research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the monoclinic phase (phase IV) of bis­­(tetra­methyl­ammonium) tetra­chlorido­cuprate(II)

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: dlibasse@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 12 December 2016; accepted 9 February 2017; online 14 February 2017)

The crystal structure of the low-temperature monoclinic phase of the title compound, [(CH3)4N]2[CuCl4], was determined at 120 K. The structure of the room-temperature phase has been determined in the ortho­rhom­bic space group Pmcm [Morosin & Lingafelter (1961[Morosin, B. & Lingafelter, E. C. (1961). J. Phys. Chem. 65, 50-51.]). J. Phys. Chem. 50–51; Clay et al. (1975[Clay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289-290.]). Acta Cryst. B31 289–290]. The asymmetric unit consists of one discrete tetra­chlorido­cuprate anion with a distorted tetra­hedral geometry and two tetra­methyl­ammonium cations. In the crystal, the cations and the anions are linked via weak C—H⋯Cl hydrogen bonds.

1. Chemical context

The title compound undergoes successive phase transitions at 297, 291 and 263 K (Sugiyama et al., 1980[Sugiyama, J., Wada, M., Sawada, A. & Ishibashi, Y. (1980). J. Phys. Soc. Jpn, 49, 1405-1412.]). The room temperature phase (phase I) crystallizes in the ortho­rhom­bic space group Pmcm with Z = 4 (Morosin & Lingafelter, 1961[Morosin, B. & Lingafelter, E. C. (1961). J. Phys. Chem. 65, 50-51.]; Clay et al., 1975[Clay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289-290.]). Three low-temperature phases, named phases II, III and IV in the order of decreasing temperature, show incommensurate, ferroelastic commensurate monoclinic and monoclinic structures, respectively (Sugiyama et al., 1980[Sugiyama, J., Wada, M., Sawada, A. & Ishibashi, Y. (1980). J. Phys. Soc. Jpn, 49, 1405-1412.]; Gesi & Iizumi, 1980[Gesi, K. & Iizumi, M. (1980). J. Phys. Soc. Jpn, 48, 1775-1776.]). We allowed [(CH3)4N]Cl, CuCl2 and thio­acetamide to react in ethanol. The expected mixed ligand complex was not crystallized but instead the title compound was obtained accidentally. The crystal structure of phase IV of the title compound was determined at 120 K and is reported herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of a discrete [CuCl4]2− anion and two crystallographically tetra­methyl­ammonium cations (Fig. 1[link]). In the anion, the four Cl atoms are inequivalent with Cu—Cl distances ranging from 2.2313 (15) to 2.2538 (16) Å. The Cl—Cu—Cl angles vary from 98.44 (7) to 133.69 (7)°, indicating a distorted tetra­hedral geometry around the CuII atom. Using Houser's τ4 metric [τ4 = 360 − (α + β)/141], where α and β are the largest angles about the metal atom (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), we obtain a value of 0.658 for phase IV and 0.792 for the ortho­rhom­bic phase I. This indicates a greater deviation from an ideal tetra­hedron in phase IV compared with phase I, tending towards a `see-saw' geometry.

[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are depicted as spheres of an arbitrary radius.

3. Supra­molecular features

In the crystal, the cations and the anions are linked via weak C—H⋯Cl hydrogen bonds (Table 1[link] and Fig. 2[link]), forming a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯Cl2i 0.98 2.69 3.585 (7) 153
C2—H2A⋯Cl1ii 0.98 2.79 3.675 (7) 151
C2—H2A⋯Cl3ii 0.98 2.80 3.555 (7) 134
C2—H2B⋯Cl1i 0.98 2.79 3.674 (7) 150
C3—H3B⋯Cl4 0.98 2.74 3.670 (7) 159
C4—H4A⋯Cl3iii 0.98 2.59 3.555 (7) 166
C5—H5A⋯Cl2iv 0.98 2.68 3.635 (7) 165
C5—H5B⋯Cl3v 0.98 2.81 3.587 (6) 137
C5—H5C⋯Cl4i 0.98 2.63 3.610 (6) 173
C8—H8B⋯Cl1iii 0.98 2.76 3.650 (6) 151
C8—H8C⋯Cl2v 0.98 2.82 3.763 (7) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z; (v) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the a axis, showing the C—H⋯Cl hydrogen bonds (blue dashed lines).

4. Database survey

A substructure search for compounds that incorporate a tetra­methyl­ammonium ion and a copper tetra­chloride species reveals thirteen structures (CSD November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Of these, three are structures of (Me4N)2[CuCl4] with a discrete [CuCl4]2− anion (Morosin & Lingafelter, 1961[Morosin, B. & Lingafelter, E. C. (1961). J. Phys. Chem. 65, 50-51.]; Clay et al., 1975[Clay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289-290.]; Hlel et al., 2008[Hlel, F., Ben Rhaeim, A. & Guidara, K. (2008). Zh. Neorg. Khim. 53, 785-793.]).

5. Synthesis and crystallization

On mixing [(CH3)4N]Cl (0.465 g, 4.2 mmol) in ethanol (10 ml) with CuCl2·2H2O (0.365 g, 2.1 mmol) in ethanol (10 ml) and thio­acetamide (0.160 g, 2.1 mmol) in ethanol (10 ml), a clear solution is obtained. Slow evaporation at room temperature (301 K) yielded pale-green crystals of [(CH3)4N]2[CuCl4] suitable for X-ray determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in idealized geometries and allowed to rotate to minimize their electron-density contribution with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The crystal used was found to be twinned through a 180° rotation about the reciprocal a axis with a twin component ratio of 0.76:0.24 (matrix: [1.000 −0.003 0.004 0.001 −1.000 −0.003 −0.093 0.005 −1.000]) . The diffraction data were integrated routinely applying this matrix and were scaled for absorption effects using TWINABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). In the final model, incorporation of the twinned data did not significantly alter the model, thus the final model was refined using the majority component data.

Table 2
Experimental details

Crystal data
Chemical formula (C4H12N)2[CuCl4]
Mr 353.63
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 8.9901 (5), 12.0059 (7), 14.9570 (9)
β (°) 91.719 (3)
V3) 1613.65 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.99
Crystal size (mm) 0.15 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (TWINABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.659, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7842, 4019, 2862
Rint 0.057
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.141, 1.12
No. of reflections 4019
No. of parameters 144
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.16, −1.03
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(tetramethylammonium) tetrachloridocuprate(II) top
Crystal data top
(C4H12N)2[CuCl4]F(000) = 732
Mr = 353.63Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9901 (5) ÅCell parameters from 6598 reflections
b = 12.0059 (7) Åθ = 2.6–24.7°
c = 14.9570 (9) ŵ = 1.99 mm1
β = 91.719 (3)°T = 120 K
V = 1613.65 (16) Å3Block, pale green
Z = 40.15 × 0.12 × 0.11 mm
Data collection top
Bruker APEXII
diffractometer
4019 independent reflections
Radiation source: fine-focus sealed tube2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 2.2°
combination of ω and φ–scansh = 1212
Absorption correction: multi-scan
(TWINABS; Krause et al., 2015)
k = 1616
Tmin = 0.659, Tmax = 0.746l = 019
7842 measured reflections
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + 15.8242P]
where P = (Fo2 + 2Fc2)/3
4019 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77037 (7)0.71890 (6)0.60734 (5)0.01762 (17)
Cl10.78370 (15)0.53786 (11)0.64164 (10)0.0211 (3)
Cl20.79189 (17)0.81507 (13)0.47896 (10)0.0275 (3)
Cl30.97801 (15)0.77628 (13)0.67958 (10)0.0267 (3)
Cl40.52836 (16)0.74708 (14)0.62755 (13)0.0363 (4)
N10.2548 (5)0.4839 (4)0.6659 (3)0.0183 (10)
C10.1601 (7)0.3893 (5)0.6925 (5)0.0322 (15)
H1A0.06710.41770.71620.048*
H1B0.21280.34520.73860.048*
H1C0.13780.34220.64030.048*
C20.1815 (7)0.5491 (6)0.5923 (4)0.0328 (15)
H2A0.08400.57500.61130.049*
H2B0.16850.50170.53920.049*
H2C0.24360.61330.57790.049*
C30.2801 (7)0.5574 (6)0.7446 (5)0.0344 (16)
H3A0.18460.58680.76390.052*
H3B0.34510.61920.72840.052*
H3C0.32730.51460.79350.052*
C40.4008 (6)0.4411 (6)0.6347 (5)0.0296 (14)
H4A0.45160.40020.68340.044*
H4B0.46290.50380.61670.044*
H4C0.38360.39120.58360.044*
N20.7505 (5)0.1309 (4)0.5840 (3)0.0198 (10)
C50.7809 (7)0.1175 (6)0.4871 (4)0.0279 (14)
H5A0.78820.03810.47270.042*
H5B0.87480.15450.47380.042*
H5C0.69980.15110.45120.042*
C60.6058 (7)0.0788 (6)0.6059 (5)0.0334 (16)
H6A0.61120.00180.59570.050*
H6B0.52640.11060.56750.050*
H6C0.58460.09310.66870.050*
C70.7444 (8)0.2520 (5)0.6048 (5)0.0347 (16)
H7A0.72250.26220.66810.052*
H7B0.66610.28720.56760.052*
H7C0.84050.28630.59250.052*
C80.8722 (7)0.0776 (6)0.6381 (4)0.0304 (15)
H8A0.87330.00260.62600.046*
H8B0.85580.09010.70180.046*
H8C0.96780.11020.62220.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0169 (3)0.0172 (3)0.0188 (3)0.0000 (3)0.0018 (2)0.0003 (3)
Cl10.0216 (7)0.0157 (6)0.0261 (7)0.0009 (5)0.0031 (5)0.0006 (5)
Cl20.0355 (8)0.0277 (8)0.0195 (7)0.0040 (6)0.0024 (6)0.0043 (6)
Cl30.0227 (7)0.0268 (8)0.0304 (8)0.0034 (6)0.0019 (6)0.0028 (6)
Cl40.0169 (7)0.0303 (8)0.0621 (12)0.0049 (6)0.0097 (7)0.0129 (8)
N10.014 (2)0.018 (2)0.022 (3)0.0001 (18)0.0003 (18)0.0018 (19)
C10.028 (3)0.022 (3)0.047 (4)0.010 (3)0.012 (3)0.005 (3)
C20.030 (3)0.048 (4)0.020 (3)0.013 (3)0.004 (3)0.007 (3)
C30.038 (4)0.037 (4)0.028 (4)0.016 (3)0.001 (3)0.001 (3)
C40.020 (3)0.030 (4)0.038 (4)0.006 (3)0.008 (3)0.007 (3)
N20.020 (2)0.020 (2)0.019 (3)0.0022 (19)0.0043 (19)0.0018 (19)
C50.036 (4)0.031 (3)0.016 (3)0.009 (3)0.002 (3)0.001 (3)
C60.021 (3)0.031 (4)0.048 (4)0.006 (3)0.007 (3)0.005 (3)
C70.051 (4)0.022 (3)0.032 (4)0.001 (3)0.009 (3)0.002 (3)
C80.025 (3)0.043 (4)0.023 (3)0.009 (3)0.001 (2)0.010 (3)
Geometric parameters (Å, º) top
Cu1—Cl42.2313 (15)C4—H4B0.9800
Cu1—Cl12.2357 (15)C4—H4C0.9800
Cu1—Cl32.2374 (15)N2—C81.486 (7)
Cu1—Cl22.2538 (16)N2—C71.488 (8)
N1—C11.481 (7)N2—C61.488 (7)
N1—C31.483 (8)N2—C51.491 (7)
N1—C21.488 (7)C5—H5A0.9800
N1—C41.498 (7)C5—H5B0.9800
C1—H1A0.9800C5—H5C0.9800
C1—H1B0.9800C6—H6A0.9800
C1—H1C0.9800C6—H6B0.9800
C2—H2A0.9800C6—H6C0.9800
C2—H2B0.9800C7—H7A0.9800
C2—H2C0.9800C7—H7B0.9800
C3—H3A0.9800C7—H7C0.9800
C3—H3B0.9800C8—H8A0.9800
C3—H3C0.9800C8—H8B0.9800
C4—H4A0.9800C8—H8C0.9800
Cl4—Cu1—Cl199.33 (6)N1—C4—H4C109.5
Cl4—Cu1—Cl3133.69 (7)H4A—C4—H4C109.5
Cl1—Cu1—Cl398.64 (6)H4B—C4—H4C109.5
Cl4—Cu1—Cl298.44 (7)C8—N2—C7109.7 (5)
Cl1—Cu1—Cl2133.48 (6)C8—N2—C6109.5 (5)
Cl3—Cu1—Cl299.32 (6)C7—N2—C6109.1 (5)
C1—N1—C3108.6 (5)C8—N2—C5109.2 (4)
C1—N1—C2110.9 (5)C7—N2—C5108.5 (5)
C3—N1—C2109.2 (5)C6—N2—C5110.8 (5)
C1—N1—C4109.7 (5)N2—C5—H5A109.5
C3—N1—C4109.6 (5)N2—C5—H5B109.5
C2—N1—C4108.9 (5)H5A—C5—H5B109.5
N1—C1—H1A109.5N2—C5—H5C109.5
N1—C1—H1B109.5H5A—C5—H5C109.5
H1A—C1—H1B109.5H5B—C5—H5C109.5
N1—C1—H1C109.5N2—C6—H6A109.5
H1A—C1—H1C109.5N2—C6—H6B109.5
H1B—C1—H1C109.5H6A—C6—H6B109.5
N1—C2—H2A109.5N2—C6—H6C109.5
N1—C2—H2B109.5H6A—C6—H6C109.5
H2A—C2—H2B109.5H6B—C6—H6C109.5
N1—C2—H2C109.5N2—C7—H7A109.5
H2A—C2—H2C109.5N2—C7—H7B109.5
H2B—C2—H2C109.5H7A—C7—H7B109.5
N1—C3—H3A109.5N2—C7—H7C109.5
N1—C3—H3B109.5H7A—C7—H7C109.5
H3A—C3—H3B109.5H7B—C7—H7C109.5
N1—C3—H3C109.5N2—C8—H8A109.5
H3A—C3—H3C109.5N2—C8—H8B109.5
H3B—C3—H3C109.5H8A—C8—H8B109.5
N1—C4—H4A109.5N2—C8—H8C109.5
N1—C4—H4B109.5H8A—C8—H8C109.5
H4A—C4—H4B109.5H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cl2i0.982.693.585 (7)153
C2—H2A···Cl1ii0.982.793.675 (7)151
C2—H2A···Cl3ii0.982.803.555 (7)134
C2—H2B···Cl1i0.982.793.674 (7)150
C3—H3B···Cl40.982.743.670 (7)159
C4—H4A···Cl3iii0.982.593.555 (7)166
C5—H5A···Cl2iv0.982.683.635 (7)165
C5—H5B···Cl3v0.982.813.587 (6)137
C5—H5C···Cl4i0.982.633.610 (6)173
C8—H8B···Cl1iii0.982.763.650 (6)151
C8—H8C···Cl2v0.982.823.763 (7)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y1, z; (v) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and the University of Notre Dame (USA) for equipment support.

References

First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289–290.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGesi, K. & Iizumi, M. (1980). J. Phys. Soc. Jpn, 48, 1775–1776.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHlel, F., Ben Rhaeim, A. & Guidara, K. (2008). Zh. Neorg. Khim. 53, 785–793.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorosin, B. & Lingafelter, E. C. (1961). J. Phys. Chem. 65, 50–51.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSugiyama, J., Wada, M., Sawada, A. & Ishibashi, Y. (1980). J. Phys. Soc. Jpn, 49, 1405–1412.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds