research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-N-methyl-N-phenyl­di­thio­carbamato)-κ3S,S′:S;κ3S:S,S′-bis­­[(N-methyl-N-phenyl­di­thio­carbamato-κ2S,S′)cadmium]: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, and cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India
*Correspondence e-mail: annielee@sunway.edu.my, edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 February 2017; accepted 16 February 2017; online 21 February 2017)

The title compound, [Cd2(C8H8NS2)4], is a centrosymmetric dimer with both chelating and μ2-tridentate di­thio­carbamate ligands. The resulting S5 donor set defines a CdII coordination geometry inter­mediate between square-pyramidal and trigonal–bipyramidal, but tending towards the former. The packing features C—H⋯S and C—H⋯π inter­actions, which generate a three-dimensional network. The influence of these inter­actions, along with intra-dimer ππ inter­actions between chelate rings, has been investigated by an analysis of the Hirshfeld surface.

1. Chemical context

The structural chemistry of the binary zinc-triad (group 12) di­thio­carbamates (S2CNRR′)2 (R/R′ = alk­yl/aryl), along with related 1,1-di­thiol­ate ligands, i.e. di­thio­phosphates [S2P(OR)2] and di­thio­carbonates (xanthates; S2COR), have long attracted the attention of structural chemists owing to their diversity of structures/supra­molecular association patterns in the solid state (Cox & Tiekink, 1997[Cox, M. J. & Tiekink, E. R. T. (1997). Rev. Inorg. Chem. 17, 1-23.]; Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). The common structural motif adopted by all elements is one that features two chelating ligands and two tridentate ligands (chelating one metal atom and simultaneously bridging to a second), leading, usually, to a centrosymmetric binuclear mol­ecule. Indeed, most zinc di­thio­carbamate structures adopt this motif, but when the R/R′ are bulky, a mononuclear species with tetrahedrally coordinated zinc atoms is found; significantly greater structural variety has been noted for the binary zinc di­thio­phosphates and xanthates (Lai et al., 2002[Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596-600.]; Tan et al., 2015[Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48-62.]). More diversity in structural motifs is noted in the binary cadmium di­thio­carbamates with the recent observation of linear polymeric forms with hexa­coordinated cadmium atoms (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N., Bt, A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.], 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]; Ferreira et al., 2016[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137-145.]). Systematic studies indicated solvent-mediated transformations between polymeric and binuclear structural motifs, with the latter being the thermodynamically more stable (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N., Bt, A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.], 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]). The greatest structural diversity among the zinc-triad di­thio­carbamates is found for the binary mercury compounds, where mononuclear, binuclear and polymeric structures have been observed, as summarized very recently (Jotani et al., 2016[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085-1092.]). Complementing the structural motifs already mentioned for zinc and cadmium is a trinuclear species, {Hg[S2CN(tetra­hydro­quinoline)]2}3 (Rajput et al., 2014[Rajput, G., Yadav, M. K., Thakur, T. S., Drew, M. G. B. & Singh, N. (2014). Polyhedron, 69, 225-233.]), with the central HgII atom being hexa­coordinated, as in the polymeric form, and the peripheral HgII atoms being coordinated as in the binuclear form, indicating the possibility that this is an inter­mediate metastable form in the crystallization of this compound. In light of the above, when crystals of the title compound became available, namely {Cd[S2CN(Me)Ph]2}2, (I)[link], its crystal and mol­ecular structures were studied, along with an evaluation of the supra­molecular association in the crystal through an analysis of the Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The centrosymmetric binuclear mol­ecule of (I)[link] (Fig. 1[link]) conforms to the common binuclear motif adopted by binary zinc-triad di­thio­carbamates. The S1 di­thio­carbamate anion forms a nearly symmetric bridge, as seen in the value of Δ(Cd—S) = 0.09 Å = Cd—Slong − Cd—Sshort. Within the resultant {CdSCS}2 eight-membered ring, which adopts a chair conformation, the bridging S2 atom also forms a longer [S2—Cdi = 2.9331 (8) Å; symmetry code: (i) −x, 1 − y, 1 − z] transannular inter­action. The S3 di­thio­carbamate ligand is strictly chelating, with Δ(Cd—S) = 0.08 Å. Reflecting the symmetric modes of coordination of the di­thio­carbamate ligands, the C—S bond lengths are equal within 5σ (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Cd—S1 2.5044 (8) C1—S2 1.739 (3)
Cd—S2 2.9331 (8) C9—S3 1.730 (3)
Cd—S2i 2.5942 (8) C9—S4 1.717 (4)
Cd—S3 2.5397 (9) C1—N1 1.326 (4)
Cd—S4 2.6196 (8) C9—N2 1.344 (4)
C1—S1 1.716 (3)    
       
S1—Cd—S2 66.15 (2) S2—Cd—S4 161.85 (3)
S1—Cd—S3 138.16 (3) S2—Cd—S2i 92.58 (2)
S1—Cd—S4 114.48 (3) S3—Cd—S4 70.93 (3)
S1—Cd—S2i 104.42 (3) S3—Cd—S2i 114.47 (3)
S2—Cd—S3 96.36 (2) S4—Cd—S2i 104.38 (3)
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The mol­ecule is located about a centre of inversion and unlabelled atoms are generated by the symmetry operation (−x, 1 − y, 1 − z).

The resultant S5 donor set defines a highly distorted penta­coordinate geometry, with the major distortions due to the disparate Cd—S bond lengths and the acute angles subtended at the CdII atom by the chelating ligands (Table 1[link]). The widest angle at the CdII atom involves the S atoms forming the weaker Cd—S inter­actions, i.e. S2—Cd—S4 = 161.85 (3)°. A measure of the distortion of a coordination geometry from the ideal square-pyramidal and trigonal–bipyramidal geometries is given by the value of τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), which computes to 0.0 and 1.0 for the ideal geometries, respectively. In (I)[link], the value of τ is 0.39, i.e. inter­mediate between the two extremes, but tending towards the former.

3. Supra­molecular features

Two specific inter­molecular inter­actions have been identified in the mol­ecular packing of (I)[link], and each involves the participation of phenyl ring C3–C8 (Table 2[link]). Phenyl-C—H⋯π inter­actions with the C3–C8 ring as the acceptor lead to supra­molecular layers parallel to ([\overline{1}]02), as each binuclear mol­ecule participates in four such inter­actions. The layers are connected into a three-dimensional architecture by phenyl-C—H⋯S inter­actions, i.e. with the C3–C8 ring as donor (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1ii 0.95 2.99 3.883 (4) 156
C5—H5⋯S1iii 0.95 2.75 3.372 (4) 124
Symmetry codes: (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the unit-cell contents of (I)[link] in projection down the b axis. The C—H⋯π(chelate ring) and C—H⋯S inter­actions are shown as purple and orange dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis for (I)[link] was performed as described in a recent report of a related binuclear cadmium di­thio­carbamate compound (Jotani et al., 2016[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085-1092.]). On the Hirshfeld surface mapped over dnorm in the range −0.055 to 1.371 au (Fig. 3[link]), the bright-red spots near the C5, H5 and S1 atoms indicate respective donors and acceptors of inter­molecular C—H⋯S inter­actions; the other pair of faint-red spots near atoms C4 and S1 represent a weaker inter­action (Table 3[link]). The donors and acceptors of the specified C—H⋯S and C—H⋯π inter­actions in Table 2[link], and short inter­atomic C⋯H/H⋯C contacts (Table 3[link]) give rise to positive and negative potentials, respectively, and are viewed as the blue and red regions on Hirshfeld surface mapped over electrostatic potential (in the range ±0.048 au) (Fig. 4[link]). The immediate environments about a reference mol­ecule within dnorm and shape-index mapped Hirshfeld surface are illustrated in Figs. 5[link](a) and 5(b), respectively, and again highlight the influence of C—H⋯S inter­actions, short C10⋯C15 contacts and C—H⋯π inter­actions involving phenyl rings (atoms C3–C8) as the acceptor. Thus, the C—H⋯S inter­actions involving the phenyl-ring C4, C5 and H5 atoms with S1 are shown with black dashed lines in Fig. 5[link](a); the red dashed lines indicate short inter­atomic C⋯C contacts (Table 3[link]). The C—H⋯π and their reciprocal contacts, i.e. π⋯H—C, with phenyl-ring atom C14 as donor and phenyl ring C3–C8 as acceptor, are shown with red and white dotted lines, respectively, on the Hirshfeld surface mapped with shape-index property in Fig. 5[link](b).

Table 3
Short inter­atomic contacts (Å) in (I)[link]

Contact Distance Symmetry operation
S1⋯C4 3.462 (3) x, −[{1\over 2}] + y, −z
S1⋯H4 2.94 x, −[{1\over 2}] + y, −z
S3⋯H16 2.88 1 − x, 1 − y, 1 − z
C10⋯C15 3.376 (5) x, −1 + y, z
C7⋯H2B 2.89 x, −1 + y, z
C13⋯H7 2.84 1 − x, −y, z
C14⋯H7 2.87 1 − x, −y, z
C14⋯H10C 2.81 x, 1 + y, z
C15⋯H6 2.84 1 − x, −y, z
[Figure 3]
Figure 3
A view of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.055 to 1.371 au.
[Figure 4]
Figure 4
A view of Hirshfeld surface for (I)[link] mapped over the electrostatic potential in the range ±0.048 au.
[Figure 5]
Figure 5
Views of the Hirshfeld surface mapped over (a) dnorm about a reference mol­ecule, highlighting the inter­molecular C—H⋯S inter­actions and short inter­atomic C⋯C contacts as black and red dashed lines, respectively, and (b) with shape-index property about a reference mol­ecule. The C—H⋯π and π⋯H—C inter­actions are indicated with red and white dotted lines, respectively.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, S⋯H/H⋯S, C⋯H/H⋯C and S⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Figs. 6[link](a)–(e); their relative contributions to the Hirshfeld surface are summarized qu­anti­tatively in Table 4[link]. The relatively low contribution of H⋯H contacts to the Hirshfeld surface results from the involvement of surface H atoms in inter­molecular C—H⋯S, C—H⋯π and C⋯H/H⋯C contacts. It is apparent from the fingerprint plot delineated into H⋯H contacts (Fig. 6[link]b) that H⋯H contacts do not exert much influence on the mol­ecular packing, as their inter­atomic distances are greater than the sum of their van der Waals radii, i.e. de + di > 2.8 Å. A pair of peaks appearing in the fingerprint plot delineated into S⋯H/H⋯S contacts at de + di ∼ 2.8 Å (Fig. 6[link]c) arise from the C5—H5⋯S1 inter­action; the weaker C4⋯H4⋯S1 inter­action and short inter­atomic H⋯S/S⋯H contacts involving the S3 atom (Table 3[link]) are viewed as a pair of thin green lines aligned at de + di ∼ 2.9 Å.

Table 4
Percentage contributions of the different inter­molecular contacts to the Hirshfeld surface in (I)[link]

Contact % Contribution in (I)
H⋯H 40.0
S⋯H/H⋯S 26.7
C⋯H/H⋯C 24.8
S⋯S 5.8
Cd⋯H/H⋯Cd 1.2
N⋯H/H⋯N 0.8
Cd⋯S/S⋯Cd 0.7
[Figure 6]
Figure 6
Fingerprint plots for (I)[link]: (a) overall and those delineated into (b) H⋯H, (c) S⋯H/H⋯S, (d) C⋯H/H⋯C and (e) S⋯S contacts.

The distribution of points showing the superimposition of a forceps-like shape on characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 6[link]d) indicate the significance of these contacts through the presence of C—H⋯π inter­actions and short inter­atomic C⋯H/H⋯C contacts in the crystal. A pair of green lines within the forceps also indicates the influence of these contacts. Finally, an arrow-shaped distribution of green points in the centre in the plot corresponding to S⋯S contacts (Fig. 6[link]e), together with the contribution from Cd⋯S/S⋯Cd contacts to the Hirshfeld surface (Table 4[link]), show the presence of intra­molecular ππ stacking inter­actions between the Cd/S1/C1/S2 chelate rings of inversion-related mol­ecules [CgCg = 3.6117 (11) Å; symmetry code: −x, 1 − y, 1 − z]. The small contributions from Cd⋯H/H⋯Cd and N⋯H/H⋯N contacts (Table 4[link]) do not impact significantly on the mol­ecular packing.

5. Database survey

The di­thio­carbamate ligand featured in (I)[link] has been reported in several other crystal structures (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Indeed, the binary zinc (Baba et al., 2002[Baba, I., Lee, L. H., Farina, Y., Othman, A. H., Ibrahim, A. R., Usman, A., Fun, H.-K. & Ng, S. W. (2002). Acta Cryst. E58, m744-m745.]) and mercury (Onwudiwe & Ajibade, 2011a[Onwudiwe, D. C. & Ajibade, P. A. (2011a). J. Coord. Chem. 64, 2963-2973.],b[Onwudiwe, D. C. & Ajibade, P. A. (2011b). Int. J. Mol. Sci. 12, 1964-1978.]) structures have been reported already, so, in this sense, the structure of (I)[link] completes the series. The zinc compound adopts the common binuclear motif (Baba et al., 2002[Baba, I., Lee, L. H., Farina, Y., Othman, A. H., Ibrahim, A. R., Usman, A., Fun, H.-K. & Ng, S. W. (2002). Acta Cryst. E58, m744-m745.]). More inter­esting is the fact that for the mercury structure, both mononuclear (Onwudiwe & Ajibade, 2011a[Onwudiwe, D. C. & Ajibade, P. A. (2011a). J. Coord. Chem. 64, 2963-2973.]) and binuclear (Onwudiwe & Ajibade, 2011b[Onwudiwe, D. C. & Ajibade, P. A. (2011b). Int. J. Mol. Sci. 12, 1964-1978.]) forms have been reported (Tan et al., 2015[Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48-62.]). As to the other main group element structures, the binary di­thio­carbamate compounds of anti­mony(III) (Baba et al., 2003[Baba, I., Skelton, B. W. & White, A. H. (2003). Aust. J. Chem. 56, 27-29.]) and bis­muth(III) (Yin et al., 2004[Yin, H.-D., Wang, C.-H. & Wang, Y. (2004). Appl. Organomet. Chem. 18, 199-200.]), including an aceto­nitrile solvate (Lai & Tiekink, 2007[Lai, C. S. & Tiekink, E. R. T. (2007). Z. Kristallogr. 222, 532-538.]), have been described. These, too, present the same structural features as reported for the overwhelming majority of related anti­mony(III) (Liu & Tiekink, 2005[Liu, Y. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 20-27.]) and bis­muth(III) di­thio­carbamate compounds (Lai & Tiekink, 2007[Lai, C. S. & Tiekink, E. R. T. (2007). Z. Kristallogr. 222, 532-538.]).

6. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification, and all reactions were carried out under ambient conditions. The melting point was determined using an Electrothermal digital melting-point apparatus and was uncorrected. The IR spectrum was obtained on a PerkinElmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to 400 cm−1. 1H and 13C NMR spectra were recorded at room temperature in DMSO-d6 solution on a Jeol ECA 400 MHz FT–NMR spectrometer.

Sodium methyl­phenyl­dithio­carbamate (1.0 mmol, 0.205 g) in methanol (25 ml) was added to cadmium chloride (1.0 mmol, 0.183 g) in methanol (10 ml). The resulting mixture was stirred and refluxed for 2 h. The filtrate was evaporated until an off-white precipitate was obtained, which was recrystallized in methanol. Slow evaporation of the filtrate yielded colourless crystals of the title compound (yield: 0.194 g, 61%; m.p. 473 K). IR (cm−1): 1491 (m) [ν(C—N)], 1160 (m), 964 (s) [ν(C—S)] cm−1. 1H NMR: δ 7.26–7.42 (m, 5H, aromatic H), 2.05 (s, 3H, CH3). 13C NMR: δ 46.6 (Me) 125.6, 128.4, 129.6, 147.9 (aromatic C), 207.8 (CS2).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) values set at 1.2–1.5Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula [Cd2(C8H8NS2)4]
Mr 953.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.7972 (6), 6.4445 (3), 22.582 (1)
β (°) 98.247 (4)
V3) 1843.11 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.731, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11881, 4894, 3804
Rint 0.037
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.05
No. of reflections 4894
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.48
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(µ2-N-methyl-N-phenyldithiocarbamato)-κ3S,S':S;κ3S:S,S'-bis[(N-methyl-N-phenyldithiocarbamato-κ2S,S')cadmium(II)] top
Crystal data top
[Cd2(C8H8NS2)4]F(000) = 952
Mr = 953.92Dx = 1.719 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7972 (6) ÅCell parameters from 4387 reflections
b = 6.4445 (3) Åθ = 3.4–29.8°
c = 22.582 (1) ŵ = 1.64 mm1
β = 98.247 (4)°T = 100 K
V = 1843.11 (15) Å3Block, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4894 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3804 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 30.2°, θmin = 3.2°
ω scanh = 1217
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 98
Tmin = 0.731, Tmax = 1.000l = 2930
11881 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.5876P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4894 reflectionsΔρmax = 0.72 e Å3
210 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.12343 (2)0.35538 (4)0.48383 (2)0.02641 (8)
S10.02923 (7)0.37408 (12)0.37881 (4)0.02834 (19)
S20.02121 (6)0.75614 (12)0.45307 (3)0.02341 (17)
S30.28949 (6)0.50187 (12)0.54452 (4)0.02566 (18)
S40.26597 (7)0.06179 (13)0.50220 (4)0.0311 (2)
N10.09657 (19)0.6884 (4)0.34672 (11)0.0205 (5)
N20.4316 (2)0.2090 (4)0.57566 (12)0.0287 (6)
C10.0239 (2)0.6135 (5)0.38915 (13)0.0220 (6)
C20.1463 (3)0.8929 (5)0.34931 (15)0.0286 (7)
H2A0.21980.87540.35590.043*
H2B0.14430.96630.31150.043*
H2C0.10780.97360.38230.043*
C30.1353 (2)0.5650 (5)0.29431 (13)0.0217 (6)
C40.0939 (3)0.5954 (5)0.24187 (14)0.0271 (7)
H40.03920.69400.24010.033*
C50.1334 (3)0.4800 (5)0.19168 (15)0.0314 (8)
H50.10550.49990.15530.038*
C60.2119 (3)0.3383 (5)0.19425 (16)0.0334 (8)
H60.23810.25930.15980.040*
C70.2535 (3)0.3093 (5)0.24708 (17)0.0334 (8)
H70.30840.21110.24870.040*
C80.2150 (2)0.4235 (5)0.29753 (15)0.0271 (7)
H80.24320.40450.33380.032*
C90.3372 (2)0.2509 (5)0.54363 (14)0.0257 (7)
C100.4776 (3)0.0001 (5)0.57988 (17)0.0398 (9)
H10A0.55110.00700.57240.060*
H10B0.43720.09020.55000.060*
H10C0.47520.05600.62000.060*
C110.4909 (2)0.3640 (5)0.61192 (15)0.0278 (7)
C120.4636 (3)0.4133 (5)0.66742 (15)0.0303 (7)
H120.40450.34840.68080.036*
C130.5227 (3)0.5572 (6)0.70328 (16)0.0345 (8)
H130.50380.59200.74120.041*
C140.6088 (3)0.6503 (5)0.68420 (17)0.0378 (9)
H140.64910.74940.70890.045*
C150.6364 (3)0.5989 (6)0.62904 (18)0.0367 (9)
H150.69650.66150.61620.044*
C160.5770 (3)0.4566 (5)0.59235 (16)0.0329 (8)
H160.59530.42320.55420.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02523 (14)0.03538 (16)0.01777 (12)0.00772 (10)0.00019 (9)0.00105 (10)
S10.0369 (5)0.0274 (4)0.0186 (4)0.0104 (4)0.0034 (3)0.0032 (3)
S20.0267 (4)0.0251 (4)0.0172 (4)0.0002 (3)0.0014 (3)0.0024 (3)
S30.0252 (4)0.0258 (4)0.0251 (4)0.0074 (3)0.0005 (3)0.0023 (3)
S40.0325 (5)0.0277 (4)0.0319 (5)0.0082 (4)0.0001 (3)0.0026 (4)
N10.0237 (13)0.0209 (13)0.0161 (12)0.0013 (10)0.0002 (10)0.0015 (10)
N20.0266 (14)0.0273 (14)0.0315 (16)0.0099 (12)0.0017 (12)0.0024 (12)
C10.0239 (16)0.0259 (17)0.0168 (15)0.0029 (13)0.0051 (12)0.0014 (12)
C20.0355 (19)0.0213 (16)0.0271 (18)0.0041 (14)0.0019 (14)0.0021 (13)
C30.0238 (15)0.0208 (15)0.0184 (15)0.0022 (13)0.0039 (11)0.0015 (12)
C40.0293 (17)0.0289 (17)0.0221 (16)0.0056 (14)0.0000 (13)0.0004 (13)
C50.042 (2)0.0311 (18)0.0196 (16)0.0015 (16)0.0005 (14)0.0018 (14)
C60.0358 (19)0.0315 (19)0.0285 (19)0.0031 (15)0.0106 (14)0.0058 (15)
C70.0269 (18)0.0319 (18)0.039 (2)0.0059 (15)0.0027 (14)0.0007 (16)
C80.0249 (16)0.0290 (17)0.0267 (17)0.0022 (14)0.0017 (13)0.0026 (14)
C90.0256 (17)0.0294 (18)0.0230 (16)0.0072 (14)0.0059 (12)0.0042 (14)
C100.041 (2)0.033 (2)0.042 (2)0.0175 (16)0.0041 (16)0.0032 (17)
C110.0216 (16)0.0307 (18)0.0301 (18)0.0101 (14)0.0002 (13)0.0079 (14)
C120.0242 (17)0.0356 (19)0.0309 (19)0.0053 (15)0.0030 (14)0.0096 (15)
C130.0335 (19)0.039 (2)0.0290 (19)0.0069 (16)0.0007 (15)0.0040 (16)
C140.033 (2)0.033 (2)0.043 (2)0.0031 (16)0.0094 (16)0.0071 (17)
C150.0211 (17)0.038 (2)0.051 (2)0.0048 (15)0.0048 (15)0.0161 (17)
C160.0290 (18)0.0348 (19)0.036 (2)0.0103 (16)0.0079 (15)0.0112 (16)
Geometric parameters (Å, º) top
Cd—S12.5044 (8)C4—H40.9500
Cd—S22.9331 (8)C5—C61.365 (5)
Cd—S2i2.5942 (8)C5—H50.9500
Cd—S32.5397 (9)C6—C71.387 (5)
Cd—S42.6196 (8)C6—H60.9500
C1—S11.716 (3)C7—C81.386 (5)
C1—S21.739 (3)C7—H70.9500
S2—Cdi2.5942 (8)C8—H80.9500
C9—S31.730 (3)C10—H10A0.9800
C9—S41.717 (4)C10—H10B0.9800
C1—N11.326 (4)C10—H10C0.9800
N1—C31.453 (4)C11—C161.380 (5)
N1—C21.468 (4)C11—C121.386 (5)
C9—N21.344 (4)C12—C131.383 (5)
N2—C111.438 (4)C12—H120.9500
N2—C101.467 (4)C13—C141.377 (5)
C2—H2A0.9800C13—H130.9500
C2—H2B0.9800C14—C151.383 (5)
C2—H2C0.9800C14—H140.9500
C3—C81.378 (4)C15—C161.387 (5)
C3—C41.379 (4)C15—H150.9500
C4—C51.389 (4)C16—H160.9500
S1—Cd—S266.15 (2)C6—C5—H5119.8
S1—Cd—S3138.16 (3)C4—C5—H5119.8
S1—Cd—S4114.48 (3)C5—C6—C7120.1 (3)
S1—Cd—S2i104.42 (3)C5—C6—H6119.9
S2—Cd—S396.36 (2)C7—C6—H6119.9
S2—Cd—S4161.85 (3)C8—C7—C6120.0 (3)
S2—Cd—S2i92.58 (2)C8—C7—H7120.0
S3—Cd—S470.93 (3)C6—C7—H7120.0
S3—Cd—S2i114.47 (3)C3—C8—C7119.1 (3)
S4—Cd—S2i104.38 (3)C3—C8—H8120.5
C1—S1—Cd93.49 (11)C7—C8—H8120.5
C1—S2—Cdi97.54 (10)N2—C9—S4121.1 (2)
C1—S2—Cd79.34 (11)N2—C9—S3118.3 (3)
Cdi—S2—Cd87.43 (2)S4—C9—S3120.62 (19)
C9—S3—Cd85.16 (11)N2—C10—H10A109.5
C9—S4—Cd82.93 (11)N2—C10—H10B109.5
C1—N1—C3120.7 (3)H10A—C10—H10B109.5
C1—N1—C2124.1 (3)N2—C10—H10C109.5
C3—N1—C2115.2 (2)H10A—C10—H10C109.5
C9—N2—C11121.8 (3)H10B—C10—H10C109.5
C9—N2—C10122.8 (3)C16—C11—C12120.5 (3)
C11—N2—C10115.3 (3)C16—C11—N2119.9 (3)
N1—C1—S1118.6 (2)C12—C11—N2119.6 (3)
N1—C1—S2121.5 (2)C13—C12—C11119.7 (3)
S1—C1—S2119.82 (18)C13—C12—H12120.1
N1—C2—H2A109.5C11—C12—H12120.1
N1—C2—H2B109.5C14—C13—C12120.3 (3)
H2A—C2—H2B109.5C14—C13—H13119.9
N1—C2—H2C109.5C12—C13—H13119.9
H2A—C2—H2C109.5C13—C14—C15119.8 (4)
H2B—C2—H2C109.5C13—C14—H14120.1
C8—C3—C4121.2 (3)C15—C14—H14120.1
C8—C3—N1119.2 (3)C14—C15—C16120.5 (3)
C4—C3—N1119.6 (3)C14—C15—H15119.8
C3—C4—C5119.0 (3)C16—C15—H15119.8
C3—C4—H4120.5C11—C16—C15119.3 (3)
C5—C4—H4120.5C11—C16—H16120.4
C6—C5—C4120.5 (3)C15—C16—H16120.4
C3—N1—C1—S13.9 (4)C6—C7—C8—C30.1 (5)
C2—N1—C1—S1178.4 (2)C11—N2—C9—S4178.2 (2)
C3—N1—C1—S2178.5 (2)C10—N2—C9—S43.1 (4)
C2—N1—C1—S20.7 (4)C11—N2—C9—S32.5 (4)
Cd—S1—C1—N1170.8 (2)C10—N2—C9—S3177.6 (2)
Cd—S1—C1—S211.52 (17)Cd—S4—C9—N2174.9 (3)
Cdi—S2—C1—N186.5 (2)Cd—S4—C9—S35.81 (16)
Cd—S2—C1—N1172.4 (2)Cd—S3—C9—N2174.7 (3)
Cdi—S2—C1—S195.91 (17)Cd—S3—C9—S45.96 (17)
Cd—S2—C1—S19.98 (15)C9—N2—C11—C16103.8 (4)
C1—N1—C3—C883.8 (4)C10—N2—C11—C1680.7 (4)
C2—N1—C3—C894.1 (3)C9—N2—C11—C1278.8 (4)
C1—N1—C3—C498.0 (3)C10—N2—C11—C1296.7 (4)
C2—N1—C3—C484.1 (3)C16—C11—C12—C130.4 (5)
C8—C3—C4—C50.3 (5)N2—C11—C12—C13177.8 (3)
N1—C3—C4—C5178.4 (3)C11—C12—C13—C140.5 (5)
C3—C4—C5—C60.1 (5)C12—C13—C14—C150.2 (5)
C4—C5—C6—C70.4 (5)C13—C14—C15—C161.0 (5)
C5—C6—C7—C80.4 (5)C12—C11—C16—C150.4 (5)
C4—C3—C8—C70.4 (5)N2—C11—C16—C15177.0 (3)
N1—C3—C8—C7178.5 (3)C14—C15—C16—C111.1 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the ring centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1ii0.952.993.883 (4)156
C5—H5···S1iii0.952.753.372 (4)124
Symmetry codes: (ii) x+1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
Short interatomic contacts (Å) in (I). top
ContactDistanceSymmetry operation
S1···C43.462 (3)-x, -1/2+y, -z
S1···H42.94-x, -1/2+y, -z
S3···H162.881-x, 1-y, 1-z
C10···C153.376 (5)x, -1+y, z
C7···H2B2.89x, -1+y, z
C13···H72.841-x, -y, z
C14···H72.871-x, -y, z
C14···H10C2.81x, 1+y, z
C15···H62.841-x, -y, z
Percentage contributions of the different intermolecular contacts to the Hirshfeld surface in (I). top
Contact% Contribution in (I)
H···H40.0
S···H/H···S26.7
C···H/H···C24.8
S···S5.8
Cd···H/H···Cd1.2
N···H/H···N0.8
Cd···S/S···Cd0.7
 

Acknowledgements

The authors are grateful to Sunway University and the Ministry of Higher Education of Malaysia (MOHE) Fundamental Research Grant Scheme for supporting this research.

Funding information

Funding for this research was provided by: Ministry of Higher Education of Malaysia (MOHE) (award No. FP033-2014B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBaba, I., Lee, L. H., Farina, Y., Othman, A. H., Ibrahim, A. R., Usman, A., Fun, H.-K. & Ng, S. W. (2002). Acta Cryst. E58, m744–m745.  CSD CrossRef IUCr Journals Google Scholar
First citationBaba, I., Skelton, B. W. & White, A. H. (2003). Aust. J. Chem. 56, 27–29.  CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (1997). Rev. Inorg. Chem. 17, 1–23.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092.  CSD CrossRef IUCr Journals Google Scholar
First citationLai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2007). Z. Kristallogr. 222, 532–538.  CSD CrossRef CAS Google Scholar
First citationLiu, Y. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 20–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOnwudiwe, D. C. & Ajibade, P. A. (2011a). J. Coord. Chem. 64, 2963–2973.  Google Scholar
First citationOnwudiwe, D. C. & Ajibade, P. A. (2011b). Int. J. Mol. Sci. 12, 1964–1978.  CSD CrossRef CAS PubMed Google Scholar
First citationRajput, G., Yadav, M. K., Thakur, T. S., Drew, M. G. B. & Singh, N. (2014). Polyhedron, 69, 225–233.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48–62.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N., Bt, A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, H.-D., Wang, C.-H. & Wang, Y. (2004). Appl. Organomet. Chem. 18, 199–200.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds