research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2,2′-bi­pyridine-κ2N,N′)bis­­(3,5-di-tert-butyl-o-benzo­quinonato-κ2O,O′)ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman, bDepartment of Chemistry, Indian Institute of Technology, Kanpur 208 016 UP, India, and cDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, Kyiv Polytechnic Institute, 37 Prospect Peremogy, 03056 Kiev, Ukraine
*Correspondence e-mail: potaskalov@xtf.kpi.ua

Edited by H. Ishida, Okayama University, Japan (Received 5 December 2016; accepted 20 February 2017; online 28 February 2017)

In the title mononuclear complex, [Ru(C14H20O2)2(C10H8N2)], the RuII ion has a distorted octa­hedral coordination environment defined by two N atoms of the chelating 2,2′-bi­pyridine ligand and four O atoms from two 3,5-di-tert-butyl-o-benzo­quinone ligands. In the crystal, the complex mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions between the 2,2′-bi­pyridine ligands [centroid–centroid distance = 3.538 (3) Å], resulting in a layer structure extending parallel to the ab plane.

1. Chemical context

The coordination chemistry of o-quinone ligands has been a subject of inter­est since the beginning of the century, but only within the past decade have detailed studies on the composition and properties of o-quinone complexes been carried out. It has been reported that o-quinone derivatives are non-innocent electroactive ligands that can be found as neutral quinones, radical semi­quinones or dianionic catecholates (Lever et al., 1988[Lever, A. B. P., Auburn, P. R., Dodsworth, E. S., Haga, M. A., Liu, W., Melnik, M. & Nevin, W. A. (1988). J. Am. Chem. Soc. 110, 8076-8084.]). The coordination chemistry of ruthenium complexes has been studied over the past few decades because of their versatile and diverse applications in mol­ecular catalysis (Pagliaro et al., 2005[Pagliaro, M., Campestrini, S. & Ciriminna, R. (2005). Chem. Soc. Rev. 34, 837-845.]; Ramakrishna & Bhat, 2011[Ramakrishna, D. & Bhat, B. R. (2011). Inorg. Chem. Commun. 14, 155-158.]) and bioinorganic chemistry (van Rijt & Sadler, 2009[Rijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089-1097.]). Ruthenium complexes with two o-quinone derivatives and one 2,2′-bi­pyridine (bpy) ligand, namely [Ru(bpy)(C6H4O2)2] and [Ru(bpy)(C14H20O2)2] (title compound), have been investigated by using various experimental techniques (Lever et al., 1988[Lever, A. B. P., Auburn, P. R., Dodsworth, E. S., Haga, M. A., Liu, W., Melnik, M. & Nevin, W. A. (1988). J. Am. Chem. Soc. 110, 8076-8084.]). Although the ruthenium metals in these complexes potentially could be in the (II), (III) or (IV) oxidation state, according to the oxidation states of the two o-quinone ligands, the state of the metals was confirmed to be bivalent by photoelectron spectroscopy. In order to obtain ruthenium(III) species, it was necessary to oxidize the complexes by silver perchlorate in non-aqueous media. Lever et al. (1988[Lever, A. B. P., Auburn, P. R., Dodsworth, E. S., Haga, M. A., Liu, W., Melnik, M. & Nevin, W. A. (1988). J. Am. Chem. Soc. 110, 8076-8084.]) concluded that the complexes are best regarded as RuII(bpy)(sq)2 (sq: semi­quinone anion-radical) with significant mixing of metal and ligand orbitals through Ru–sq π back-donation, which results in elongation of the C—O bonds of o-quinone ligands. This elongation has been demonstrated for [Ru(bpy)(C6H4O2)2] by X-ray single crystal analysis, but the structure of the title compound has not previously been characterized.

[Scheme 1]

2. Structural commentary

In the title compound, the RuII ion has a distorted octa­hedral RuN2O4 coordination environment defined by two 3,5-di-tert-butyl-o-benzosemi­quinone anion-radicals and one 2,2′-bi­pyridine ligand (Fig. 1[link]). The coordination environment is identified by Ru—O and Ru—N bonds (Table 1[link]). The C—N and C—C bond lengths in the 2,2′-bi­pyridine ligand are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). The benzosemi­quinone ligands exhibit almost equivalent C—O distances (Table 1[link]). These bond lengths are inter­mediate between values expected for the semi­quinone (1.29 Å) and catecholate (1.34 Å) forms (Buchanan et al., 1978[Buchanan, R. M., Kessel, S. L., Downs, H. H., Pierpont, C. G. & Hendrickson, D. N. (1978). J. Am. Chem. Soc. 100, 7894-7900.]). The Ru—O, Ru—N, C—O and C—C bond lengths in the title complex are very close to those observed in [Ru(bpy)(C6H4O2)2] (Lever et al., 1988[Lever, A. B. P., Auburn, P. R., Dodsworth, E. S., Haga, M. A., Liu, W., Melnik, M. & Nevin, W. A. (1988). J. Am. Chem. Soc. 110, 8076-8084.]).

Table 1
Selected bond lengths (Å)

Ru1—O2 1.978 (3) Ru1—N1 2.053 (4)
Ru1—O4 1.988 (3) O1—C14 1.340 (6)
Ru1—O1 1.990 (3) O2—C15 1.325 (5)
Ru1—O3 1.994 (3) O3—C28 1.340 (5)
Ru1—N2 2.044 (4) O4—C1 1.332 (6)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, the complex mol­ecules are linked via C—H⋯O hydrogen bonds (Table 2[link]) and ππ stacking inter­actions between inversion-related 2,2′-bi­pyridine ligands [centroid–centroid distance = 3.538 (3) Å], which results in a layer structure parallel to the ab plane (Figs. 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30⋯O3i 0.93 2.54 3.427 (6) 159
C32—H32⋯O4ii 0.93 2.49 3.322 (6) 148
C35—H35⋯O4ii 0.93 2.39 3.232 (6) 151
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+2.
[Figure 2]
Figure 2
A packing view of the title compound with the C—H⋯O and ππ inter­actions shown as dashed lines.
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the b axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 14 hits for mononuclear ruthenium complexes with 3,5-di-tert-butyl-o-benzo­quinone ligands in three possible catecholate, semi­quinone and quinone forms (CSD refcodes: EHUMEZ, EHUMID, EHUMOJ, FAGKON, FAGKON10, FIHQOC, FIRVIL, JECHII, JECHOO, MAFHOR, SAHHUF, SOCCAO, VINZIB, WUPGUJ).

5. Synthesis and crystallization

3,5-Di-tert-butyl-o-benzo­quinone (0.2 g, 0.90 mmol) was added to 20 ml dry methanol and then tri­ethyl­amine (0.181 g, 1.8 mmol) was added dropwise and the resultant mixture was stirred for 5 min. Ru(bpy)2Cl2 (0.288 g, 0.45 mmol) was then added to the solution and the contents were refluxed for 6 h. After refluxing, the reaction mixture was cooled down to room temperature and the contents were filtered off. The obtained residue was washed with cold methanol and dried in vacuo (yield: 0.160 g, 70%). Slow evaporation of a solution of the compound in a CH2Cl2–MeOH mixture (1:1, v/v) yielded single crystals suitable for X-ray diffraction. Crystals of title compound gave no EPR signal at room and liquid nitro­gen temperatures, and thus are diamagnetic.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms of the methyl groups were located in a difference Fourier map and refined as part of rigid rotating groups, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The remaining (aromatic) H atoms were placed geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ru(C14H20O2)2(C10H8N2)]
Mr 697.85
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.125 (5), 10.325 (5), 17.419 (5)
α, β, γ (°) 76.583 (5), 83.238 (5), 85.777 (5)
V3) 1756.9 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.21 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD diffractometer
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.902, 0.925
No. of measured, independent and observed [I > 2σ(I)] reflections 8836, 6058, 4508
Rint 0.033
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.02
No. of reflections 6058
No. of parameters 418
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.48
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

(2,2'-Bipyridine-κ2N,N')bis(3,5-di-tert-butyl-o-benzoquinonato-κ2O,O')ruthenium(II) top
Crystal data top
[Ru(C14H20O2)2(C10H8N2)]Z = 2
Mr = 697.85F(000) = 732
Triclinic, P1Dx = 1.319 Mg m3
a = 10.125 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.325 (5) ÅCell parameters from 1535 reflections
c = 17.419 (5) Åθ = 2.0–25.0°
α = 76.583 (5)°µ = 0.49 mm1
β = 83.238 (5)°T = 100 K
γ = 85.777 (5)°Block, red
V = 1756.9 (13) Å30.21 × 0.17 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6058 independent reflections
Radiation source: fine-focus sealed tube4508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
/w–scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 129
Tmin = 0.902, Tmax = 0.925k = 1212
8836 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6058 reflectionsΔρmax = 0.95 e Å3
418 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.23460 (4)0.24040 (4)0.88962 (2)0.02318 (15)
O10.3873 (3)0.2156 (3)0.81046 (19)0.0282 (8)
O20.2021 (3)0.4171 (3)0.81903 (18)0.0248 (7)
O30.3497 (3)0.3434 (3)0.93673 (17)0.0230 (7)
O40.1382 (3)0.1589 (3)0.82104 (18)0.0265 (7)
N10.2578 (4)0.0644 (4)0.9718 (2)0.0218 (8)
N20.0725 (3)0.2515 (4)0.9701 (2)0.0195 (8)
C10.2025 (5)0.1849 (5)0.7483 (3)0.0302 (12)
C20.1427 (6)0.1768 (5)0.6815 (3)0.0345 (12)
H20.05440.15390.68680.041*
C30.2142 (6)0.2025 (5)0.6076 (3)0.0405 (14)
C40.1509 (6)0.2096 (6)0.5313 (3)0.0476 (15)
C50.1523 (8)0.3538 (7)0.4812 (4)0.071 (2)
H5A0.10630.41270.51190.107*
H5B0.10870.35940.43440.107*
H5C0.24270.37920.46620.107*
C60.2347 (7)0.1222 (6)0.4809 (3)0.0571 (18)
H6A0.32190.15620.46570.086*
H6B0.19220.12380.43430.086*
H6C0.24190.03220.51150.086*
C70.0131 (8)0.1589 (9)0.5479 (4)0.085 (3)
H7A0.01480.07180.58260.127*
H7B0.01900.15400.49900.127*
H7C0.04490.21840.57280.127*
C80.3507 (6)0.2296 (6)0.6035 (3)0.0430 (14)
H80.39910.24440.55370.052*
C90.4180 (6)0.2358 (5)0.6674 (3)0.0369 (13)
C100.5641 (6)0.2666 (6)0.6581 (3)0.0422 (14)
C110.6255 (6)0.2910 (7)0.5711 (3)0.0560 (17)
H11A0.71750.31040.56810.084*
H11B0.57850.36510.53990.084*
H11C0.61870.21280.55110.084*
C120.6420 (6)0.1452 (6)0.7054 (4)0.0503 (16)
H12A0.63190.06810.68500.075*
H12B0.60780.12870.76040.075*
H12C0.73470.16360.70010.075*
C130.5878 (6)0.3889 (6)0.6898 (3)0.0480 (15)
H13A0.68130.40400.68290.072*
H13B0.55620.37350.74520.072*
H13C0.54070.46570.66120.072*
C140.3400 (5)0.2136 (5)0.7421 (3)0.0330 (12)
C150.3032 (5)0.4926 (5)0.8173 (3)0.0268 (11)
C160.3288 (5)0.6132 (5)0.7597 (3)0.0265 (11)
C170.2379 (5)0.6627 (5)0.6931 (3)0.0332 (12)
C180.2382 (6)0.5619 (6)0.6419 (3)0.0406 (14)
H18A0.32820.54180.62220.061*
H18B0.18720.59840.59810.061*
H18C0.19960.48170.67310.061*
C190.0951 (5)0.6859 (6)0.7286 (3)0.0415 (14)
H19A0.06670.60640.76590.062*
H19B0.03740.70780.68690.062*
H19C0.09130.75800.75510.062*
C200.2839 (6)0.7960 (6)0.6391 (3)0.0480 (16)
H20A0.28000.86240.67000.072*
H20B0.22650.82440.59760.072*
H20C0.37370.78420.61620.072*
C210.4410 (5)0.6772 (5)0.7656 (3)0.0285 (11)
H210.45910.75650.72870.034*
C220.5310 (5)0.6303 (5)0.8242 (3)0.0267 (11)
C230.6572 (5)0.7058 (5)0.8201 (3)0.0293 (11)
C240.7223 (5)0.7433 (6)0.7339 (3)0.0377 (13)
H24A0.80300.78760.73230.057*
H24B0.66210.80180.70150.057*
H24C0.74240.66400.71400.057*
C250.6181 (6)0.8344 (5)0.8485 (3)0.0395 (13)
H25A0.58910.81280.90430.059*
H25B0.54700.88180.82010.059*
H25C0.69350.88920.83900.059*
C260.7603 (5)0.6276 (5)0.8714 (3)0.0350 (12)
H26A0.72640.61510.92630.052*
H26B0.84030.67590.86190.052*
H26C0.77950.54230.85830.052*
C270.5004 (5)0.5190 (4)0.8824 (3)0.0234 (10)
H270.55430.48990.92340.028*
C280.3879 (5)0.4494 (5)0.8800 (3)0.0263 (11)
C290.3592 (4)0.0251 (5)0.9692 (3)0.0259 (11)
H290.42550.00850.92680.031*
C300.3697 (5)0.1417 (5)1.0271 (3)0.0298 (11)
H300.44280.20101.02390.036*
C310.2708 (5)0.1692 (5)1.0893 (3)0.0290 (11)
H310.27590.24741.12840.035*
C320.1639 (5)0.0781 (5)1.0924 (3)0.0245 (11)
H320.09570.09491.13350.029*
C330.1593 (4)0.0378 (4)1.0338 (3)0.0210 (10)
C340.0541 (4)0.1448 (4)1.0321 (3)0.0202 (10)
C350.0556 (5)0.1385 (5)1.0880 (3)0.0250 (11)
H350.06760.06321.12900.030*
C360.1470 (5)0.2455 (5)1.0822 (3)0.0278 (11)
H360.22100.24351.11950.033*
C370.1272 (5)0.3559 (5)1.0201 (3)0.0267 (11)
H370.18690.42951.01570.032*
C380.0182 (5)0.3549 (5)0.9653 (3)0.0265 (11)
H380.00640.42850.92310.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0207 (2)0.0254 (2)0.0202 (2)0.00348 (15)0.00222 (14)0.00001 (15)
O10.0239 (18)0.0285 (18)0.0270 (19)0.0015 (15)0.0055 (14)0.0005 (15)
O20.0191 (17)0.0296 (18)0.0230 (18)0.0046 (14)0.0020 (13)0.0014 (14)
O30.0200 (17)0.0250 (17)0.0208 (17)0.0023 (14)0.0014 (13)0.0002 (14)
O40.0244 (18)0.0298 (18)0.0229 (18)0.0054 (15)0.0021 (14)0.0019 (14)
N10.021 (2)0.020 (2)0.023 (2)0.0054 (17)0.0011 (16)0.0031 (17)
N20.015 (2)0.022 (2)0.020 (2)0.0029 (16)0.0050 (15)0.0014 (16)
C10.037 (3)0.028 (3)0.022 (3)0.006 (2)0.004 (2)0.000 (2)
C20.041 (3)0.031 (3)0.032 (3)0.003 (2)0.004 (2)0.007 (2)
C30.055 (4)0.037 (3)0.029 (3)0.007 (3)0.001 (3)0.009 (3)
C40.061 (4)0.051 (4)0.033 (3)0.008 (3)0.005 (3)0.011 (3)
C50.099 (6)0.068 (5)0.050 (4)0.016 (4)0.030 (4)0.012 (4)
C60.088 (5)0.044 (4)0.035 (4)0.007 (4)0.002 (3)0.000 (3)
C70.071 (5)0.143 (8)0.048 (4)0.032 (5)0.007 (4)0.026 (5)
C80.052 (4)0.043 (3)0.030 (3)0.003 (3)0.007 (3)0.007 (3)
C90.041 (3)0.037 (3)0.031 (3)0.001 (3)0.003 (2)0.006 (2)
C100.046 (4)0.041 (3)0.031 (3)0.002 (3)0.017 (3)0.003 (3)
C110.043 (4)0.079 (5)0.034 (3)0.008 (3)0.012 (3)0.001 (3)
C120.044 (4)0.045 (4)0.050 (4)0.009 (3)0.010 (3)0.002 (3)
C130.042 (4)0.052 (4)0.044 (4)0.004 (3)0.012 (3)0.005 (3)
C140.044 (3)0.027 (3)0.025 (3)0.004 (2)0.003 (2)0.002 (2)
C150.025 (3)0.027 (3)0.026 (3)0.003 (2)0.001 (2)0.006 (2)
C160.027 (3)0.024 (3)0.026 (3)0.003 (2)0.002 (2)0.002 (2)
C170.036 (3)0.034 (3)0.025 (3)0.002 (2)0.002 (2)0.001 (2)
C180.045 (3)0.045 (3)0.028 (3)0.003 (3)0.012 (2)0.005 (3)
C190.031 (3)0.055 (4)0.035 (3)0.012 (3)0.008 (2)0.006 (3)
C200.051 (4)0.043 (3)0.044 (4)0.005 (3)0.019 (3)0.008 (3)
C210.031 (3)0.022 (3)0.027 (3)0.000 (2)0.004 (2)0.000 (2)
C220.027 (3)0.027 (3)0.024 (3)0.002 (2)0.003 (2)0.004 (2)
C230.027 (3)0.029 (3)0.028 (3)0.005 (2)0.003 (2)0.001 (2)
C240.028 (3)0.054 (4)0.029 (3)0.012 (3)0.001 (2)0.003 (3)
C250.037 (3)0.037 (3)0.044 (3)0.005 (3)0.004 (3)0.008 (3)
C260.029 (3)0.037 (3)0.036 (3)0.001 (2)0.004 (2)0.001 (2)
C270.023 (3)0.026 (3)0.020 (2)0.002 (2)0.0039 (19)0.002 (2)
C280.029 (3)0.030 (3)0.016 (2)0.001 (2)0.0051 (19)0.002 (2)
C290.016 (2)0.028 (3)0.031 (3)0.001 (2)0.002 (2)0.003 (2)
C300.023 (3)0.027 (3)0.040 (3)0.001 (2)0.006 (2)0.008 (2)
C310.030 (3)0.020 (3)0.034 (3)0.004 (2)0.006 (2)0.004 (2)
C320.023 (3)0.030 (3)0.020 (3)0.007 (2)0.0008 (19)0.002 (2)
C330.017 (2)0.025 (2)0.022 (2)0.0087 (19)0.0000 (18)0.005 (2)
C340.021 (2)0.021 (2)0.019 (2)0.0067 (19)0.0002 (18)0.003 (2)
C350.026 (3)0.028 (3)0.020 (3)0.004 (2)0.002 (2)0.002 (2)
C360.027 (3)0.035 (3)0.021 (3)0.002 (2)0.000 (2)0.005 (2)
C370.021 (3)0.026 (3)0.032 (3)0.005 (2)0.004 (2)0.006 (2)
C380.031 (3)0.023 (3)0.025 (3)0.006 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Ru1—O21.978 (3)C16—C211.381 (6)
Ru1—O41.988 (3)C16—C171.536 (7)
Ru1—O11.990 (3)C17—C181.520 (7)
Ru1—O31.994 (3)C17—C191.529 (7)
Ru1—N22.044 (4)C17—C201.545 (7)
Ru1—N12.053 (4)C18—H18A0.9600
O1—C141.340 (6)C18—H18B0.9600
O2—C151.325 (5)C18—H18C0.9600
O3—C281.340 (5)C19—H19A0.9600
O4—C11.332 (6)C19—H19B0.9600
N1—C291.334 (6)C19—H19C0.9600
N1—C331.373 (6)C20—H20A0.9600
N2—C381.350 (6)C20—H20B0.9600
N2—C341.359 (5)C20—H20C0.9600
C1—C21.395 (7)C21—C221.426 (7)
C1—C141.431 (7)C21—H210.9300
C2—C31.379 (7)C22—C271.372 (6)
C2—H20.9300C22—C231.531 (7)
C3—C81.421 (8)C23—C261.516 (7)
C3—C41.526 (7)C23—C251.532 (7)
C4—C71.499 (9)C23—C241.542 (7)
C4—C51.542 (9)C24—H24A0.9600
C4—C61.543 (9)C24—H24B0.9600
C5—H5A0.9600C24—H24C0.9600
C5—H5B0.9600C25—H25A0.9600
C5—H5C0.9600C25—H25B0.9600
C6—H6A0.9600C25—H25C0.9600
C6—H6B0.9600C26—H26A0.9600
C6—H6C0.9600C26—H26B0.9600
C7—H7A0.9600C26—H26C0.9600
C7—H7B0.9600C27—C281.401 (6)
C7—H7C0.9600C27—H270.9300
C8—C91.387 (7)C29—C301.386 (7)
C8—H80.9300C29—H290.9300
C9—C141.421 (7)C30—C311.379 (7)
C9—C101.518 (8)C30—H300.9300
C10—C131.536 (8)C31—C321.386 (7)
C10—C111.539 (7)C31—H310.9300
C10—C121.550 (8)C32—C331.382 (6)
C11—H11A0.9600C32—H320.9300
C11—H11B0.9600C33—C341.474 (6)
C11—H11C0.9600C34—C351.384 (6)
C12—H12A0.9600C35—C361.381 (7)
C12—H12B0.9600C35—H350.9300
C12—H12C0.9600C36—C371.385 (7)
C13—H13A0.9600C36—H360.9300
C13—H13B0.9600C37—C381.373 (7)
C13—H13C0.9600C37—H370.9300
C15—C161.425 (6)C38—H380.9300
C15—C281.438 (6)
O2—Ru1—O489.04 (13)C21—C16—C15116.4 (4)
O2—Ru1—O186.32 (13)C21—C16—C17123.2 (4)
O4—Ru1—O181.90 (13)C15—C16—C17120.3 (4)
O2—Ru1—O382.41 (12)C18—C17—C19108.6 (4)
O4—Ru1—O3167.90 (12)C18—C17—C16111.1 (4)
O1—Ru1—O388.99 (13)C19—C17—C16110.1 (4)
O2—Ru1—N296.44 (14)C18—C17—C20108.2 (4)
O4—Ru1—N294.41 (13)C19—C17—C20107.9 (4)
O1—Ru1—N2175.38 (14)C16—C17—C20110.9 (4)
O3—Ru1—N295.04 (13)C17—C18—H18A109.5
O2—Ru1—N1174.28 (14)C17—C18—H18B109.5
O4—Ru1—N193.75 (14)H18A—C18—H18B109.5
O1—Ru1—N199.00 (14)C17—C18—H18C109.5
O3—Ru1—N195.53 (13)H18A—C18—H18C109.5
N2—Ru1—N178.39 (15)H18B—C18—H18C109.5
C14—O1—Ru1108.6 (3)C17—C19—H19A109.5
C15—O2—Ru1109.2 (3)C17—C19—H19B109.5
C28—O3—Ru1107.3 (3)H19A—C19—H19B109.5
C1—O4—Ru1108.0 (3)C17—C19—H19C109.5
C29—N1—C33118.2 (4)H19A—C19—H19C109.5
C29—N1—Ru1125.3 (3)H19B—C19—H19C109.5
C33—N1—Ru1116.5 (3)C17—C20—H20A109.5
C38—N2—C34118.0 (4)C17—C20—H20B109.5
C38—N2—Ru1125.1 (3)H20A—C20—H20B109.5
C34—N2—Ru1116.9 (3)C17—C20—H20C109.5
O4—C1—C2122.4 (5)H20A—C20—H20C109.5
O4—C1—C14116.6 (4)H20B—C20—H20C109.5
C2—C1—C14120.9 (5)C16—C21—C22124.5 (4)
C3—C2—C1120.2 (5)C16—C21—H21117.7
C3—C2—H2119.9C22—C21—H21117.7
C1—C2—H2119.9C27—C22—C21118.4 (4)
C2—C3—C8117.5 (5)C27—C22—C23122.6 (4)
C2—C3—C4122.8 (5)C21—C22—C23119.0 (4)
C8—C3—C4119.7 (5)C26—C23—C22113.5 (4)
C7—C4—C3111.8 (5)C26—C23—C25108.0 (4)
C7—C4—C5111.7 (6)C22—C23—C25108.4 (4)
C3—C4—C5109.3 (5)C26—C23—C24108.1 (4)
C7—C4—C6107.2 (6)C22—C23—C24110.2 (4)
C3—C4—C6109.9 (5)C25—C23—C24108.4 (4)
C5—C4—C6106.7 (5)C23—C24—H24A109.5
C4—C5—H5A109.5C23—C24—H24B109.5
C4—C5—H5B109.5H24A—C24—H24B109.5
H5A—C5—H5B109.5C23—C24—H24C109.5
C4—C5—H5C109.5H24A—C24—H24C109.5
H5A—C5—H5C109.5H24B—C24—H24C109.5
H5B—C5—H5C109.5C23—C25—H25A109.5
C4—C6—H6A109.5C23—C25—H25B109.5
C4—C6—H6B109.5H25A—C25—H25B109.5
H6A—C6—H6B109.5C23—C25—H25C109.5
C4—C6—H6C109.5H25A—C25—H25C109.5
H6A—C6—H6C109.5H25B—C25—H25C109.5
H6B—C6—H6C109.5C23—C26—H26A109.5
C4—C7—H7A109.5C23—C26—H26B109.5
C4—C7—H7B109.5H26A—C26—H26B109.5
H7A—C7—H7B109.5C23—C26—H26C109.5
C4—C7—H7C109.5H26A—C26—H26C109.5
H7A—C7—H7C109.5H26B—C26—H26C109.5
H7B—C7—H7C109.5C22—C27—C28119.8 (4)
C9—C8—C3125.6 (5)C22—C27—H27120.1
C9—C8—H8117.2C28—C27—H27120.1
C3—C8—H8117.2O3—C28—C27122.7 (4)
C8—C9—C14115.3 (5)O3—C28—C15116.2 (4)
C8—C9—C10122.5 (5)C27—C28—C15121.1 (4)
C14—C9—C10122.2 (5)N1—C29—C30122.5 (4)
C9—C10—C13112.5 (5)N1—C29—H29118.7
C9—C10—C11112.4 (5)C30—C29—H29118.7
C13—C10—C11107.8 (5)C31—C30—C29119.5 (5)
C9—C10—C12108.7 (5)C31—C30—H30120.3
C13—C10—C12107.9 (5)C29—C30—H30120.3
C11—C10—C12107.3 (5)C30—C31—C32118.7 (5)
C10—C11—H11A109.5C30—C31—H31120.7
C10—C11—H11B109.5C32—C31—H31120.7
H11A—C11—H11B109.5C33—C32—C31119.6 (4)
C10—C11—H11C109.5C33—C32—H32120.2
H11A—C11—H11C109.5C31—C32—H32120.2
H11B—C11—H11C109.5N1—C33—C32121.5 (4)
C10—C12—H12A109.5N1—C33—C34113.6 (4)
C10—C12—H12B109.5C32—C33—C34124.8 (4)
H12A—C12—H12B109.5N2—C34—C35121.9 (4)
C10—C12—H12C109.5N2—C34—C33114.5 (4)
H12A—C12—H12C109.5C35—C34—C33123.6 (4)
H12B—C12—H12C109.5C36—C35—C34119.1 (4)
C10—C13—H13A109.5C36—C35—H35120.4
C10—C13—H13B109.5C34—C35—H35120.4
H13A—C13—H13B109.5C35—C36—C37119.2 (5)
C10—C13—H13C109.5C35—C36—H36120.4
H13A—C13—H13C109.5C37—C36—H36120.4
H13B—C13—H13C109.5C38—C37—C36119.0 (4)
O1—C14—C9124.0 (5)C38—C37—H37120.5
O1—C14—C1115.6 (4)C36—C37—H37120.5
C9—C14—C1120.4 (5)N2—C38—C37122.7 (4)
O2—C15—C16124.3 (4)N2—C38—H38118.7
O2—C15—C28116.2 (4)C37—C38—H38118.7
C16—C15—C28119.5 (4)
Ru1—O4—C1—C2160.9 (4)C17—C16—C21—C22176.7 (5)
Ru1—O4—C1—C1423.0 (5)C16—C21—C22—C274.8 (7)
O4—C1—C2—C3178.9 (5)C16—C21—C22—C23175.5 (5)
C14—C1—C2—C33.0 (8)C27—C22—C23—C2615.3 (7)
C1—C2—C3—C83.5 (8)C21—C22—C23—C26165.0 (4)
C1—C2—C3—C4173.5 (5)C27—C22—C23—C25104.6 (5)
C2—C3—C4—C711.4 (9)C21—C22—C23—C2575.1 (6)
C8—C3—C4—C7171.7 (6)C27—C22—C23—C24136.8 (5)
C2—C3—C4—C5112.8 (6)C21—C22—C23—C2443.5 (6)
C8—C3—C4—C564.1 (7)C21—C22—C27—C284.4 (7)
C2—C3—C4—C6130.4 (6)C23—C22—C27—C28175.9 (4)
C8—C3—C4—C652.7 (7)Ru1—O3—C28—C27158.8 (4)
C2—C3—C8—C91.8 (9)Ru1—O3—C28—C1523.9 (5)
C4—C3—C8—C9175.3 (6)C22—C27—C28—O3177.2 (4)
C3—C8—C9—C140.5 (8)C22—C27—C28—C150.0 (7)
C3—C8—C9—C10179.4 (5)O2—C15—C28—O34.9 (6)
C8—C9—C10—C13122.6 (6)C16—C15—C28—O3173.0 (4)
C14—C9—C10—C1356.3 (7)O2—C15—C28—C27177.7 (4)
C8—C9—C10—C110.7 (8)C16—C15—C28—C274.4 (7)
C14—C9—C10—C11178.2 (5)C33—N1—C29—C301.2 (6)
C8—C9—C10—C12117.9 (6)Ru1—N1—C29—C30179.4 (3)
C14—C9—C10—C1263.2 (7)N1—C29—C30—C311.4 (7)
Ru1—O1—C14—C9161.2 (4)C29—C30—C31—C320.5 (7)
Ru1—O1—C14—C119.8 (5)C30—C31—C32—C330.5 (7)
C8—C9—C14—O1180.0 (5)C29—N1—C33—C320.1 (6)
C10—C9—C14—O11.0 (8)Ru1—N1—C33—C32179.5 (3)
C8—C9—C14—C11.0 (8)C29—N1—C33—C34178.4 (4)
C10—C9—C14—C1180.0 (5)Ru1—N1—C33—C342.1 (5)
O4—C1—C14—O12.3 (7)C31—C32—C33—N10.8 (6)
C2—C1—C14—O1178.4 (4)C31—C32—C33—C34177.4 (4)
O4—C1—C14—C9176.8 (4)C38—N2—C34—C351.8 (6)
C2—C1—C14—C90.7 (8)Ru1—N2—C34—C35176.8 (3)
Ru1—O2—C15—C16165.0 (4)C38—N2—C34—C33178.7 (4)
Ru1—O2—C15—C2817.2 (5)Ru1—N2—C34—C332.7 (5)
O2—C15—C16—C21178.2 (4)N1—C33—C34—N20.4 (5)
C28—C15—C16—C214.0 (7)C32—C33—C34—N2177.9 (4)
O2—C15—C16—C171.0 (7)N1—C33—C34—C35179.1 (4)
C28—C15—C16—C17178.8 (4)C32—C33—C34—C352.6 (7)
C21—C16—C17—C18116.4 (5)N2—C34—C35—C362.1 (6)
C15—C16—C17—C1860.6 (6)C33—C34—C35—C36178.5 (4)
C21—C16—C17—C19123.2 (5)C34—C35—C36—C370.6 (7)
C15—C16—C17—C1959.8 (6)C35—C36—C37—C381.1 (7)
C21—C16—C17—C204.0 (7)C34—N2—C38—C370.1 (6)
C15—C16—C17—C20179.0 (5)Ru1—N2—C38—C37178.4 (3)
C15—C16—C21—C220.4 (7)C36—C37—C38—N21.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···O3i0.932.543.427 (6)159
C32—H32···O4ii0.932.493.322 (6)148
C35—H35···O4ii0.932.393.232 (6)151
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.
 

Acknowledgements

The authors are grateful to Dr Igor Fritsky and Dr Musheer Ahmad for important discussions.

Funding information

Funding for this research was provided by: National Taras Shevchenko University, Department of Chemistry

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchanan, R. M., Kessel, S. L., Downs, H. H., Pierpont, C. G. & Hendrickson, D. N. (1978). J. Am. Chem. Soc. 100, 7894–7900.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationLever, A. B. P., Auburn, P. R., Dodsworth, E. S., Haga, M. A., Liu, W., Melnik, M. & Nevin, W. A. (1988). J. Am. Chem. Soc. 110, 8076–8084.  CrossRef CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPagliaro, M., Campestrini, S. & Ciriminna, R. (2005). Chem. Soc. Rev. 34, 837–845.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamakrishna, D. & Bhat, B. R. (2011). Inorg. Chem. Commun. 14, 155–158.  CrossRef CAS Google Scholar
First citationRijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089–1097.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds