research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,10-dimeth­­oxy-13-methyl-6H,12H-6,12-epimino­dibenzo[b,f][1,5]dioxocine

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by P. C. Healy, Griffith University, Australia (Received 10 February 2017; accepted 11 February 2017; online 21 February 2017)

The title compound, C17H17NO4, lacks crystallographic symmetry with one mol­ecule per asymmetric unit. The mol­ecule exists in a folded butterfly-like conformation; the benzene rings form a dihedral angle of 84.72 (7)°. The central eight-membered imino-bridged dioxocin ring adopts a twisted-boat conformation. In the crystal, inversion-related mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming double-stranded chains parallel to the a axis.

1. Chemical context

Tröger's base and its structural analogues are characterized by two flat, usually aromatic and identical, pincers inter­locked in an almost perpendicular fashion (Dolenský et al., 2012[Dolenský, B., Havlík, M. & Král, V. (2012). Chem. Soc. Rev. 41, 3839-3858.]). Both the chirality and the conformational rigidity of their central diazo­cine, dioxocin or di­thio­cin skeletons are the reasons why these cleft-shaped mol­ecules have been of inter­est in mol­ec­ular recognition (Hardouin-Lerouge et al., 2011[Hardouin-Lerouge, M., Hudhomme, P. & Sallé, M. (2011). Chem. Soc. Rev. 40, 30-43.]), as chiral solvating agents (Wilen et al., 1991[Wilen, S. H., Qi, J. Z. & Williard, P. G. (1991). J. Org. Chem. 56, 485-487.]), and in the field of asymmetric synthesis (Minder et al., 1995[Minder, B., Schürch, M., Mallat, T. & Baiker, A. (1995). Catal. Lett. 31, 143-151.]).

[Scheme 1]

Over the last few years, we have been exploring the chemistry of transition metal complexes of Schiff base ligands with the aim of preparing heterometallic polynuclear compounds with diverse potential advantages (Chygorin et al., 2012[Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.]; Nesterova et al., 2013[Nesterova, O. V., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Omelchenko, I. V., Shishkin, O. V., Titiš, J., Boča, R., Pombeiro, A. J. & Ozarowski, A. (2013). Dalton Trans. 42, 16909-16919.]). The Schiff base ligand 2-meth­oxy-6-imino­methyl­phenol (HL) with various connectivity modes has been successfully used as a multidentate linker between several metal centres by our group and others (Meally et al., 2010[Meally, S. T., McDonald, C., Karotsis, G., Papaefstathiou, G. S., Brechin, E. K., Dunne, P. W., McArdle, P., Power, N. P. & Jones, L. F. (2010). Dalton Trans. 39, 4809-4816.]; Sydoruk et al., 2013[Sydoruk, T. V., Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m551-m552.]). The HL ligand is usually obtained by the standard method of condensation of the substituted salicyl­aldehyde with an aqueous solution of methyl­amine in methanol (Meally et al., 2010[Meally, S. T., McDonald, C., Karotsis, G., Papaefstathiou, G. S., Brechin, E. K., Dunne, P. W., McArdle, P., Power, N. P. & Jones, L. F. (2010). Dalton Trans. 39, 4809-4816.]). In the present work, we used a mixture of 2-hy­droxy-3-meth­oxy-benzaldehyde and methyl­amine hydro­chloride to react with a zinc salt in an attempt to synthesize a Zn complex with the HL ligand (see Scheme). The resulting Schiff base apparently underwent self-condensation to form the substituted dibenzo­imino­[1,5]dioxocin, 4,10-dimeth­oxy-13-methyl-6H,12H-6,12-epimino­dibenzo[b,f][1,5]dioxocine, (I)[link], the crystal structure of which is presented here. A close analogue of the title compound was reported to result from 2-(N-methyl­imino­meth­yl)phenol, a liquid product of a similar condensation of salicyl­aldehyde and methyl­amine, after a few months storage in mild conditions (Filarowski et al., 1998[Filarowski, A., Koll, A., Glowiak, T., Majewski, E. & Dziembowska, T. (1998). Berichte der Bunsengesellschaft für physikalische Chemie, 102, 393-402.]). A tentative mechanism for the formation of the [1,5]imino­dioxocin ring in the reaction between an aromatic aldehyde and a primary amine was given by Mandal et al. (2006[Mandal, D., Wu, A. Q., Guo, G. C. & Ray, D. (2006). Inorg. Chem. 45, 8826-8828.]).

2. Structural commentary

The title compound is composed of four fused rings including two benzene (C11–C16 and C21–C26) and two six-membered heterocyclic rings (O11/C11/C12/C121/N1/C221 and O21/C21/C22/C221/N1/C121) (Fig. 1[link]). The organic molecule has two chiral centres and lacks crystallographic symmetry; the crystal is racemic. The molecule exists in a folded butterfly-like conformation with a dihedral (folding) angle between the two benzene rings of 84.72 (7)°. The eight-membered imino-bridged dioxocin ring adopts a twisted-boat conformation, as judged from the eight torsion angles observed within this ring (τ1τ8) (Mandal et al., 2006[Mandal, D., Wu, A. Q., Guo, G. C. & Ray, D. (2006). Inorg. Chem. 45, 8826-8828.]). The bond lengths and angles are unexceptional and are closely related to those of N-methyl-2,6,-dioxa-9-aza-(c,g)dibenzo(3.3.1)nonane (CSD refcode UCERIE; Filarowski et al., 1998[Filarowski, A., Koll, A., Glowiak, T., Majewski, E. & Dziembowska, T. (1998). Berichte der Bunsengesellschaft für physikalische Chemie, 102, 393-402.]); the dihedral angle of 84.72 (7)° is larger than that in the unsubstituted imino­dioxocin mol­ecule (80.95°).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, double-stranded chains of inversion-related mol­ecules linked by pairs of weak C–H⋯O hydrogen bonds (Table 1[link]) propagate in the a-axis direction (Fig. 2[link]). Adjacent hydrogen-bonded chains are arranged in a parallel fashion to ensure efficient crystal packing of the clefts. Surprisingly, neither ππ stacking [the shortest centroid–centroid distance (offset) = 3.96 Å] nor C—H⋯π inter­actions (the shortest H⋯centroid distance = 3.34 Å) play a significant role in formation of the crystal structure of (I)[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O11i 0.95 2.69 3.5616 (19) 152
C1—H1B⋯O26ii 0.98 2.53 3.508 (2) 176
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Crystal packing of (I)[link], showing the parallel arrangement of double-stranded hydrogen-bonded chains of the dibenzo­imino­[1,5]dioxocin mol­ecules along the a-axis direction. Inter­molecular hydrogen bonds are shown as blue dashed lines.

4. Database survey

More than 1000 crystal structures of mol­ecules featuring eight-membered heterocine rings with two oxygen atoms in a 1,2-, 1,3-, 1,4- and 1,5-relationship, both uncondensed and fused to five-, six-, and seven-membered carbocycles or heterocycles, are found in the Cambridge Structural Database (CSD Version 5.37 plus one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with bridged dioxocines constituting the majority of the compounds reported. Of theses, only five mol­ecules contain the same central imino-bridged [1,5]dioxocin core as in compound (I)[link] (refcodes GAQNUJ, QAYTIU, TECMAP, UCERIE, XESBON). Clearly, substituents on the aromatic rings and on the bridging imino N atom in the five compounds determine the differences in their folding angles, which fall in the range 78.49–96.84°. However, no obvious correlation between the nature/size/position of the substituents and widening of the folding angle can be established due to the small number of compounds involved. While an example of [1,5]imino­dioxocin bridgehead N-atom coordination to a metal atom (copper) has been reported (refcode XESBON; Mandal et al., 2006[Mandal, D., Wu, A. Q., Guo, G. C. & Ray, D. (2006). Inorg. Chem. 45, 8826-8828.]), the Zn atom did not demonstrate the ability to coordinate the ligand (I)[link] in the present study.

5. Synthesis and crystallization

2-Hy­droxy-3-meth­oxy-benzaldehyde (0.23 g, 1.5 mmol) and methyl­amine hydro­chloride (0.10 g, 1.5 mmol) were added to methanol (5 ml) and stirred magnetically for 10 min. Zn(CH3COO)2·2H2O (0.11 g, 0.5 mmol) dissolved in 5 ml di­methyl­formamide was added to the yellow solution of the Schiff base formed in situ, and the resulting deep-yellow solution was stirred at room temperature for an hour. The addition of N(Et)3 (1 ml) produced a light precipitate which was filtered off. The solution, which was kept cold (283–285 K), changed colour from yellow to brown. It was diluted twice with methanol (4 ml) since it was thickening. Brown plate-like crystals of the title compound formed over two months after successive addition of PriOH (4 ml) in two portions. They were collected by filter-suction, washed with dry PriOH and finally dried in air (yield: 23%). Analysis calculated for C17H17NO4 (299.31): C, 68.21; H, 5.72; N, 4.68%. Found: C, 68.55; H, 5.49; N, 4.87%. 1H NMR (400 MHz, DMSO-d6, s, singlet; m, multiplet): δ (ppm) 6.89–6.79, m (6H, benzene rings); 5.69, s (2H, dioxocin ring); 3.71, s (6H, OCH3); 2.51, s (3H, NCH3). The IR spectrum of powdered (I)[link] in the range 4000–400 cm−1 shows all characteristic functional groups peaks: ν(CH) due to aromatic =C—H and alkyl –C—H stretching above and below 3000, respectively, the aromatic rings vibrations in the 1600–1400 region, ν(CO) and ν(CN) at 1300–1000 and aromatic CH bending in the 900–600 cm−1 region (see Supporting information).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bound to carbon were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). Anisotropic displacement parameters were employed for the non-hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H17NO4
Mr 299.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.9956 (5), 8.8589 (6), 12.0938 (9)
α, β, γ (°) 93.980 (6), 106.603 (7), 102.133 (6)
V3) 695.46 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.84
Crystal size (mm) 0.18 × 0.06 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.818, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 5235, 2456, 2147
Rint 0.027
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.07
No. of reflections 2456
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

4,10-Dimethoxy-13-methyl-6H,12H-6,12-epiminodibenzo[b,f][1,5]dioxocine top
Crystal data top
C17H17NO4Z = 2
Mr = 299.31F(000) = 316
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.9956 (5) ÅCell parameters from 2735 reflections
b = 8.8589 (6) Åθ = 3.9–67.1°
c = 12.0938 (9) ŵ = 0.84 mm1
α = 93.980 (6)°T = 100 K
β = 106.603 (7)°Plate, brown
γ = 102.133 (6)°0.18 × 0.06 × 0.04 mm
V = 695.46 (9) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
2456 independent reflections
Radiation source: sealed X-ray tube2147 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4738 pixels mm-1θmax = 67.2°, θmin = 3.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 910
Tmin = 0.818, Tmax = 1l = 1214
5235 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.1321P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2456 reflectionsΔρmax = 0.22 e Å3
202 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8680 (3)0.77719 (18)0.96792 (13)0.0272 (4)
H1A1.01730.80341.00430.041*
H1B0.8020.80591.02490.041*
H1C0.83340.83450.90140.041*
N10.7947 (2)0.60859 (15)0.92762 (11)0.0239 (3)
C110.6973 (2)0.64283 (16)0.69544 (13)0.0208 (3)
O110.89314 (15)0.63442 (12)0.75392 (9)0.0216 (3)
C120.5341 (2)0.60187 (17)0.74052 (13)0.0220 (3)
C1210.5761 (2)0.56411 (17)0.86455 (13)0.0234 (3)
H1210.50420.6240.90560.028*
C130.3363 (2)0.60620 (17)0.67238 (14)0.0248 (3)
H130.22320.57790.70160.03*
C140.3059 (2)0.65148 (18)0.56296 (14)0.0260 (4)
H140.17070.64940.51590.031*
C150.4714 (2)0.70032 (17)0.52068 (13)0.0245 (3)
H150.44920.73510.44650.029*
C160.6678 (2)0.69812 (17)0.58676 (13)0.0217 (3)
O160.84270 (16)0.74649 (12)0.55663 (9)0.0252 (3)
C1610.8176 (3)0.80636 (19)0.44818 (13)0.0280 (4)
H16A0.72970.72440.38460.042*
H16B0.95220.84110.43670.042*
H16C0.75360.89460.44880.042*
C210.6140 (2)0.31265 (18)0.82770 (12)0.0214 (3)
O210.50055 (16)0.40035 (12)0.86700 (9)0.0242 (3)
C220.8031 (2)0.37774 (17)0.81425 (12)0.0215 (3)
C2210.8989 (2)0.55005 (17)0.85422 (13)0.0218 (3)
H2211.04590.5630.90110.026*
C230.9039 (2)0.28166 (18)0.76738 (13)0.0232 (3)
H231.0330.32510.75730.028*
C240.8164 (2)0.12416 (18)0.73579 (13)0.0241 (3)
H240.88380.06030.70170.029*
C250.6289 (2)0.05727 (18)0.75355 (13)0.0235 (3)
H250.57110.05170.73320.028*
C260.5290 (2)0.15091 (18)0.80075 (13)0.0225 (3)
O260.34536 (17)0.10158 (12)0.82185 (10)0.0275 (3)
C2610.2625 (3)0.06296 (19)0.80651 (16)0.0326 (4)
H26A0.23180.10560.72470.049*
H26B0.13590.08430.82840.049*
H26C0.36280.11180.85590.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (9)0.0211 (8)0.0248 (8)0.0057 (7)0.0094 (7)0.0021 (6)
N10.0294 (7)0.0195 (7)0.0237 (6)0.0051 (5)0.0100 (5)0.0035 (5)
C110.0217 (7)0.0147 (7)0.0253 (7)0.0047 (6)0.0061 (6)0.0013 (5)
O110.0214 (5)0.0201 (5)0.0240 (6)0.0041 (4)0.0077 (4)0.0064 (4)
C120.0261 (8)0.0138 (7)0.0270 (8)0.0045 (6)0.0103 (6)0.0020 (5)
C1210.0282 (8)0.0166 (7)0.0290 (8)0.0064 (6)0.0134 (6)0.0044 (6)
C130.0236 (8)0.0165 (7)0.0362 (8)0.0042 (6)0.0129 (6)0.0023 (6)
C140.0239 (8)0.0197 (8)0.0331 (8)0.0070 (6)0.0057 (6)0.0027 (6)
C150.0294 (8)0.0199 (8)0.0242 (7)0.0073 (6)0.0070 (6)0.0043 (6)
C160.0250 (7)0.0158 (7)0.0253 (7)0.0043 (6)0.0099 (6)0.0017 (6)
O160.0257 (6)0.0272 (6)0.0250 (6)0.0060 (4)0.0108 (4)0.0084 (4)
C1610.0327 (8)0.0287 (9)0.0257 (8)0.0077 (7)0.0125 (7)0.0091 (6)
C210.0246 (7)0.0202 (8)0.0222 (7)0.0080 (6)0.0094 (6)0.0046 (6)
O210.0282 (6)0.0167 (6)0.0330 (6)0.0060 (4)0.0169 (5)0.0052 (4)
C220.0240 (7)0.0201 (8)0.0203 (7)0.0054 (6)0.0060 (6)0.0063 (6)
C2210.0239 (7)0.0205 (8)0.0218 (7)0.0048 (6)0.0075 (6)0.0072 (6)
C230.0221 (7)0.0261 (8)0.0240 (7)0.0073 (6)0.0092 (6)0.0075 (6)
C240.0281 (8)0.0236 (8)0.0251 (7)0.0125 (6)0.0101 (6)0.0052 (6)
C250.0280 (8)0.0176 (8)0.0258 (7)0.0063 (6)0.0089 (6)0.0046 (6)
C260.0227 (7)0.0218 (8)0.0249 (7)0.0060 (6)0.0091 (6)0.0065 (6)
O260.0277 (6)0.0177 (6)0.0415 (6)0.0035 (4)0.0183 (5)0.0060 (4)
C2610.0319 (9)0.0183 (8)0.0505 (10)0.0024 (7)0.0196 (8)0.0064 (7)
Geometric parameters (Å, º) top
C1—N11.4716 (19)O16—C1611.4271 (18)
C1—H1A0.98C161—H16A0.98
C1—H1B0.98C161—H16B0.98
C1—H1C0.98C161—H16C0.98
N1—C2211.433 (2)C21—O211.3723 (18)
N1—C1211.454 (2)C21—C221.387 (2)
C11—O111.3707 (18)C21—C261.407 (2)
C11—C121.394 (2)C22—C231.399 (2)
C11—C161.410 (2)C22—C2211.515 (2)
O11—C2211.4636 (17)C221—H2211
C12—C131.403 (2)C23—C241.379 (2)
C12—C1211.519 (2)C23—H230.95
C121—O211.4413 (18)C24—C251.403 (2)
C121—H1211C24—H240.95
C13—C141.381 (2)C25—C261.381 (2)
C13—H130.95C25—H250.95
C14—C151.395 (2)C26—O261.3690 (19)
C14—H140.95O26—C2611.4286 (18)
C15—C161.382 (2)C261—H26A0.98
C15—H150.95C261—H26B0.98
C16—O161.3675 (19)C261—H26C0.98
N1—C1—H1A109.5H16A—C161—H16B109.5
N1—C1—H1B109.5O16—C161—H16C109.5
H1A—C1—H1B109.5H16A—C161—H16C109.5
N1—C1—H1C109.5H16B—C161—H16C109.5
H1A—C1—H1C109.5O21—C21—C22122.61 (14)
H1B—C1—H1C109.5O21—C21—C26116.68 (13)
C221—N1—C121107.32 (12)C22—C21—C26120.72 (14)
C221—N1—C1114.33 (12)C21—O21—C121111.48 (11)
C121—N1—C1112.09 (12)C21—C22—C23119.15 (14)
O11—C11—C12122.53 (13)C21—C22—C221119.33 (13)
O11—C11—C16116.70 (13)C23—C22—C221121.48 (13)
C12—C11—C16120.76 (13)N1—C221—O11111.99 (12)
C11—O11—C221111.80 (11)N1—C221—C22109.13 (12)
C11—C12—C13118.88 (14)O11—C221—C22110.50 (11)
C11—C12—C121119.41 (13)N1—C221—H221108.4
C13—C12—C121121.58 (13)O11—C221—H221108.4
O21—C121—N1108.62 (12)C22—C221—H221108.4
O21—C121—C12111.51 (12)C24—C23—C22120.23 (14)
N1—C121—C12111.31 (12)C24—C23—H23119.9
O21—C121—H121108.4C22—C23—H23119.9
N1—C121—H121108.4C23—C24—C25120.62 (14)
C12—C121—H121108.4C23—C24—H24119.7
C14—C13—C12120.10 (14)C25—C24—H24119.7
C14—C13—H13120C26—C25—C24119.59 (14)
C12—C13—H13120C26—C25—H25120.2
C13—C14—C15120.80 (14)C24—C25—H25120.2
C13—C14—H14119.6O26—C26—C25125.72 (14)
C15—C14—H14119.6O26—C26—C21114.69 (13)
C16—C15—C14119.99 (14)C25—C26—C21119.56 (14)
C16—C15—H15120C26—O26—C261116.82 (12)
C14—C15—H15120O26—C261—H26A109.5
O16—C16—C15125.65 (14)O26—C261—H26B109.5
O16—C16—C11115.10 (13)H26A—C261—H26B109.5
C15—C16—C11119.24 (14)O26—C261—H26C109.5
C16—O16—C161116.22 (11)H26A—C261—H26C109.5
O16—C161—H16A109.5H26B—C261—H26C109.5
O16—C161—H16B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O11i0.952.693.5616 (19)152
C1—H1B···O26ii0.982.533.508 (2)176
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolenský, B., Havlík, M. & Král, V. (2012). Chem. Soc. Rev. 41, 3839–3858.  PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A., Koll, A., Glowiak, T., Majewski, E. & Dziembowska, T. (1998). Berichte der Bunsengesellschaft für physikalische Chemie, 102, 393–402.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHardouin-Lerouge, M., Hudhomme, P. & Sallé, M. (2011). Chem. Soc. Rev. 40, 30–43.  CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMandal, D., Wu, A. Q., Guo, G. C. & Ray, D. (2006). Inorg. Chem. 45, 8826–8828.  CSD CrossRef PubMed CAS Google Scholar
First citationMeally, S. T., McDonald, C., Karotsis, G., Papaefstathiou, G. S., Brechin, E. K., Dunne, P. W., McArdle, P., Power, N. P. & Jones, L. F. (2010). Dalton Trans. 39, 4809–4816.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMinder, B., Schürch, M., Mallat, T. & Baiker, A. (1995). Catal. Lett. 31, 143–151.  CrossRef CAS Google Scholar
First citationNesterova, O. V., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Omelchenko, I. V., Shishkin, O. V., Titiš, J., Boča, R., Pombeiro, A. J. & Ozarowski, A. (2013). Dalton Trans. 42, 16909–16919.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSydoruk, T. V., Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m551–m552.  CSD CrossRef IUCr Journals Google Scholar
First citationWilen, S. H., Qi, J. Z. & Williard, P. G. (1991). J. Org. Chem. 56, 485–487.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds