research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[silver(I)-μ-L-valinato-κ2N:O]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
*Correspondence e-mail: nomiya@kanagawa-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 25 October 2016; accepted 2 February 2017; online 14 February 2017)

The reaction of Ag2O with L-valine (L-Hval, C5H11NO2) in a 1:2 molar ratio in water, followed by vapour diffusion, afforded a coordination polymer of the title compound, [Ag(C5H10NO2)]n, with N—Ag—O repeat units, which is classified as a type III silver(I) complex with amino acid ligands. The asymmetric unit consists of two independent units of [Ag(L-val)]. In the crystal, the polymeric chains run along [101], and neighbouring chains are linked via a weak Ag⋯Ag inter­action and N—H⋯O hydrogen bonds. The title complex exhibited anti­microbial activity against selected bacteria (Escherichia coli, Bacillus subtilis, Staphylococcous aureus and Psedomonas aeruginosa).

1. Chemical context

Silver(I) complexes with amino acid ligands have been of inter­est not only due to their numerous medicinal applications but also as model protein–silver(I) inter­action compounds (Banti & Hadjikakou, 2013[Banti, C. N. & Hadjikakou, S. K. (2013). Metallomics, 5, 569-596.]; Eckhardt et al., 2013[Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B. & Fromm, K. M. (2013). Chem. Rev. 113, 4708-4754.]). Aside from S-containing amino acids, such as cysteine which forms an insoluble S-bridging silver(I) complex (Leung et al., 2013[Leung, B. O., Jalilehvand, F., Mah, V., Parvez, M. & Wu, Q. (2013). Inorg. Chem. 52, 4593-4602.]), we have focused on ligand-exchangeable silver(I) complexes with N and O donor atoms. Although many of them are difficult to crystallize and light-sensitive, several crystals of silver(I) complexes have been prepared (Nomiya et al., 2014[Nomiya, K., Kasuga, N. C. & Takayama, K. (2014). RSC Polymer Chemistry Series, Vol. 10, edited by A. Munoz-Bonilla, M. L. Cerrada and M. Fernandex-Garcia, pp. 156-207. Cambridge: RSC publishing.]). In comparison to gold(I) ions, silver(I) ions show various coord­ination numbers and modes with N and O atoms and tend to form polymeric structures. The polymeric structures of silver(I) complexes with non-S amino acid ligands are classified into four types based on the bonding modes of the silver(I) atom: type I contains only Ag—O bonds, e.g., silver(I) with aspartic acid (Hasp), {[Ag2(D-asp)(L-asp)]1.5H2O}n; type II contains O—Ag—O and N—Ag—N bonds, e.g., silver(I) with glycine (Hgly), [Ag(gly)]n; type III contains N—Ag—O units, e.g., silver(I) complexes with glycine, [Ag(gly)]n, and L-asparagine (L-Hasn), [Ag(L-asn)]n; type IV contains only Ag—N bonds, e.g., silver(I) with L-histidine (L-H2his), [Ag(L-Hhis)]n (Nomiya et al., 2000[Nomiya, K., Takahashi, S., Noguchi, R., Nemoto, S., Takayama, T. & Oda, M. (2000). Inorg. Chem. 39, 3301-3311.]; Nomiya & Yokoyama, 2002[Nomiya, K. & Yokoyama, H. (2002). J. Chem. Soc. Dalton Trans. pp. 2483-2490.]). Two types of complexes (types II and III) have been reported for [Ag(gly)]n. Here, we report the preparation and crystal structure of silver(I) with L-valine (L-Hval).

[Scheme 1]

2. Structural commentary

The local coordination around the silver(I) atom of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of two units of [Ag(L-val)], which separately form polymeric chains along [101]. In each chain, the N and O atoms coordinate almost linearly to the silver(I) atom (Table 1[link]), resulting in repeating N—Ag—O units. Since the Ag1⋯O1iv distance [2.654 (4) Å; symmetry code: (iv) x, y, z − 1] is much longer than those of Ag1—O2i [2.124 (3) Å] and Ag2—O3 [2.142 (4) Å], [Ag(L-val)]n is classified as being a type III linear N—Ag—O polymer, as found in the silver(I) complexes with glycine (Acland & Freeman, 1971[Acland, C. B. & Freeman, H. C. (1971). J. Chem. Soc. D, pp. 1016-1017.]), with α-alanine (Démaret & Abraham, 1987[Démaret, A. & Abraham, F. (1987). Acta Cryst. C43, 1519-1521.]) and with asparagine (Nomiya & Yokoyama, 2002[Nomiya, K. & Yokoyama, H. (2002). J. Chem. Soc. Dalton Trans. pp. 2483-2490.]).

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.136 (4) Ag2—O3 2.142 (4)
Ag1—O2i 2.124 (3) Ag2—N2i 2.155 (4)
       
O2i—Ag1—N1 176.13 (16) O3—Ag2—N2i 165.79 (18)
Symmetry code: (i) x-1, y, z-1.
[Figure 1]
Figure 1
Part of the polymeric structure of the title compound showing the local coordination around the silver(I) atoms. Displacement ellipsoids are drawn at the 50% probability level. The weak Ag⋯Ag inter­action is displayed as a grey line and the N—H⋯O hydrogen bonds are drawn as blue dotted lines. [Symmetry code: (i) x − 1, y, z − 1.]

Although the polymeric structures of N—Ag—O repeated units of [Ag(L-val)]n and [Ag(L-asn)]n are similar to each other, the Ag⋯Ag distance [3.3182 (6) Å] between the neighbouring chains in [Ag(L-val)]n is slightly shorter than that [3.4371 (9) Å] in [Ag(L-asn)]n. This indicates the presence of a weak Ag⋯Ag inter­action between the two independent N—Ag—O chains in the title complex, considering the metallic and van der Waals radii of 1.44 and 1.72 Å, respectively, for Ag (Wells, 1975[Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed. p. 1015. London: Oxford University Press.]; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

3. Supra­molecular features

The two independent polymeric chains containing Ag1 and Ag2, respectively, are represented as green and blue in Fig. 2[link]. The chains of Ag1 are connected to each other by N—H⋯O hydrogen bonds [N1—H1A⋯O2ii; symmetry code: (ii) x − 1, y, z] into a sheet structure. The chains of Ag2 are also linked into a sheet structure by N—H⋯O hydrogen bonds [N2—H2A⋯O3iii; symmetry code: (iii) x, y, z + 1]. Both sheets are parallel to the ac plane and the two sheets are stacked alternately along the b axis through the weak Ag⋯Ag inter­actions and N—H⋯O hydrogen bonds (N1—H1B⋯O4 and N2—H22B⋯O2; Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O4 0.87 (3) 2.04 (3) 2.907 (6) 169 (5)
N2—H2B⋯O2 0.87 (3) 2.19 (3) 3.053 (7) 171 (6)
N1—H1A⋯O2ii 0.86 (3) 2.10 (3) 2.935 (5) 164 (6)
N2—H2A⋯O3iii 0.86 (3) 2.13 (4) 2.924 (5) 153 (6)
Symmetry codes: (ii) x-1, y, z; (iii) x, y, z+1.
[Figure 2]
Figure 2
(a) Weak inter­actions around the polymeric chains containing Ag1 [symmetry codes: (ii) x − 1, y, z; (iv) x, y, z − 1]. (b) Weak inter­actions around the coordination polymers containing Ag2 [symmetry code: (iii) x, y, z + 1]. (c) Packing diagram of [Ag(L-val)]n.

4. Synthesis and crystallization

To a suspension of 232 mg (1.0 mmol) of Ag2O in 20 ml of water was added 234 mg of L-valine (2.0 mmol), followed by stirring for 2 h at room temperature. The resulting grey suspension was filtered. Vapour diffusion was performed at room temperature by using the colourless filtrate as the inner solution and ethanol as the external solvent. The platelet crystals formed were collected and washed with acetone (30 ml) and ether (30 ml) to afford 0.5 mg of colourless crystals of [Ag(L-val)]. The colour of the crystals gradually changed to brown in a few days at ambient temperature. Analysis calculated for C5H10NO2Ag: C 26.81, H 4.50, N 6.25%. Found: C 27.01, H 4.40, N 6.34%. Prominent IR bands in 1800–400 cm−1 (KBr disk): 1577vs, 1471m, 1414s, 1359m, 1184w, 987w, 892w, 827m, 716m, 651m, 547m, 443m.

5. Anti­microbial activity

The title silver(I) complex exhibits anti­microbial activity for selected bacteria. The minimum inhibitory concentration (MIC, μ mL−1) values of the complex for four bacteria, E. coli, B. subtilis, S. aureus, P. aeruginosa are 31.3, 62.5, 125 and 31.3, respectively. [Ag(L-val)]n did not inhibit the growth of two yeasts (C. albicans and S. cerevisiae) and two molds [A. brasiliensis (niger) and P. citrinum] in water-suspension systems. [Ag(L-val)]n is insoluble in H2O and other organic solvents (MeOH, DMSO, acetone, EtOH, CH3CN, CH2Cl2, CHCl3, ether, and EtOAc).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). H atoms of the amino groups were found in a difference Fourier map and their positions were refined with restraints of N—H = 0.86 (2) Å and H⋯H = 1.40 (4) Å, and with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C5H10NO2)]
Mr 224.01
Crystal system, space group Monoclinic, P21
Temperature (K) 90
a, b, c (Å) 5.4475 (5), 22.545 (2), 5.5411 (5)
β (°) 95.446 (2)
V3) 677.47 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.90
Crystal size (mm) 0.36 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.422, 0.780
No. of measured, independent and observed [I > 2σ(I)] reflections 4981, 3034, 3013
Rint 0.016
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.15
No. of reflections 3034
No. of parameters 179
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.13, −1.11
Absolute structure Flack x determined using 1275 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.048 (19)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

catena-Poly[silver(I)-µ-L-valinato-κ2N:O] top
Crystal data top
[Ag(C5H10NO2)]F(000) = 440
Mr = 224.01Dx = 2.196 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.4475 (5) ÅCell parameters from 4323 reflections
b = 22.545 (2) Åθ = 3.6–28.3°
c = 5.5411 (5) ŵ = 2.90 mm1
β = 95.446 (2)°T = 90 K
V = 677.47 (11) Å3Needle, colorless
Z = 40.36 × 0.16 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3034 independent reflections
Radiation source: Sealed Tube3013 reflections with I > 2σ(I)
Detector resolution: 8.366 pixels mm-1Rint = 0.016
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 73
Tmin = 0.422, Tmax = 0.780k = 2830
4981 measured reflectionsl = 77
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0258P)2 + 0.4276P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.001
wR(F2) = 0.054Δρmax = 1.13 e Å3
S = 1.15Δρmin = 1.11 e Å3
3034 reflectionsAbsolute structure: Flack x determined using 1275 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
179 parametersAbsolute structure parameter: 0.048 (19)
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.62135 (6)0.72712 (2)0.36519 (6)0.01288 (9)
C11.1756 (9)0.7379 (2)1.0188 (9)0.0097 (10)
C21.0368 (9)0.7590 (2)0.7813 (9)0.0112 (9)
H2C1.1490030.7559360.6490450.013*
C30.9626 (9)0.8245 (2)0.8085 (10)0.0146 (10)
H30.8370260.8263100.9287150.018*
C40.8460 (11)0.8514 (3)0.5695 (11)0.0244 (12)
H4A0.9624020.8483700.4456170.037*
H4B0.8067600.8932660.5949250.037*
H4C0.6945590.8298360.5155620.037*
C51.1823 (11)0.8626 (3)0.9056 (12)0.0236 (12)
H5A1.3097460.8610560.7922490.035*
H5B1.2496570.8474041.0638950.035*
H5C1.1283390.9037130.9228640.035*
O11.0588 (6)0.7234 (2)1.1919 (6)0.0166 (7)
O21.4109 (6)0.73698 (16)1.0246 (6)0.0125 (7)
N10.8165 (8)0.7214 (2)0.7175 (7)0.0115 (8)
H1A0.721 (9)0.726 (3)0.830 (8)0.014*
H1B0.877 (10)0.6856 (15)0.732 (11)0.014*
Ag20.89815 (6)0.60339 (2)0.21275 (6)0.01329 (10)
C61.2547 (9)0.5896 (2)0.6450 (10)0.0107 (9)
C71.5054 (9)0.5750 (2)0.7793 (9)0.0102 (9)
H71.6357080.5906340.6807720.012*
C81.5466 (9)0.5077 (2)0.8113 (9)0.0120 (9)
H81.6865700.5023800.9398350.014*
C91.6241 (10)0.4791 (3)0.5799 (10)0.0185 (10)
H9A1.4872750.4813320.4519230.028*
H9B1.6674990.4374820.6118120.028*
H9C1.7671970.5002160.5276320.028*
C101.3225 (10)0.4764 (2)0.8998 (10)0.0168 (10)
H10A1.3658250.4353540.9430530.025*
H10B1.1865130.4767760.7707200.025*
H10C1.2717960.4971641.0424280.025*
N21.5353 (7)0.6050 (2)1.0205 (7)0.0118 (7)
H2A1.442 (10)0.587 (2)1.112 (10)0.014*
H2B1.494 (11)0.6423 (13)1.004 (11)0.014*
O31.2360 (7)0.57934 (18)0.4188 (7)0.0154 (8)
O41.0857 (6)0.61000 (18)0.7610 (6)0.0140 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.00939 (17)0.01968 (19)0.00880 (17)0.00032 (14)0.00310 (11)0.00117 (15)
C10.010 (2)0.012 (3)0.007 (2)0.0023 (17)0.0027 (17)0.0017 (17)
C20.008 (2)0.017 (3)0.008 (2)0.0015 (18)0.0004 (17)0.0040 (18)
C30.013 (2)0.015 (2)0.016 (2)0.0009 (18)0.0019 (19)0.0001 (19)
C40.031 (3)0.020 (3)0.020 (3)0.006 (3)0.012 (2)0.004 (2)
C50.024 (3)0.016 (3)0.029 (3)0.003 (2)0.006 (2)0.002 (2)
O10.0121 (16)0.027 (2)0.0102 (16)0.0014 (16)0.0009 (12)0.0029 (17)
O20.0035 (14)0.021 (2)0.0123 (16)0.0017 (12)0.0014 (12)0.0017 (14)
N10.0099 (18)0.014 (2)0.0104 (18)0.0014 (16)0.0010 (14)0.0020 (17)
Ag20.00789 (17)0.0215 (2)0.00975 (18)0.00137 (14)0.00313 (12)0.00090 (15)
C60.009 (2)0.008 (2)0.015 (2)0.0007 (16)0.0017 (18)0.0003 (16)
C70.010 (2)0.012 (2)0.008 (2)0.0006 (17)0.0005 (17)0.0026 (17)
C80.008 (2)0.017 (2)0.011 (2)0.0003 (18)0.0017 (17)0.0003 (18)
C90.019 (3)0.019 (3)0.017 (2)0.007 (2)0.000 (2)0.004 (2)
C100.014 (2)0.018 (2)0.019 (3)0.002 (2)0.002 (2)0.004 (2)
N20.0130 (19)0.0164 (19)0.0054 (18)0.0006 (18)0.0028 (14)0.0000 (18)
O30.0088 (16)0.027 (2)0.0099 (17)0.0028 (14)0.0009 (13)0.0020 (15)
O40.0092 (15)0.0187 (19)0.0142 (18)0.0034 (14)0.0006 (13)0.0009 (15)
Geometric parameters (Å, º) top
Ag1—N12.136 (4)Ag2—O32.142 (4)
Ag1—O2i2.124 (3)Ag2—N2i2.155 (4)
C1—O11.245 (6)C6—O41.259 (6)
C1—O21.280 (6)C6—O31.269 (7)
C1—C21.530 (7)C6—C71.527 (7)
C2—N11.485 (6)C7—N21.493 (6)
C2—C31.543 (7)C7—C81.541 (7)
C2—H2C1.0000C7—H71.0000
C3—C51.528 (8)C8—C101.530 (7)
C3—C41.538 (7)C8—C91.530 (7)
C3—H31.0000C8—H81.0000
C4—H4A0.9800C9—H9A0.9800
C4—H4B0.9800C9—H9B0.9800
C4—H4C0.9800C9—H9C0.9800
C5—H5A0.9800C10—H10A0.9800
C5—H5B0.9800C10—H10B0.9800
C5—H5C0.9800C10—H10C0.9800
N1—H1A0.86 (3)N2—H2A0.86 (3)
N1—H1B0.87 (3)N2—H2B0.87 (3)
O2i—Ag1—N1176.13 (16)O3—Ag2—N2i165.79 (18)
O1—C1—O2124.1 (5)O4—C6—O3125.2 (5)
O1—C1—C2119.9 (4)O4—C6—C7119.5 (5)
O2—C1—C2116.0 (4)O3—C6—C7115.2 (4)
N1—C2—C1110.4 (4)N2—C7—C6110.8 (4)
N1—C2—C3110.9 (4)N2—C7—C8109.9 (4)
C1—C2—C3109.1 (4)C6—C7—C8112.4 (4)
N1—C2—H2C108.8N2—C7—H7107.8
C1—C2—H2C108.8C6—C7—H7107.8
C3—C2—H2C108.8C8—C7—H7107.8
C5—C3—C4109.1 (5)C10—C8—C9111.5 (4)
C5—C3—C2111.6 (4)C10—C8—C7112.2 (4)
C4—C3—C2112.6 (5)C9—C8—C7111.5 (4)
C5—C3—H3107.8C10—C8—H8107.1
C4—C3—H3107.8C9—C8—H8107.1
C2—C3—H3107.8C7—C8—H8107.1
C3—C4—H4A109.5C8—C9—H9A109.5
C3—C4—H4B109.5C8—C9—H9B109.5
H4A—C4—H4B109.5H9A—C9—H9B109.5
C3—C4—H4C109.5C8—C9—H9C109.5
H4A—C4—H4C109.5H9A—C9—H9C109.5
H4B—C4—H4C109.5H9B—C9—H9C109.5
C3—C5—H5A109.5C8—C10—H10A109.5
C3—C5—H5B109.5C8—C10—H10B109.5
H5A—C5—H5B109.5H10A—C10—H10B109.5
C3—C5—H5C109.5C8—C10—H10C109.5
H5A—C5—H5C109.5H10A—C10—H10C109.5
H5B—C5—H5C109.5H10B—C10—H10C109.5
C2—N1—Ag1120.3 (3)C7—N2—H2A107 (4)
C2—N1—H1A107 (4)C7—N2—H2B110 (4)
C2—N1—H1B102 (4)H2A—N2—H2B112 (5)
H1A—N1—H1B108 (5)C6—O3—Ag2117.7 (3)
Symmetry code: (i) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O40.87 (3)2.04 (3)2.907 (6)169 (5)
N2—H2B···O20.87 (3)2.19 (3)3.053 (7)171 (6)
N1—H1A···O2ii0.86 (3)2.10 (3)2.935 (5)164 (6)
N2—H2A···O3iii0.86 (3)2.13 (4)2.924 (5)153 (6)
Symmetry codes: (ii) x1, y, z; (iii) x, y, z+1.
 

Funding information

Funding for this research was provided by: Research Institute for Integrated Science, Kanagawa University (award No. RIIS201604).

References

First citationAcland, C. B. & Freeman, H. C. (1971). J. Chem. Soc. D, pp. 1016–1017.  Google Scholar
First citationBanti, C. N. & Hadjikakou, S. K. (2013). Metallomics, 5, 569–596.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDémaret, A. & Abraham, F. (1987). Acta Cryst. C43, 1519–1521.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationEckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B. & Fromm, K. M. (2013). Chem. Rev. 113, 4708–4754.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLeung, B. O., Jalilehvand, F., Mah, V., Parvez, M. & Wu, Q. (2013). Inorg. Chem. 52, 4593–4602.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNomiya, K., Kasuga, N. C. & Takayama, K. (2014). RSC Polymer Chemistry Series, Vol. 10, edited by A. Munoz-Bonilla, M. L. Cerrada and M. Fernandex-Garcia, pp. 156–207. Cambridge: RSC publishing.  Google Scholar
First citationNomiya, K., Takahashi, S., Noguchi, R., Nemoto, S., Takayama, T. & Oda, M. (2000). Inorg. Chem. 39, 3301–3311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNomiya, K. & Yokoyama, H. (2002). J. Chem. Soc. Dalton Trans. pp. 2483–2490.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWells, A. F. (1975). Structural Inorganic Chemistry, 4th ed. p. 1015. London: Oxford University Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds