research communications
New mixed aluminium–chromium diarsenate
aLaboratoire de Materiaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
Potassium chromium aluminium diarsenate, KCr1/4Al3/4As2O7, was prepared by solid-state reaction. The structure consists of (Cr1/4/Al3/4)O6 octahedra and As2O7 diarsenate groups sharing corners to build up a three-dimensional anionic framework. The potassium cations are located in wide channels running along the c-axis direction. The is isostructural with the triclinic AIMIIIX2O7 (AI = alkali metal; MIII = Al, Cr, Fe; X = As, P) compounds. However, the MIII octahedrally coordinated site is 25% partially occupied by chromium and 75% by aluminium.
Keywords: crystal structure; single crystal diffraction; mixed occupancy; channel structure; diarsenate.
CCDC reference: 1530620
1. Chemical context
In recent years, inorganic metal phosphates/arsenates with formula AIMIIIX2O7 (AI = alkali metal; MIII = Al, Cr, Fe; X = As, P) have been part of intensive research activities, with crystals grown either from high-temperature solid-state reactions or under aqueous solution conditions. The crystal chemistry of these compounds with X2O7 groups reveals a large structural variety accompanied in some cases by interesting magnetic, electric, optical, or properties. Focusing on compounds with MIII = Cr, it is noticeable that the corresponding diphosphates have been studied extensively, in contrast to the scarcely studied chromium diarsenates. The title structure is isostructural with the AICrIIIAs2O7 family; nevertheless, in this some of the chromium ions are partly substituted by aluminium in an octahedrally coordinated site. Herein, the preparation and of KCr1/4Al3/4As2O7 is reported. It is one of a series of new potassium chromium–aluminum diarsenate compounds recently isolated by our group.
2. Structural commentary
The structure of KCr1/4Al3/4As2O7 can be described as a three-dimensional framework of [(Cr/Al)As2O7]− anions built up from corner-sharing (Cr/Al)O6 octahedra and As2O7 groups. The (Cr/Al)O6 octahedron shares its six corners with five diarsenate groups while the As2O7 anion shares all of its six corners with five octahedra; the interconnection between the polyhedra results in centrosymmetric (Cr/Al)As2O11 units (Fig. 1). The framework can also be described as been formed by polyhedral parallel layers, as in many isoformular compounds, leaving empty channels running along the c axis in which the K+ cations are located (Fig. 2).
In this structure, the aluminium AlIII and the chromium CrIII cations share the same (2i) crystallographic site. These cations are surrounded by oxygen atoms in an octahedral coordination with an average bond length (Cr/Al)—O of 1.920 (14) Å. The presence of the CrIII cations is proved by the shortening of the Cr—O bond length compared to AlIII—O. In fact, according to similar studies (Bouhassine & Boughzala, 2014, 2015) the average AlIII—O and CrIII—O bond lengths in octahedral coordination are 1.907 and 1.979 Å, respectively.
The two arsenic atoms in the 4 polyhedra connected via the bridging O4 atom into a diarsenate As2O7 anion. Like in the related triclinic structures of KAlAs2O7 (Boughzala & Jouini, 1995) and RbAlAs2O7 (Boughzala et al., 1993), the As—O distances involving the bridging O4 atom are the longest (Table 1). The As1—O4—As2 bridging angle of 118.50 (14)° in the title structure is similar to that in the reported isotypic structures of CsCrAs2O7 [118.7 (2)°; Bouhassine & Boughzala, 2015] and KAlAs2O7 [118.3 (2)°; Boughzala & Jouini, 1995]. The O—As—O bond angles for As1 and As2 span the ranges 103.99 (12) to 117.41 (13) and 106.34 (13) to 113.63 (12), respectively, reflecting a slight distortion of each AsO4 tetrahedron.
are tetrahedrally coordinated. The AsOThe (Cr/Al) cations are in a slightly distorted octahedral oxygen coordination with (Cr/Al)—O distances ranging from 1.898 (3) to 1.940 (3) Å, and with O—(Cr/Al)—O angles ranging from 85.28 (11) to 92.23 (12)° and from 177.25 (11) to 176.41 (11)°. Each (Cr/Al)O6 octahedron is linked by its six vertices to five As2O7 anions. Two corners are joined to the same diarsenate group (Fig. 3). On the other hand, each As2O7 anion is surrounded by five (Cr/Al)O6 units (Fig. 4).
It is worth mentioning that members of the related aluminium diarsenate family AIAlAs2O7 (AI = K, Rb, Tl, Cs; Boughzala & Jouini, 1992) crystallize in the triclinic P and are classified as type II (Durif & Averbuch-Pouchot, 1996); the diarsenate groups have a different conformational orientation compared to that of the title structure, which belongs to the type I family of AIMIIIX2O7 diarsenates. In fact, the diarsenate tetrahedra are in a nearly eclipsed conformation with an O1—As1—As2—O5 torsion angle of 25.4 (2)°, as shown in Fig. 5. The corresponding angle is 158.8 (2)° for KAlAs2O7 (Boughzala & Jouini, 1995).
The potassium cations lodge in two independent special positions in the c-axis direction. The K1 and K2 cations are surrounded by eight and ten oxygen atoms, respectively (Fig. 6), with K—O distances ranging from 2.769 (3) to 3.246 (3) Å and from 2.806 (3) to 3.205 (3) Å, respectively, forming irregular coordination polyhedra, as often occurs with this cation in homologous structures.
located in wide channels that are delimited by the anionic framework and run along the3. Database survey
The structure of KAlP2O7 (Ng & Calvo, 1973) was the first to be published for the AIMIIIX2O7 family (X = As, P). Afterwards, based on different substitutions and combinations, a large number of different phases were isolated and characterized crystallographically. Replacement of the cations can improve the structural and physical properties, but also affects the coordination numbers, the distortion of the coordination polyhedra and the conformation of the X2O7 groups. In addition, the crystal symmetry can be affected. The structures are triclinic, in P with two formulas units, for the diarsenate compounds AIAlAs2O7 (AI = K, Rb, Tl, Cs) (Boughzala & Jouini, 1992; Boughzala et al., 1993; Boughzala & Jouini; 1995), whereas the diphosphates are generally monoclinic. The isotypic AICrP2O7 phases crystallize in P21/c for AI = Na (Bohatý et al., 1982), K (Gentil et al., 1997), Rb (Zhao & Li, 2011) and Cs (Linde & Gorbunova, 1982). The same applies for the AIFeP2O7 phases for AI = Na (Gabelica-Robert et al., 1982) and K (Riou et al., 1988). However, the two Li-containing phases LiMP2O7 show a symmetry reduction to P21 (M = Cr, Ivashkevich et al., 2007; M = Fe, Riou et al., 1990). CsCrAs2O7 (Bouhassine & Boughzala, 2015) is the first phase of the AICrAs2O7 family to crystallize in the P21/c space group.
4. Synthesis and crystallization
The crystals of the title compound were obtained from heating a mixture of KNO3, Cr2O3 and NH4H2AsO4, with a K:Cr:As molar ratio of 2:1:2. In order to eliminate volatile products, the sample was placed in a porcelain crucible and slowly heated under atmospheric conditions to 673 K and kept for 12 h. In a second step, the crucible was progressively heated at 1123 K for 10 days and then slowly cooled down at a rate of 5 K/24h to 923 K and finally allowed to cool radiatively to room temperature. A long wash with boiling water liberated green crystals. Manifestly, the aluminium present in the studied composition is coming from the porcelain crucible.
5. Refinement
Crystal data, data collection and structure . The 2i site was initially refined as being entirely occupied by chromium ions with reliability factor R(F2) = 0.053. Trying to improve the convergence factor, the occupation rate of the 2i site was refined, leading to R(F2) = 0.023 and a partial occupancy of 67%. Occupied by just CrIII, this occupancy is insufficient to achieve electric neutrality in the To ensure the electroneutrality, many propositions were considered such as the existence of some vacancies in the positions of the oxygen atoms, or the contribution of more than one of chromium in the 2i site. The most reasonable idea was to consider a competitive presence of CrIII and AlIII in the same crystallographic site endowed with the same Uij parameters. The aluminium has obviously diffused from the porcelain crucible. The last steps lead to the final formula KCr1/4Al3/4As2O7. The presence of both aluminium and chromium in the structure was confirmed by TEM as shown in Fig. 7.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1530620
https://doi.org/10.1107/S2056989017001797/pj2041sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017001797/pj2041Isup2.hkl
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).KCr0.25Al0.75As2O7 | Z = 2 |
Mr = 334.17 | F(000) = 314 |
Triclinic, P1 | Dx = 3.702 Mg m−3 |
Hall symbol: -p 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.243 (3) Å | Cell parameters from 25 reflections |
b = 6.349 (3) Å | θ = 3.8–27° |
c = 8.153 (4) Å | µ = 12.37 mm−1 |
α = 96.57 (2)° | T = 293 K |
β = 104.45 (3)° | Triclinic, green |
γ = 103.08 (4)° | 0.40 × 0.30 × 0.20 mm |
V = 299.8 (8) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1306 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.014 |
Graphite monochromator | θmax = 30.0°, θmin = 2.6° |
ω/2θ scans | h = 0→7 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→8 |
Tmin = 0.079, Tmax = 0.182 | l = −11→11 |
1628 measured reflections | 2 standard reflections every 120 min |
1479 independent reflections | intensity decay: 1.1% |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.023 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5924P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1479 reflections | Δρmax = 0.59 e Å−3 |
104 parameters | Δρmin = −1.09 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
As1 | 0.82649 (6) | 0.53279 (5) | 0.68995 (4) | 0.00590 (10) | |
As2 | 0.48557 (6) | 0.24607 (5) | 0.83512 (4) | 0.00587 (10) | |
Cr | 0.37535 (14) | 0.69197 (13) | 0.72579 (10) | 0.0054 (3) | 0.255 (6) |
Al | 0.37535 (14) | 0.69197 (13) | 0.72579 (10) | 0.0054 (3) | 0.745 (6) |
O1 | 0.6626 (4) | 0.7081 (4) | 0.6757 (3) | 0.0109 (5) | |
O2 | 0.7856 (4) | 0.3500 (4) | 0.5149 (3) | 0.0105 (5) | |
O3 | 0.0934 (4) | 0.6909 (4) | 0.7793 (3) | 0.0097 (5) | |
O4 | 0.7722 (4) | 0.3747 (4) | 0.8485 (3) | 0.0108 (5) | |
O5 | 0.3164 (4) | 0.3800 (4) | 0.7206 (3) | 0.0100 (5) | |
O6 | 0.4234 (5) | −0.0032 (4) | 0.7201 (3) | 0.0113 (5) | |
O7 | 0.4552 (4) | 0.2466 (4) | 1.0321 (3) | 0.0106 (5) | |
K1 | 1.0000 | 1.0000 | 1.0000 | 0.0484 (5) | |
K2 | 0.0000 | 0.0000 | 0.5000 | 0.0364 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1 | 0.00519 (19) | 0.00627 (16) | 0.00641 (15) | 0.00121 (12) | 0.00247 (12) | 0.00063 (11) |
As2 | 0.00655 (19) | 0.00535 (15) | 0.00580 (15) | 0.00124 (12) | 0.00216 (12) | 0.00115 (10) |
Cr | 0.0047 (5) | 0.0053 (4) | 0.0062 (4) | 0.0015 (3) | 0.0019 (3) | 0.0005 (3) |
Al | 0.0047 (5) | 0.0053 (4) | 0.0062 (4) | 0.0015 (3) | 0.0019 (3) | 0.0005 (3) |
O1 | 0.0127 (13) | 0.0117 (11) | 0.0122 (11) | 0.0066 (10) | 0.0060 (10) | 0.0049 (9) |
O2 | 0.0122 (13) | 0.0107 (11) | 0.0079 (10) | 0.0041 (10) | 0.0022 (9) | −0.0015 (8) |
O3 | 0.0070 (12) | 0.0095 (11) | 0.0097 (10) | −0.0010 (9) | 0.0023 (9) | −0.0026 (8) |
O4 | 0.0056 (12) | 0.0159 (12) | 0.0119 (11) | 0.0017 (10) | 0.0026 (9) | 0.0079 (9) |
O5 | 0.0089 (13) | 0.0076 (10) | 0.0113 (11) | 0.0025 (9) | −0.0010 (9) | 0.0011 (8) |
O6 | 0.0163 (14) | 0.0064 (11) | 0.0109 (11) | 0.0033 (10) | 0.0045 (10) | −0.0016 (8) |
O7 | 0.0106 (13) | 0.0139 (11) | 0.0069 (10) | 0.0011 (10) | 0.0038 (9) | 0.0012 (9) |
K1 | 0.0302 (9) | 0.0408 (9) | 0.0615 (11) | −0.0093 (7) | 0.0253 (8) | −0.0310 (8) |
K2 | 0.0354 (9) | 0.0148 (6) | 0.0393 (8) | 0.0055 (6) | −0.0209 (6) | −0.0002 (5) |
As1—O2 | 1.659 (2) | O3—K2v | 3.202 (3) |
As1—O3i | 1.669 (3) | O4—K1iv | 3.246 (3) |
As1—O1 | 1.669 (3) | O5—K2 | 2.834 (3) |
As1—O4 | 1.776 (2) | O6—Aliv | 1.898 (3) |
As1—K1 | 3.4388 (16) | O6—Criv | 1.898 (3) |
As1—K2ii | 3.5783 (15) | O6—K2 | 2.806 (3) |
As2—O6 | 1.654 (2) | O7—Alvii | 1.940 (3) |
As2—O7 | 1.663 (2) | O7—Crvii | 1.940 (3) |
As2—O5 | 1.675 (2) | O7—K1iii | 2.849 (3) |
As2—O4 | 1.761 (3) | K1—O3i | 2.769 (3) |
As2—K2 | 3.441 (2) | K1—O3ix | 2.769 (3) |
As2—K1iii | 3.7159 (17) | K1—O7vii | 2.849 (3) |
As2—K1iv | 3.8935 (18) | K1—O7ii | 2.849 (3) |
Cr—O6v | 1.898 (3) | K1—O1x | 3.032 (3) |
Cr—O3 | 1.915 (3) | K1—O4xi | 3.246 (3) |
Cr—O1 | 1.919 (3) | K1—O4v | 3.246 (3) |
Cr—O5 | 1.925 (3) | K1—As1x | 3.4388 (16) |
Cr—O2vi | 1.925 (3) | K1—As2ii | 3.7160 (17) |
Cr—O7vii | 1.940 (3) | K1—As2vii | 3.7160 (17) |
Cr—K2v | 3.6674 (17) | K2—O6xii | 2.806 (3) |
Cr—K1 | 3.902 (2) | K2—O5xii | 2.834 (3) |
O1—K1 | 3.032 (3) | K2—O2xiii | 2.848 (3) |
O1—K2ii | 3.205 (3) | K2—O2viii | 2.848 (3) |
O2—Alvi | 1.925 (3) | K2—O3iv | 3.202 (3) |
O2—Crvi | 1.925 (3) | K2—O3xiv | 3.202 (3) |
O2—K2i | 2.848 (3) | K2—O1vi | 3.205 (3) |
O3—As1viii | 1.669 (3) | K2—O1iii | 3.205 (3) |
O3—K1viii | 2.769 (3) | K2—As2xii | 3.441 (2) |
O2—As1—O3i | 116.44 (13) | O3ix—K1—O4xi | 119.81 (7) |
O2—As1—O1 | 117.41 (13) | O7vii—K1—O4xi | 93.40 (8) |
O3i—As1—O1 | 104.67 (13) | O7ii—K1—O4xi | 86.60 (8) |
O2—As1—O4 | 105.16 (13) | O1x—K1—O4xi | 82.64 (7) |
O3i—As1—O4 | 103.99 (12) | O1—K1—O4xi | 97.36 (7) |
O1—As1—O4 | 108.17 (12) | O3i—K1—O4v | 119.81 (7) |
O2—As1—K1 | 164.68 (9) | O3ix—K1—O4v | 60.19 (7) |
O3i—As1—K1 | 52.76 (9) | O7vii—K1—O4v | 86.60 (8) |
O1—As1—K1 | 61.84 (9) | O7ii—K1—O4v | 93.40 (8) |
O4—As1—K1 | 88.94 (9) | O1x—K1—O4v | 97.36 (7) |
O2—As1—K2ii | 94.71 (9) | O1—K1—O4v | 82.64 (7) |
O3i—As1—K2ii | 63.46 (9) | O4xi—K1—O4v | 180.000 (1) |
O1—As1—K2ii | 63.56 (9) | O3i—K1—As1x | 151.32 (5) |
O4—As1—K2ii | 159.92 (8) | O3ix—K1—As1x | 28.68 (6) |
K1—As1—K2ii | 71.00 (4) | O7vii—K1—As1x | 112.10 (6) |
O6—As2—O7 | 113.63 (12) | O7ii—K1—As1x | 67.90 (6) |
O6—As2—O5 | 106.34 (13) | O1x—K1—As1x | 29.03 (5) |
O7—As2—O5 | 111.83 (13) | O1—K1—As1x | 150.97 (5) |
O6—As2—O4 | 106.77 (13) | O4xi—K1—As1x | 109.51 (6) |
O7—As2—O4 | 109.74 (12) | O4v—K1—As1x | 70.49 (6) |
O5—As2—O4 | 108.26 (12) | O3i—K1—As1 | 28.68 (5) |
O6—As2—K2 | 53.92 (10) | O3ix—K1—As1 | 151.32 (6) |
O7—As2—K2 | 116.01 (10) | O7vii—K1—As1 | 67.90 (6) |
O5—As2—K2 | 54.99 (9) | O7ii—K1—As1 | 112.10 (6) |
O4—As2—K2 | 134.24 (8) | O1x—K1—As1 | 150.97 (5) |
O6—As2—K1iii | 83.81 (10) | O1—K1—As1 | 29.03 (5) |
O7—As2—K1iii | 46.83 (9) | O4xi—K1—As1 | 70.49 (6) |
O5—As2—K1iii | 88.35 (10) | O4v—K1—As1 | 109.51 (6) |
O4—As2—K1iii | 156.13 (8) | As1x—K1—As1 | 180.0 |
K2—As2—K1iii | 69.32 (4) | O3i—K1—As2ii | 68.09 (6) |
O6—As2—K1iv | 72.50 (10) | O3ix—K1—As2ii | 111.91 (6) |
O7—As2—K1iv | 85.22 (9) | O7vii—K1—As2ii | 154.81 (5) |
O5—As2—K1iv | 160.88 (9) | O7ii—K1—As2ii | 25.19 (5) |
O4—As2—K1iv | 55.72 (8) | O1x—K1—As2ii | 78.58 (6) |
K2—As2—K1iv | 126.37 (3) | O1—K1—As2ii | 101.42 (6) |
K1iii—As2—K1iv | 110.23 (3) | O4xi—K1—As2ii | 94.66 (6) |
O6v—Cr—O3 | 89.05 (12) | O4v—K1—As2ii | 85.34 (6) |
O6v—Cr—O1 | 88.35 (12) | As1x—K1—As2ii | 87.50 (4) |
O3—Cr—O1 | 177.25 (11) | As1—K1—As2ii | 92.50 (4) |
O6v—Cr—O5 | 177.24 (11) | O3i—K1—As2vii | 111.91 (6) |
O3—Cr—O5 | 90.41 (12) | O3ix—K1—As2vii | 68.09 (6) |
O1—Cr—O5 | 92.23 (12) | O7vii—K1—As2vii | 25.19 (5) |
O6v—Cr—O2vi | 85.28 (11) | O7ii—K1—As2vii | 154.81 (5) |
O3—Cr—O2vi | 88.97 (12) | O1x—K1—As2vii | 101.42 (6) |
O1—Cr—O2vi | 91.72 (12) | O1—K1—As2vii | 78.58 (6) |
O5—Cr—O2vi | 92.00 (11) | O4xi—K1—As2vii | 85.34 (6) |
O6v—Cr—O7vii | 91.24 (11) | O4v—K1—As2vii | 94.66 (6) |
O3—Cr—O7vii | 91.73 (11) | As1x—K1—As2vii | 92.50 (4) |
O1—Cr—O7vii | 87.42 (12) | As1—K1—As2vii | 87.50 (4) |
O5—Cr—O7vii | 91.49 (11) | As2ii—K1—As2vii | 180.0 |
O2vi—Cr—O7vii | 176.44 (11) | O6—K2—O6xii | 180.0 |
O6v—Cr—K2v | 48.75 (9) | O6—K2—O5 | 56.38 (8) |
O3—Cr—K2v | 60.75 (8) | O6xii—K2—O5 | 123.62 (8) |
O1—Cr—K2v | 117.88 (8) | O6—K2—O5xii | 123.62 (8) |
O5—Cr—K2v | 128.80 (9) | O6xii—K2—O5xii | 56.38 (8) |
O2vi—Cr—K2v | 50.16 (8) | O5—K2—O5xii | 180.0 |
O7vii—Cr—K2v | 127.49 (8) | O6—K2—O2xiii | 54.52 (8) |
O6v—Cr—K1 | 71.06 (9) | O6xii—K2—O2xiii | 125.48 (8) |
O3—Cr—K1 | 128.54 (8) | O5—K2—O2xiii | 109.72 (8) |
O1—Cr—K1 | 49.56 (8) | O5xii—K2—O2xiii | 70.28 (8) |
O5—Cr—K1 | 111.31 (9) | O6—K2—O2viii | 125.48 (8) |
O2vi—Cr—K1 | 133.48 (9) | O6xii—K2—O2viii | 54.52 (8) |
O7vii—Cr—K1 | 44.10 (8) | O5—K2—O2viii | 70.28 (8) |
K2v—Cr—K1 | 119.78 (4) | O5xii—K2—O2viii | 109.72 (8) |
As1—O1—Cr | 130.98 (15) | O2xiii—K2—O2viii | 180.0 |
As1—O1—K1 | 89.13 (11) | O6—K2—O3iv | 52.34 (7) |
Cr—O1—K1 | 101.64 (10) | O6xii—K2—O3iv | 127.66 (7) |
As1—O1—K2ii | 88.65 (10) | O5—K2—O3iv | 93.39 (7) |
Cr—O1—K2ii | 139.96 (11) | O5xii—K2—O3iv | 86.61 (7) |
K1—O1—K2ii | 81.57 (8) | O2xiii—K2—O3iv | 52.42 (7) |
As1—O2—Alvi | 136.04 (15) | O2viii—K2—O3iv | 127.58 (7) |
As1—O2—Crvi | 136.04 (15) | O6—K2—O3xiv | 127.66 (7) |
Alvi—O2—Crvi | 0.00 (8) | O6xii—K2—O3xiv | 52.34 (7) |
As1—O2—K2i | 125.20 (12) | O5—K2—O3xiv | 86.61 (8) |
Alvi—O2—K2i | 98.57 (10) | O5xii—K2—O3xiv | 93.39 (7) |
Crvi—O2—K2i | 98.57 (10) | O2xiii—K2—O3xiv | 127.58 (7) |
As1viii—O3—Cr | 131.84 (14) | O2viii—K2—O3xiv | 52.42 (7) |
As1viii—O3—K1viii | 98.56 (11) | O3iv—K2—O3xiv | 180.0 |
Cr—O3—K1viii | 129.00 (12) | O6—K2—O1vi | 80.54 (8) |
As1viii—O3—K2v | 88.74 (10) | O6xii—K2—O1vi | 99.46 (8) |
Cr—O3—K2v | 87.81 (9) | O5—K2—O1vi | 64.92 (8) |
K1viii—O3—K2v | 85.79 (7) | O5xii—K2—O1vi | 115.08 (8) |
As2—O4—As1 | 118.50 (14) | O2xiii—K2—O1vi | 92.66 (7) |
As2—O4—K1iv | 97.65 (10) | O2viii—K2—O1vi | 87.34 (7) |
As1—O4—K1iv | 131.00 (12) | O3iv—K2—O1vi | 131.29 (7) |
As2—O5—Cr | 127.51 (15) | O3xiv—K2—O1vi | 48.71 (7) |
As2—O5—K2 | 96.06 (11) | O6—K2—O1iii | 99.46 (8) |
Cr—O5—K2 | 135.48 (11) | O6xii—K2—O1iii | 80.54 (8) |
As2—O6—Aliv | 145.71 (15) | O5—K2—O1iii | 115.08 (8) |
As2—O6—Criv | 145.71 (15) | O5xii—K2—O1iii | 64.92 (8) |
Aliv—O6—Criv | 0.00 (5) | O2xiii—K2—O1iii | 87.34 (7) |
As2—O6—K2 | 97.63 (11) | O2viii—K2—O1iii | 92.66 (7) |
Aliv—O6—K2 | 100.69 (11) | O3iv—K2—O1iii | 48.71 (7) |
Criv—O6—K2 | 100.69 (11) | O3xiv—K2—O1iii | 131.29 (7) |
As2—O7—Alvii | 143.23 (16) | O1vi—K2—O1iii | 180.00 (7) |
As2—O7—Crvii | 143.23 (16) | O6—K2—As2xii | 151.55 (5) |
Alvii—O7—Crvii | 0.00 (8) | O6xii—K2—As2xii | 28.45 (5) |
As2—O7—K1iii | 107.98 (11) | O5—K2—As2xii | 151.05 (5) |
Alvii—O7—K1iii | 107.62 (10) | O5xii—K2—As2xii | 28.95 (5) |
Crvii—O7—K1iii | 107.62 (10) | O2xiii—K2—As2xii | 97.04 (6) |
O3i—K1—O3ix | 180.000 (1) | O2viii—K2—As2xii | 82.96 (6) |
O3i—K1—O7vii | 95.75 (8) | O3iv—K2—As2xii | 112.12 (6) |
O3ix—K1—O7vii | 84.25 (8) | O3xiv—K2—As2xii | 67.88 (6) |
O3i—K1—O7ii | 84.25 (8) | O1vi—K2—As2xii | 104.03 (6) |
O3ix—K1—O7ii | 95.75 (8) | O1iii—K2—As2xii | 75.97 (6) |
O7vii—K1—O7ii | 180.0 | O6—K2—As2 | 28.45 (5) |
O3i—K1—O1x | 126.04 (8) | O6xii—K2—As2 | 151.55 (5) |
O3ix—K1—O1x | 53.96 (8) | O5—K2—As2 | 28.95 (5) |
O7vii—K1—O1x | 126.18 (8) | O5xii—K2—As2 | 151.05 (5) |
O7ii—K1—O1x | 53.82 (8) | O2xiii—K2—As2 | 82.96 (6) |
O3i—K1—O1 | 53.96 (8) | O2viii—K2—As2 | 97.04 (6) |
O3ix—K1—O1 | 126.04 (8) | O3iv—K2—As2 | 67.88 (6) |
O7vii—K1—O1 | 53.82 (8) | O3xiv—K2—As2 | 112.12 (6) |
O7ii—K1—O1 | 126.18 (8) | O1vi—K2—As2 | 75.97 (6) |
O1x—K1—O1 | 180.0 | O1iii—K2—As2 | 104.03 (6) |
O3i—K1—O4xi | 60.19 (7) | As2xii—K2—As2 | 180.0 |
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x−1, y−1, z; (iv) x, y−1, z; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, −z+2; (viii) x−1, y, z; (ix) −x+1, −y+2, −z+2; (x) −x+2, −y+2, −z+2; (xi) −x+2, −y+1, −z+2; (xii) −x, −y, −z+1; (xiii) −x+1, −y, −z+1; (xiv) −x, −y+1, −z+1. |
Acknowledgements
Special acknowledgements are dedicated to Besma Bouzemi Friaa, a member of the Laboratoire de Materiaux et Cristallochimie, Faculte des Sciences de Tunis from 1997 to 2003.
References
Bohatý, L., Liebertz, J. & Fröhlich, R. (1982). Z. Kristallogr. 161, 53–59. Google Scholar
Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425–427. CrossRef CAS Web of Science IUCr Journals Google Scholar
Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. Paris Ser. II, pp. 1419–1422. Google Scholar
Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2014). Acta Cryst. E70, i6. CSD CrossRef IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Durif, A. & Averbuch-Pouchot, M.-T. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific Publishing Co. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gabelica-Robert, M., Goreaud, M., Labbe, Ph. & Raveau, B. (1982). J. Solid State Chem. 45, 389–395. CAS Google Scholar
Gentil, S., Andreica, D., Lujan, M., Rivera, J. P., Kubel, F. & Schmid, H. (1997). Ferroelectrics, 204, 35–44. Web of Science CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Ivashkevich, L. S., Selevich, K. A., Lesnikovich, A. I. & Selevich, A. F. (2007). Acta Cryst. E63, i70–i72. Web of Science CrossRef IUCr Journals Google Scholar
Linde, S. A. & Gorbunova, Yu. E. (1982). Izv. Akad. Nauk SSSR Neorg. Mater. 18, 464–467. CAS Google Scholar
Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613–2620. CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Riou, D., Labbe, P. & Goreaud, M. (1988). Eur. J. Solid. State Inorg. Chem. 25, 215–229. CAS Google Scholar
Riou, D., Nguyen, N., Benloucif, R. & Raveau, B. (1990). Mater. Res. Bull. 25, 1363–1369. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, D. & Li, F. (2011). Z. Kristallogr. 226, 443–444. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.