research communications
of the monoclinic phase (phase IV) of bis(tetramethylammonium) tetrachloridocuprate(II)
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: dlibasse@gmail.com
The 3)4N]2[CuCl4], was determined at 120 K. The structure of the room-temperature phase has been determined in the orthorhombic Pmcm [Morosin & Lingafelter (1961). J. Phys. Chem. 50–51; Clay et al. (1975). Acta Cryst. B31 289–290]. The consists of one discrete tetrachloridocuprate anion with a distorted tetrahedral geometry and two tetramethylammonium cations. In the crystal, the cations and the anions are linked via weak C—H⋯Cl hydrogen bonds.
of the low-temperature monoclinic phase of the title compound, [(CHCCDC reference: 1531866
1. Chemical context
The title compound undergoes successive phase transitions at 297, 291 and 263 K (Sugiyama et al., 1980). The room temperature phase (phase I) crystallizes in the orthorhombic Pmcm with Z = 4 (Morosin & Lingafelter, 1961; Clay et al., 1975). Three low-temperature phases, named phases II, III and IV in the order of decreasing temperature, show incommensurate, ferroelastic commensurate monoclinic and monoclinic structures, respectively (Sugiyama et al., 1980; Gesi & Iizumi, 1980). We allowed [(CH3)4N]Cl, CuCl2 and thioacetamide to react in ethanol. The expected mixed ligand complex was not crystallized but instead the title compound was obtained accidentally. The of phase IV of the title compound was determined at 120 K and is reported herein.
2. Structural commentary
The 4]2− anion and two crystallographically tetramethylammonium cations (Fig. 1). In the anion, the four Cl atoms are inequivalent with Cu—Cl distances ranging from 2.2313 (15) to 2.2538 (16) Å. The Cl—Cu—Cl angles vary from 98.44 (7) to 133.69 (7)°, indicating a distorted tetrahedral geometry around the CuII atom. Using Houser's τ4 metric [τ4 = 360 − (α + β)/141], where α and β are the largest angles about the metal atom (Yang et al., 2007), we obtain a value of 0.658 for phase IV and 0.792 for the orthorhombic phase I. This indicates a greater deviation from an ideal tetrahedron in phase IV compared with phase I, tending towards a `see-saw' geometry.
of the title compound consists of a discrete [CuCl3. Supramolecular features
In the crystal, the cations and the anions are linked via weak C—H⋯Cl hydrogen bonds (Table 1 and Fig. 2), forming a three-dimensional network.
4. Database survey
A et al., 2016). Of these, three are structures of (Me4N)2[CuCl4] with a discrete [CuCl4]2− anion (Morosin & Lingafelter, 1961; Clay et al., 1975; Hlel et al., 2008).
search for compounds that incorporate a tetramethylammonium ion and a copper tetrachloride species reveals thirteen structures (CSD November 2016; Groom5. Synthesis and crystallization
On mixing [(CH3)4N]Cl (0.465 g, 4.2 mmol) in ethanol (10 ml) with CuCl2·2H2O (0.365 g, 2.1 mmol) in ethanol (10 ml) and thioacetamide (0.160 g, 2.1 mmol) in ethanol (10 ml), a clear solution is obtained. Slow evaporation at room temperature (301 K) yielded pale-green crystals of [(CH3)4N]2[CuCl4] suitable for X-ray determination.
6. Refinement
Crystal data, data collection and structure . H atoms were included in idealized geometries and allowed to rotate to minimize their electron-density contribution with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The crystal used was found to be twinned through a 180° rotation about the reciprocal a axis with a twin component ratio of 0.76:0.24 (matrix: [1.000 −0.003 0.004 0.001 −1.000 −0.003 −0.093 0.005 −1.000]) . The diffraction data were integrated routinely applying this matrix and were scaled for absorption effects using TWINABS (Krause et al., 2015). In the final model, incorporation of the twinned data did not significantly alter the model, thus the final model was refined using the majority component data.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1531866
https://doi.org/10.1107/S2056989017002146/is5469sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017002146/is5469Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).(C4H12N)2[CuCl4] | F(000) = 732 |
Mr = 353.63 | Dx = 1.456 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9901 (5) Å | Cell parameters from 6598 reflections |
b = 12.0059 (7) Å | θ = 2.6–24.7° |
c = 14.9570 (9) Å | µ = 1.99 mm−1 |
β = 91.719 (3)° | T = 120 K |
V = 1613.65 (16) Å3 | Block, pale green |
Z = 4 | 0.15 × 0.12 × 0.11 mm |
Bruker APEXII diffractometer | 4019 independent reflections |
Radiation source: fine-focus sealed tube | 2862 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.4°, θmin = 2.2° |
combination of ω and φ–scans | h = −12→12 |
Absorption correction: multi-scan (TWINABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.659, Tmax = 0.746 | l = 0→19 |
7842 measured reflections |
Refinement on F2 | Primary atom site location: real-space vector search |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + 15.8242P] where P = (Fo2 + 2Fc2)/3 |
4019 reflections | (Δ/σ)max < 0.001 |
144 parameters | Δρmax = 1.16 e Å−3 |
0 restraints | Δρmin = −1.03 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.77037 (7) | 0.71890 (6) | 0.60734 (5) | 0.01762 (17) | |
Cl1 | 0.78370 (15) | 0.53786 (11) | 0.64164 (10) | 0.0211 (3) | |
Cl2 | 0.79189 (17) | 0.81507 (13) | 0.47896 (10) | 0.0275 (3) | |
Cl3 | 0.97801 (15) | 0.77628 (13) | 0.67958 (10) | 0.0267 (3) | |
Cl4 | 0.52836 (16) | 0.74708 (14) | 0.62755 (13) | 0.0363 (4) | |
N1 | 0.2548 (5) | 0.4839 (4) | 0.6659 (3) | 0.0183 (10) | |
C1 | 0.1601 (7) | 0.3893 (5) | 0.6925 (5) | 0.0322 (15) | |
H1A | 0.0671 | 0.4177 | 0.7162 | 0.048* | |
H1B | 0.2128 | 0.3452 | 0.7386 | 0.048* | |
H1C | 0.1378 | 0.3422 | 0.6403 | 0.048* | |
C2 | 0.1815 (7) | 0.5491 (6) | 0.5923 (4) | 0.0328 (15) | |
H2A | 0.0840 | 0.5750 | 0.6113 | 0.049* | |
H2B | 0.1685 | 0.5017 | 0.5392 | 0.049* | |
H2C | 0.2436 | 0.6133 | 0.5779 | 0.049* | |
C3 | 0.2801 (7) | 0.5574 (6) | 0.7446 (5) | 0.0344 (16) | |
H3A | 0.1846 | 0.5868 | 0.7639 | 0.052* | |
H3B | 0.3451 | 0.6192 | 0.7284 | 0.052* | |
H3C | 0.3273 | 0.5146 | 0.7935 | 0.052* | |
C4 | 0.4008 (6) | 0.4411 (6) | 0.6347 (5) | 0.0296 (14) | |
H4A | 0.4516 | 0.4002 | 0.6834 | 0.044* | |
H4B | 0.4629 | 0.5038 | 0.6167 | 0.044* | |
H4C | 0.3836 | 0.3912 | 0.5836 | 0.044* | |
N2 | 0.7505 (5) | 0.1309 (4) | 0.5840 (3) | 0.0198 (10) | |
C5 | 0.7809 (7) | 0.1175 (6) | 0.4871 (4) | 0.0279 (14) | |
H5A | 0.7882 | 0.0381 | 0.4727 | 0.042* | |
H5B | 0.8748 | 0.1545 | 0.4738 | 0.042* | |
H5C | 0.6998 | 0.1511 | 0.4512 | 0.042* | |
C6 | 0.6058 (7) | 0.0788 (6) | 0.6059 (5) | 0.0334 (16) | |
H6A | 0.6112 | −0.0018 | 0.5957 | 0.050* | |
H6B | 0.5264 | 0.1106 | 0.5675 | 0.050* | |
H6C | 0.5846 | 0.0931 | 0.6687 | 0.050* | |
C7 | 0.7444 (8) | 0.2520 (5) | 0.6048 (5) | 0.0347 (16) | |
H7A | 0.7225 | 0.2622 | 0.6681 | 0.052* | |
H7B | 0.6661 | 0.2872 | 0.5676 | 0.052* | |
H7C | 0.8405 | 0.2863 | 0.5925 | 0.052* | |
C8 | 0.8722 (7) | 0.0776 (6) | 0.6381 (4) | 0.0304 (15) | |
H8A | 0.8733 | −0.0026 | 0.6260 | 0.046* | |
H8B | 0.8558 | 0.0901 | 0.7018 | 0.046* | |
H8C | 0.9678 | 0.1102 | 0.6222 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0169 (3) | 0.0172 (3) | 0.0188 (3) | 0.0000 (3) | 0.0018 (2) | 0.0003 (3) |
Cl1 | 0.0216 (7) | 0.0157 (6) | 0.0261 (7) | 0.0009 (5) | 0.0031 (5) | 0.0006 (5) |
Cl2 | 0.0355 (8) | 0.0277 (8) | 0.0195 (7) | −0.0040 (6) | 0.0024 (6) | 0.0043 (6) |
Cl3 | 0.0227 (7) | 0.0268 (8) | 0.0304 (8) | −0.0034 (6) | −0.0019 (6) | −0.0028 (6) |
Cl4 | 0.0169 (7) | 0.0303 (8) | 0.0621 (12) | 0.0049 (6) | 0.0097 (7) | 0.0129 (8) |
N1 | 0.014 (2) | 0.018 (2) | 0.022 (3) | 0.0001 (18) | −0.0003 (18) | 0.0018 (19) |
C1 | 0.028 (3) | 0.022 (3) | 0.047 (4) | −0.010 (3) | 0.012 (3) | −0.005 (3) |
C2 | 0.030 (3) | 0.048 (4) | 0.020 (3) | 0.013 (3) | −0.004 (3) | 0.007 (3) |
C3 | 0.038 (4) | 0.037 (4) | 0.028 (4) | −0.016 (3) | −0.001 (3) | −0.001 (3) |
C4 | 0.020 (3) | 0.030 (4) | 0.038 (4) | 0.006 (3) | 0.008 (3) | 0.007 (3) |
N2 | 0.020 (2) | 0.020 (2) | 0.019 (3) | 0.0022 (19) | 0.0043 (19) | 0.0018 (19) |
C5 | 0.036 (4) | 0.031 (3) | 0.016 (3) | 0.009 (3) | 0.002 (3) | 0.001 (3) |
C6 | 0.021 (3) | 0.031 (4) | 0.048 (4) | −0.006 (3) | 0.007 (3) | 0.005 (3) |
C7 | 0.051 (4) | 0.022 (3) | 0.032 (4) | 0.001 (3) | 0.009 (3) | −0.002 (3) |
C8 | 0.025 (3) | 0.043 (4) | 0.023 (3) | 0.009 (3) | 0.001 (2) | 0.010 (3) |
Cu1—Cl4 | 2.2313 (15) | C4—H4B | 0.9800 |
Cu1—Cl1 | 2.2357 (15) | C4—H4C | 0.9800 |
Cu1—Cl3 | 2.2374 (15) | N2—C8 | 1.486 (7) |
Cu1—Cl2 | 2.2538 (16) | N2—C7 | 1.488 (8) |
N1—C1 | 1.481 (7) | N2—C6 | 1.488 (7) |
N1—C3 | 1.483 (8) | N2—C5 | 1.491 (7) |
N1—C2 | 1.488 (7) | C5—H5A | 0.9800 |
N1—C4 | 1.498 (7) | C5—H5B | 0.9800 |
C1—H1A | 0.9800 | C5—H5C | 0.9800 |
C1—H1B | 0.9800 | C6—H6A | 0.9800 |
C1—H1C | 0.9800 | C6—H6B | 0.9800 |
C2—H2A | 0.9800 | C6—H6C | 0.9800 |
C2—H2B | 0.9800 | C7—H7A | 0.9800 |
C2—H2C | 0.9800 | C7—H7B | 0.9800 |
C3—H3A | 0.9800 | C7—H7C | 0.9800 |
C3—H3B | 0.9800 | C8—H8A | 0.9800 |
C3—H3C | 0.9800 | C8—H8B | 0.9800 |
C4—H4A | 0.9800 | C8—H8C | 0.9800 |
Cl4—Cu1—Cl1 | 99.33 (6) | N1—C4—H4C | 109.5 |
Cl4—Cu1—Cl3 | 133.69 (7) | H4A—C4—H4C | 109.5 |
Cl1—Cu1—Cl3 | 98.64 (6) | H4B—C4—H4C | 109.5 |
Cl4—Cu1—Cl2 | 98.44 (7) | C8—N2—C7 | 109.7 (5) |
Cl1—Cu1—Cl2 | 133.48 (6) | C8—N2—C6 | 109.5 (5) |
Cl3—Cu1—Cl2 | 99.32 (6) | C7—N2—C6 | 109.1 (5) |
C1—N1—C3 | 108.6 (5) | C8—N2—C5 | 109.2 (4) |
C1—N1—C2 | 110.9 (5) | C7—N2—C5 | 108.5 (5) |
C3—N1—C2 | 109.2 (5) | C6—N2—C5 | 110.8 (5) |
C1—N1—C4 | 109.7 (5) | N2—C5—H5A | 109.5 |
C3—N1—C4 | 109.6 (5) | N2—C5—H5B | 109.5 |
C2—N1—C4 | 108.9 (5) | H5A—C5—H5B | 109.5 |
N1—C1—H1A | 109.5 | N2—C5—H5C | 109.5 |
N1—C1—H1B | 109.5 | H5A—C5—H5C | 109.5 |
H1A—C1—H1B | 109.5 | H5B—C5—H5C | 109.5 |
N1—C1—H1C | 109.5 | N2—C6—H6A | 109.5 |
H1A—C1—H1C | 109.5 | N2—C6—H6B | 109.5 |
H1B—C1—H1C | 109.5 | H6A—C6—H6B | 109.5 |
N1—C2—H2A | 109.5 | N2—C6—H6C | 109.5 |
N1—C2—H2B | 109.5 | H6A—C6—H6C | 109.5 |
H2A—C2—H2B | 109.5 | H6B—C6—H6C | 109.5 |
N1—C2—H2C | 109.5 | N2—C7—H7A | 109.5 |
H2A—C2—H2C | 109.5 | N2—C7—H7B | 109.5 |
H2B—C2—H2C | 109.5 | H7A—C7—H7B | 109.5 |
N1—C3—H3A | 109.5 | N2—C7—H7C | 109.5 |
N1—C3—H3B | 109.5 | H7A—C7—H7C | 109.5 |
H3A—C3—H3B | 109.5 | H7B—C7—H7C | 109.5 |
N1—C3—H3C | 109.5 | N2—C8—H8A | 109.5 |
H3A—C3—H3C | 109.5 | N2—C8—H8B | 109.5 |
H3B—C3—H3C | 109.5 | H8A—C8—H8B | 109.5 |
N1—C4—H4A | 109.5 | N2—C8—H8C | 109.5 |
N1—C4—H4B | 109.5 | H8A—C8—H8C | 109.5 |
H4A—C4—H4B | 109.5 | H8B—C8—H8C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···Cl2i | 0.98 | 2.69 | 3.585 (7) | 153 |
C2—H2A···Cl1ii | 0.98 | 2.79 | 3.675 (7) | 151 |
C2—H2A···Cl3ii | 0.98 | 2.80 | 3.555 (7) | 134 |
C2—H2B···Cl1i | 0.98 | 2.79 | 3.674 (7) | 150 |
C3—H3B···Cl4 | 0.98 | 2.74 | 3.670 (7) | 159 |
C4—H4A···Cl3iii | 0.98 | 2.59 | 3.555 (7) | 166 |
C5—H5A···Cl2iv | 0.98 | 2.68 | 3.635 (7) | 165 |
C5—H5B···Cl3v | 0.98 | 2.81 | 3.587 (6) | 137 |
C5—H5C···Cl4i | 0.98 | 2.63 | 3.610 (6) | 173 |
C8—H8B···Cl1iii | 0.98 | 2.76 | 3.650 (6) | 151 |
C8—H8C···Cl2v | 0.98 | 2.82 | 3.763 (7) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) −x+2, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and the University of Notre Dame (USA) for equipment support.
References
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289–290. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Gesi, K. & Iizumi, M. (1980). J. Phys. Soc. Jpn, 48, 1775–1776. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hlel, F., Ben Rhaeim, A. & Guidara, K. (2008). Zh. Neorg. Khim. 53, 785–793. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Morosin, B. & Lingafelter, E. C. (1961). J. Phys. Chem. 65, 50–51. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sugiyama, J., Wada, M., Sawada, A. & Ishibashi, Y. (1980). J. Phys. Soc. Jpn, 49, 1405–1412. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.