2) and 1.300 (2) Å, respectively, suggests limited conjugation across this residue. Each of the benzene rings of the S- and N-bound substituents is twisted with respect to the least-squares plane through the chelate ring. Thus, a nearly orthogonal relationship exists between the chelate and p-tolyl rings, with the dihedral angle being 89.72 (5)°. Less dramatic is the twist of the iPr-substituted ring with the dihedral angle being 13.83 (9)°. The dihedral angle between the aromatic rings is 84.31 (6)°.

3. Supra­molecular features

The two sites potentially available for hydrogen bonding in (I)[link], i.e. the S1 and N1 atoms, are involved in intra­molecular inter­actions, Table 2[link]. The only discernible contacts in the crystal involve π-systems (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Thus, each of the independent rings is involved in C—H⋯π contacts, i.e. p-tolyl-C—H⋯π(iPr-benzene) and iPr-benzene-C—H⋯π(p-tol­yl) contacts, Table 2[link]. In addition, centrosymmetrically related p-tolyl rings self-associate via face-to-face, ππ, inter­actions [inter-centroid distance = 3.8051 (12) Å for symmetry operationx, −1 − y, 1 − z], indicating the p-tolyl ring participates in two distinct inter­actions. The result of the supra­molecular association is the formation of a three-dimensional architecture, Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (C3–C8) and (C13–C18) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯S1i 0.95 2.48 3.0691 (17) 120
C4—H4⋯N1 0.95 2.40 2.865 (2) 110
C17—H17⋯Cg1ii 0.95 2.84 3.761 (2) 164
C11—H11BCg2iii 0.98 2.96 3.880 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing in (I)[link]: a view of the unit-cell contents shown in projection down the b axis. The ππ and C—H⋯π inter­actions are shown as orange and purple dashed lines, respectively.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface analysis for (I)[link] was performed as described in a recent publication of a heavy-atom structure (Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.]). The non-appearance of characteristic red spots on the Hirshfeld surface mapped over dnorm (not shown) clearly indicates the absence of conventional hydrogen bonding in the crystal. The donors and acceptors of C—H⋯π inter­actions, involving atoms of each of the iPr-benzene and p-tolyl rings, are viewed as blue and light-red regions and correspond to the respective positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (over the range ± 0.025 au), Fig. 3[link]. The acceptors of the C—H⋯π inter­actions are also viewed as bright-orange spots appearing near iPr-benzene and p-tolyl rings on the Hirshfeld surface mapped over de, Fig. 4[link]. The immediate environment about a reference mol­ecule within the Hirshfeld surface mapped with shape-index property is illustrated in Fig. 5[link]. The C—H⋯π and their reciprocal contacts, i.e. π⋯H—C contacts, between iPr–H11B and the p-tolyl ring are represented by red and white dotted lines, respectively in Fig. 5[link]a; the blue dotted lines in Fig. 5[link]a represent ππ stacking between p-tolyl rings at −x, −1 − y, 1 − z. The other C—H⋯π contacts involving p-tolyl-H17 and iPr-benzene rings are illustrated in Fig. 5[link]b.

[Figure 3]
Figure 3
A view of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential over the range ±0.025 au.
[Figure 4]
Figure 4
The view of the Hirshfeld surface mapped over de. The bright-orange spots near rings indicate their involvement in C—H⋯π inter­actions.
[Figure 5]
Figure 5
Two views (a) and (b) of the Hirshfeld surface mapped with shape-index property about a reference mol­ecule. The C—H⋯π and π⋯H—C inter­actions in both views are indicated with red and white dotted lines, respectively. The blue dotted lines in (a) indicate ππ stacking between p-tolyl rings.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, C⋯H/H⋯C, S⋯H/H⋯S and N⋯H/H⋯N and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) illustrated in Fig. 6[link]af. From the qu­anti­tative summary of the relative contributions of the various inter­atomic contacts given in Table 3[link], it is important to note the dominant contribution of hydrogen atoms to the Hirshfeld surface, i.e. 95.3%. In the fingerprint plot delineated into H⋯H contacts. Fig. 6[link]b, the points are distributed in the major part of the plot, but they do not make significant contributions to the mol­ecular packing as their inter­atomic separations are greater than sum of their van der Waals radii, i.e. de + di > 2.4 Å. The presence of short inter­atomic C⋯H/H⋯C contacts, see Table 4[link], and C—H⋯π inter­actions contribute to the second largest contribution to the Hirshfeld surface, i.e. 22.2%. This is consistent with the fingerprint plot, Fig. 6[link]c, where the short inter­atomic C⋯H/H⋯C contacts appear as a pair of small peaks at de + di ∼ 2.8 Å and also as the blue regions around the participating hydrogen atoms, namely H5 and H10B, on the Hirshfeld surface mapped over electrostatic potential, Fig. 3[link]. The involvement of the chelating S1 and N1 atoms in intra­molecular inter­actions, Table 2[link], prevents them from forming inter­molecular S⋯H/H⋯S and N⋯H/H⋯N contacts. However, the symmetrical distribution of points with the usual characteristics in their respective plots, Fig. 6[link]d and e, indicate meaningful contributions to the Hirshfeld surface, Table 3[link]. A small, i.e. 2.1%, but recognizable contribution from C⋯C contacts to the Hirshfeld surface is ascribed to ππ stacking inter­actions between symmetry-related p-tolyl rings, and appear as an arrow-like distribution of points around de = di 1.9 Å in Fig. 6[link]f. The other contacts have low percentage contributions to the surface and are likely to have negligible effects on the mol­ecular packing, Table 3[link].

Table 3
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface in (I)

Contact % contribution
H⋯H 52.5
C⋯H/H⋯C 22.2
S⋯H/H⋯S 15.3
N⋯H/H⋯N 3.3
C⋯C 2.1
Ni⋯H/H⋯Ni 2.0
S⋯N/N⋯S 1.8
C⋯S/S⋯C 0.4
S⋯S 0.3
C⋯N/N⋯C 0.1

Table 4
Short inter­atomic contacts in (I)

Contact distance symmetry operation
C16⋯H10B 2.84 x, −[{1\over 2}] − y, −[{1\over 2}] + z
C19⋯H5 2.88 -x, −1 − y, 1 − z
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for (I)[link]: (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) N⋯H/H⋯N and (f) C⋯C inter­actions.

5. Database survey

There are three closely related nickel(II) di­thio­carbazate complexes in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]); these are illustrated in simplified form in Fig. 7[link]. Complex (II) differs from (I)[link] only in the nature of the terminal substituents (Tan et al., 2012[Tan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m725-m726.]). Despite there being only small differences in chemical composition, a distinct coordination geometry is observed, with the NiII atom located on a twofold rotation axis and the N2S2 donor set having cis-dispositions of like atoms. In (III), with a formal link between the two imine functionalities, the cis-N2S2 arrangement is imposed by the geometric requirements of the bis­(di­thio­carbazate) di-anion (Zhou et al., 2002[Zhou, J.-H., Wang, Y.-X., Chen, X.-T., Song, Y.-L., Weng, L.-H. & You, X.-Z. (2002). Chin. J. Inorg. Chem. 18, 533-536.]). The mol­ecular structure of (IV), again with a cis-N2S2 donor set, appears to indicate that steric effects do not preclude a cis-N2S2 coordination geometry (Liu et al., 2000[Liu, Z.-H., Duan, C.-Y., Li, J.-H., Liu, Y.-J., Mei, Y.-H. & You, X.-Z. (2000). New J. Chem. 24, 1057-1062.]). With the foregoing in mind, it appears that the mol­ecular structure of (I)[link] is unprecedented, suggesting further systematic investigations in this area are warranted.

[Figure 7]
Figure 7
Simplified mol­ecular structure diagrams of (I)–(IV). All C atoms, except those of the C—N—N—C backbone, are represented as small black spheres and H atoms have been omitted.

6. Synthesis and crystallization

The S-4-methyl­benzyl­dithio­carbazate (S4MDTC) precursor was synthesized by following a procedure adapted from the literature (Omar et al., 2014[Omar, S. A., Ravoof, T. B., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119-126.]). The Schiff base was also synthesized using a procedure adapted from the literature (Yusof et al., 2015b[Yusof, E. N. Md., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. M. I. & Ahmad, H. (2015b). Int. J. Mol. Sci. 16, 11034-11054.]) by the reaction of S4MDTC (2.12 g, 0.01 mol), dissolved in hot aceto­nitrile (100 ml), with an equimolar amount of 4-iso­propyl­benzaldehyde (1.48 g, 0.01 mol) in absolute ethanol (20 ml). The mixture was then heated at 353 K until half of the mixture solution reduced and allowed to cool to room temperature until a precipitate formed. The compound was recrystallized from ethanol solution and dried over silica gel.

The synthesized Schiff base (0.33 g, 1 mmol) was dissolved in hot aceto­nitrile (50 ml) and added to nickel(II) acetate tetra­hydrate (0.13 g, 0.5 mmol) in an ethano­lic solution (30 ml). The mixture was heated and stirred to reduce the volume of the solution. Precipitation occurred once the mixture cooled to room temperature. The precipitate then was filtered and dried over silica gel. The complex was recrystallized from its methanol solution. Brown prismatic crystals were formed from the filtrate after being left to stand for a month. The crystals were filtered and washed with absolute ethanol at room temperature. Yield: 70%. M.p.: 479–480 K. Elemental composition calculated for C38H42N4NiS4: C, 61.53; H, 5.71; N, 7.55. Found: C, 61.67; H, 5.87; N, 7.55%. FT–IR (ATR, cm−1): 1589, ν(C=N); 997, ν(N—N); 823, ν(C=S).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula [Ni(C19H21N2S2)2]
Mr 741.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.5799 (7), 7.3910 (3), 21.9848 (16)
β (°) 103.033 (7)
V3) 1833.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.895, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8467, 4192, 3393
Rint 0.030
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.02
No. of reflections 4192
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.24
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{4-methylbenzyl 2-[4-(propan-2-yl)benzylidene]hydrazinecarbodithioato-κ2N2,S}nickel(II): top
Crystal data top
[Ni(C19H21N2S2)2]F(000) = 780
Mr = 741.70Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 11.5799 (7) ÅCell parameters from 3077 reflections
b = 7.3910 (3) Åθ = 2.3–28.7°
c = 21.9848 (16) ŵ = 0.79 mm1
β = 103.033 (7)°T = 100 K
V = 1833.1 (2) Å3Prism, brown
Z = 20.30 × 0.20 × 0.10 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4192 independent reflections
Radiation source: Enhance (Mo) X-ray Source3393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1952 pixels mm-1θmax = 28.6°, θmin = 2.3°
ω scansh = 1514
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.895, Tmax = 1.000l = 2729
8467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.7493P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4192 reflectionsΔρmax = 0.48 e Å3
217 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.01242 (9)
S10.46625 (4)0.27399 (6)0.43507 (2)0.01691 (12)
S20.29415 (4)0.01653 (6)0.43496 (2)0.01892 (12)
N10.36782 (13)0.1991 (2)0.53197 (7)0.0153 (3)
N20.43911 (13)0.3485 (2)0.55606 (7)0.0141 (3)
C10.37730 (16)0.1603 (2)0.47593 (9)0.0150 (4)
C20.45497 (16)0.3715 (2)0.61599 (9)0.0156 (4)
H20.50570.46920.63250.019*
C30.40706 (16)0.2706 (2)0.66191 (9)0.0158 (4)
C40.37058 (16)0.0885 (3)0.65720 (9)0.0173 (4)
H40.38350.01580.62370.021*
C50.31580 (17)0.0154 (3)0.70149 (9)0.0191 (4)
H50.29310.10840.69810.023*
C60.29286 (17)0.1173 (3)0.75084 (9)0.0192 (4)
C70.33687 (18)0.2946 (3)0.75775 (9)0.0215 (4)
H70.32730.36490.79250.026*
C80.39416 (17)0.3687 (3)0.71472 (9)0.0197 (4)
H80.42520.48790.72100.024*
C90.21599 (19)0.0493 (3)0.79346 (10)0.0247 (5)
H90.24450.10680.83530.030*
C100.0885 (2)0.1130 (4)0.76693 (13)0.0426 (7)
H10A0.08640.24550.76550.064*
H10B0.03710.06960.79370.064*
H10C0.06040.06460.72470.064*
C110.2185 (2)0.1560 (3)0.80247 (11)0.0298 (5)
H11A0.18140.21480.76290.045*
H11B0.17490.18790.83430.045*
H11C0.30090.19680.81590.045*
C120.21972 (18)0.1039 (3)0.49369 (9)0.0202 (4)
H12A0.27820.16050.52830.024*
H12B0.18000.00410.51100.024*
C130.12954 (16)0.2422 (3)0.46281 (9)0.0167 (4)
C140.15875 (17)0.4252 (3)0.46395 (9)0.0195 (4)
H140.23630.46330.48410.023*
C150.07536 (19)0.5521 (3)0.43589 (10)0.0227 (4)
H150.09660.67640.43720.027*
C160.03838 (18)0.5005 (3)0.40599 (10)0.0212 (4)
C170.06739 (17)0.3171 (3)0.40435 (10)0.0230 (4)
H170.14470.27910.38380.028*
C180.01567 (17)0.1900 (3)0.43244 (10)0.0211 (4)
H180.00540.06560.43090.025*
C190.1304 (2)0.6381 (3)0.37581 (11)0.0329 (5)
H19A0.19460.64110.39820.049*
H19B0.09360.75800.37750.049*
H19C0.16260.60450.33220.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01367 (16)0.01287 (16)0.01220 (17)0.00309 (12)0.00605 (13)0.00017 (13)
S10.0214 (2)0.0164 (2)0.0156 (2)0.00518 (18)0.00956 (19)0.00249 (19)
S20.0239 (2)0.0188 (2)0.0157 (2)0.00893 (18)0.0080 (2)0.0039 (2)
N10.0169 (8)0.0147 (7)0.0157 (8)0.0057 (6)0.0062 (6)0.0015 (7)
N20.0141 (7)0.0131 (7)0.0160 (8)0.0033 (6)0.0054 (6)0.0013 (6)
C10.0160 (9)0.0122 (8)0.0174 (9)0.0010 (7)0.0049 (8)0.0020 (7)
C20.0154 (9)0.0155 (9)0.0165 (10)0.0035 (7)0.0049 (8)0.0003 (8)
C30.0146 (9)0.0205 (9)0.0127 (9)0.0035 (7)0.0037 (7)0.0012 (8)
C40.0185 (9)0.0198 (9)0.0144 (9)0.0022 (7)0.0052 (8)0.0012 (8)
C50.0202 (9)0.0200 (9)0.0169 (10)0.0057 (7)0.0040 (8)0.0018 (8)
C60.0187 (9)0.0255 (10)0.0133 (9)0.0029 (8)0.0037 (8)0.0027 (8)
C70.0275 (11)0.0258 (10)0.0126 (9)0.0035 (8)0.0074 (8)0.0033 (8)
C80.0218 (10)0.0214 (10)0.0159 (10)0.0051 (8)0.0040 (8)0.0001 (8)
C90.0275 (11)0.0317 (11)0.0167 (10)0.0059 (9)0.0089 (9)0.0021 (9)
C100.0313 (13)0.0582 (17)0.0461 (16)0.0062 (11)0.0250 (12)0.0199 (14)
C110.0330 (12)0.0345 (12)0.0240 (11)0.0100 (10)0.0109 (10)0.0080 (10)
C120.0232 (10)0.0227 (10)0.0173 (10)0.0079 (8)0.0101 (8)0.0014 (8)
C130.0170 (9)0.0199 (9)0.0156 (9)0.0052 (7)0.0086 (8)0.0010 (8)
C140.0199 (10)0.0203 (9)0.0189 (10)0.0007 (8)0.0059 (8)0.0015 (8)
C150.0326 (11)0.0165 (9)0.0207 (10)0.0021 (8)0.0094 (9)0.0000 (8)
C160.0260 (10)0.0230 (10)0.0159 (10)0.0113 (8)0.0074 (8)0.0010 (8)
C170.0155 (9)0.0301 (11)0.0225 (11)0.0019 (8)0.0025 (8)0.0032 (9)
C180.0222 (10)0.0174 (9)0.0251 (11)0.0004 (8)0.0080 (9)0.0024 (9)
C190.0376 (13)0.0351 (12)0.0251 (12)0.0209 (10)0.0051 (10)0.0034 (10)
Geometric parameters (Å, º) top
Ni—S12.1747 (5)C9—H91.0000
Ni—N21.9137 (15)C10—H10A0.9800
Ni—N2i1.9138 (15)C10—H10B0.9800
Ni—S1i2.1746 (5)C10—H10C0.9800
C1—S11.7296 (19)C11—H11A0.9800
C1—S21.7479 (18)C11—H11B0.9800
C12—S21.824 (2)C11—H11C0.9800
N1—C11.294 (2)C12—C131.509 (2)
N1—N21.408 (2)C12—H12A0.9900
N2—C21.300 (2)C12—H12B0.9900
C2—C31.461 (3)C13—C181.391 (3)
C2—H20.9500C13—C141.393 (3)
C3—C81.405 (3)C14—C151.387 (3)
C3—C41.408 (3)C14—H140.9500
C4—C51.386 (3)C15—C161.386 (3)
C4—H40.9500C15—H150.9500
C5—C61.395 (3)C16—C171.395 (3)
C5—H50.9500C16—C191.514 (3)
C6—C71.401 (3)C17—C181.386 (3)
C6—C91.516 (3)C17—H170.9500
C7—C81.385 (3)C18—H180.9500
C7—H70.9500C19—H19A0.9800
C8—H80.9500C19—H19B0.9800
C9—C111.529 (3)C19—H19C0.9800
C9—C101.534 (3)
N2—Ni—N2i180.00 (7)C9—C10—H10A109.5
N2—Ni—S1i93.71 (5)C9—C10—H10B109.5
N2i—Ni—S1i86.29 (5)H10A—C10—H10B109.5
N2—Ni—S186.30 (5)C9—C10—H10C109.5
N2i—Ni—S193.70 (5)H10A—C10—H10C109.5
S1i—Ni—S1180.0H10B—C10—H10C109.5
C1—S1—Ni94.14 (6)C9—C11—H11A109.5
C1—S2—C12101.14 (9)C9—C11—H11B109.5
C1—N1—N2111.31 (15)H11A—C11—H11B109.5
C2—N2—N1114.86 (15)C9—C11—H11C109.5
C2—N2—Ni126.01 (13)H11A—C11—H11C109.5
N1—N2—Ni119.11 (12)H11B—C11—H11C109.5
N1—C1—S1125.12 (14)C13—C12—S2108.11 (14)
N1—C1—S2120.09 (14)C13—C12—H12A110.1
S1—C1—S2114.77 (11)S2—C12—H12A110.1
N2—C2—C3130.15 (17)C13—C12—H12B110.1
N2—C2—H2114.9S2—C12—H12B110.1
C3—C2—H2114.9H12A—C12—H12B108.4
C8—C3—C4117.91 (18)C18—C13—C14118.53 (17)
C8—C3—C2115.80 (16)C18—C13—C12120.86 (17)
C4—C3—C2126.26 (18)C14—C13—C12120.60 (17)
C5—C4—C3119.90 (18)C15—C14—C13120.43 (18)
C5—C4—H4120.1C15—C14—H14119.8
C3—C4—H4120.1C13—C14—H14119.8
C4—C5—C6122.24 (18)C16—C15—C14121.13 (19)
C4—C5—H5118.9C16—C15—H15119.4
C6—C5—H5118.9C14—C15—H15119.4
C5—C6—C7117.45 (18)C15—C16—C17118.47 (18)
C5—C6—C9122.87 (18)C15—C16—C19121.53 (19)
C7—C6—C9119.53 (18)C17—C16—C19120.00 (19)
C8—C7—C6120.95 (19)C18—C17—C16120.55 (18)
C8—C7—H7119.5C18—C17—H17119.7
C6—C7—H7119.5C16—C17—H17119.7
C7—C8—C3121.12 (18)C17—C18—C13120.87 (18)
C7—C8—H8119.4C17—C18—H18119.6
C3—C8—H8119.4C13—C18—H18119.6
C6—C9—C11114.35 (18)C16—C19—H19A109.5
C6—C9—C10108.19 (18)C16—C19—H19B109.5
C11—C9—C10110.02 (19)H19A—C19—H19B109.5
C6—C9—H9108.0C16—C19—H19C109.5
C11—C9—H9108.0H19A—C19—H19C109.5
C10—C9—H9108.0H19B—C19—H19C109.5
C1—N1—N2—C2165.61 (17)C4—C3—C8—C76.2 (3)
C1—N1—N2—Ni15.80 (19)C2—C3—C8—C7172.25 (17)
N2—N1—C1—S10.5 (2)C5—C6—C9—C1130.3 (3)
N2—N1—C1—S2178.25 (12)C7—C6—C9—C11154.27 (19)
Ni—S1—C1—N112.72 (17)C5—C6—C9—C1092.6 (2)
Ni—S1—C1—S2166.05 (9)C7—C6—C9—C1082.8 (2)
C12—S2—C1—N13.28 (18)C1—S2—C12—C13171.91 (13)
C12—S2—C1—S1177.88 (11)S2—C12—C13—C1886.5 (2)
N1—N2—C2—C32.5 (3)S2—C12—C13—C1493.3 (2)
Ni—N2—C2—C3176.01 (15)C18—C13—C14—C150.6 (3)
N2—C2—C3—C8152.0 (2)C12—C13—C14—C15179.55 (19)
N2—C2—C3—C426.3 (3)C13—C14—C15—C160.2 (3)
C8—C3—C4—C54.7 (3)C14—C15—C16—C170.4 (3)
C2—C3—C4—C5173.58 (18)C14—C15—C16—C19179.4 (2)
C3—C4—C5—C61.2 (3)C15—C16—C17—C180.5 (3)
C4—C5—C6—C75.6 (3)C19—C16—C17—C18179.2 (2)
C4—C5—C6—C9169.86 (18)C16—C17—C18—C130.0 (3)
C5—C6—C7—C84.1 (3)C14—C13—C18—C170.5 (3)
C9—C6—C7—C8171.54 (18)C12—C13—C18—C17179.67 (19)
C6—C7—C8—C31.8 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C3–C8) and (C13–C18) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···S1i0.952.483.0691 (17)120
C4—H4···N10.952.402.865 (2)110
C17—H17···Cg1ii0.952.843.761 (2)164
C11—H11B···Cg2iii0.982.963.880 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y3/2, z1/2.
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface in (I) top
Contact% contribution
H···H52.5
C···H/H···C22.2
S···H/H···S15.3
N···H/H···N3.3
C···C2.1
Ni···H/H···Ni2.0
S···N/N···S1.8
C···S/S···C0.4
S···S0.3
C···N/N···C0.1
Short interatomic contacts in (I) top
Contactdistancesymmetry operation
C16···H10B2.84x, -1/2 - y, -1/2 + z
C19···H52.88-x, -1 - y, 1 - z
 

Footnotes

Additional correspondence author, e-mail: thahira@upm.edu.my.

Acknowledgements

We thank the Department of Chemistry, Universiti Putra Malaysia (UPM), for access to facilities. This research was funded by UPM and the Malaysian Government under the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-01-16-1833FR) and Geran Penyelidikan-Inisiatif Putra Siswazah (GP-IPS No. 9504600). ENMY also wishes to acknowledge the MyPhD programme (MyBrain15) for the award of a Malaysian Government Scholarship.

Funding information

Funding for this research was provided by: Malaysian Fundamental Research Grant Scheme (award No. FRGS No. 01-01-16-1833FR); Geran Penyelidikan-Inisiatif Putra Siswazah (award No. GP-IPS No. 9504600).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAhn, H. Y., Yao, S., Wang, X. & Belfield, K. D. (2012). Appl. Mater. Interfaces, 4, 2847–2854.  CrossRef CAS Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationBeshir, A. B., Guchhait, S. K., Gascón, J. A. & Fenteany, G. (2008). Bioorg. Med. Chem. Lett. 18, 498–504.  CSD CrossRef PubMed CAS Google Scholar
First citationBort, G., Gallavardin, T., Ogden, D. & Dalko, P. I. (2013). Angew. Chem. Int. Ed. 52, 4526–4537.  CrossRef CAS Google Scholar
First citationBouit, P. A., Wetzel, G., Berginc, G., Loiseaux, B., Toupet, L., Feneyrou, P., Bretonnière, Y., Kamada, K., Maury, O. & Andraud, C. (2007). Chem. Mater. 19, 5325–5335.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurrows, C. J. & Muller, J. G. (1998). Chem. Rev. 98, 1109–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGieseking, R. L., Mukhopadhyay, S., Risko, C. & Brédas, J. L. (2014). ACS Photonics, 1, 261–269.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHales, J. M., Barlow, S., Kim, H., Mukhopadhyay, S., Brédas, J. L., Perry, J. W. & Marder, S. R. (2014). Chem. Mater. 26, 549–560.  CrossRef CAS Google Scholar
First citationLiu, Z.-H., Duan, C.-Y., Li, J.-H., Liu, Y.-J., Mei, Y.-H. & You, X.-Z. (2000). New J. Chem. 24, 1057–1062.  CrossRef CAS Google Scholar
First citationLiu, X., Xiao, Z., Huang, A., Wang, W., Zhang, L., Wang, R. & Sun, D. (2016). New J. Chem. 40, 5957–5965.  CSD CrossRef CAS Google Scholar
First citationLow, M. L., Maigre, L., Dorlet, P., Guillot, R., Pagès, J., Crouse, K. A., Policar, C. & Delsuc, N. (2014). Bioconjugate Chem. 25, 2269–2284.  CSD CrossRef CAS Google Scholar
First citationMaia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276–1282.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeggers, E. (2009). Chem. Commun. pp. 1001–1010.  CrossRef Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265.  CSD CrossRef IUCr Journals Google Scholar
First citationOmar, S. A., Ravoof, T. B., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationPavan, F. R., Maia, P. I. da S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898–1905.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrice, R. S., Dubinina, G., Wicks, G., Drobizhev, M., Rebane, A. & Schanze, K. S. (2015). Appl. Mater. Interfaces, 7, 10795–10805.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m725–m726.  CSD CrossRef IUCr Journals Google Scholar
First citationThorley, K. J., Hales, J. M., Anderson, H. L. & Perry, J. W. (2008). Angew. Chem. Int. Ed. 47, 7095–7098.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWise, C. F., Liu, D., Mayer, K. J., Crossland, P. M., Hartley, C. L. & McNamara, W. R. (2015). Dalton Trans. 44, 14265–14271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYusof, E. N. Md., Ravoof, T. B. S. A., Jamsari, J., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015a). Inorg. Chim. Acta, 438, 85–93.  CSD CrossRef CAS Google Scholar
First citationYusof, E. N. Md., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. M. I. & Ahmad, H. (2015b). Int. J. Mol. Sci. 16, 11034–11054.  CAS PubMed Google Scholar
First citationZhou, J.-H., Wang, Y.-X., Chen, X.-T., Song, Y.-L., Weng, L.-H. & You, X.-Z. (2002). Chin. J. Inorg. Chem. 18, 533–536.  CAS Google Scholar
First citationZhu, Z., Qian, J., Zhao, X., Qin, W., Hu, R., Zhang, H., Li, D., Xu, Z., Tang, B. Z. & He, S. (2016). ACS Nano, 10, 588–597.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds