research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, resolution and crystal structures of two enanti­omeric rhodamine derivatives

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 25 January 2017; accepted 27 January 2017; online 3 February 2017)

The title mol­ecule, rac-6′-bromo-3′-di­ethyl­amino-3H-spiro­[2-benzo­furan-1,9′-xanthen]-3-one, C24H20BrNO3, was synthesized and the two enanti­omers which formed were separated. The structures of all three compounds were determined and compared with those of a variety of related derivatives. A notable feature is the fold of the xanthene portion which ranges from 15.15 (13)° in the racemate to 2.42 (2)° in one mol­ecule of the R enanti­omer with that for the S enanti­omer having an inter­mediate value. The differences are attributed to the number and severity of inter­molecular inter­actions which include C—H⋯O hydrogen bonds, C—H⋯π(ring) and, in the S enanti­omer, a π-stacking inter­action between the carbonyl group and an aromatic ring.

1. Chemical context

The compounds synthesized here are part of ongoing work to form chiral sensors based on the supra­molecular inter­actions of chiral rhodamine derivatives with analytes. Enanti­omeric sensing is critical for the efficient and safe formation of chiral pharmaceuticals (LaPlante et al., 2011[LaPlante, S. R. F., Fader, L. D., Fandrick, K. R., Fandrick, D. R., Hucke, O., Kemper, R., Miller, S. P. F. & Edwards, P. J. (2011). J. Med. Chem. 54, 7005-7022.]) since enanti­omers may have vastly different biological effects including toxicity (Reist et al., 1998[Reist, M., Carrupt, P. A., Francotte, E. & Testa, B. (1998). Chem. Res. Toxicol. 11, 1521-1528.]). Most current methods for the detection of enanti­omeric purity involve chromatographic techniques that require costly instrumentation (Wang et al., 2006[Wang, M., Marriott, P. J., Chan, W. H., Lee, A. W. M. & Huie, C. W. (2006). J. Chromatogr. A, 1112, 361-368.]). Chiral supra­molecular sensors offer an inexpensive alternative (Chen et al., 2012[Chen, X. Q., Pradhan, T., Wang, F., Kim, J. S. & Yoon, J. (2012). Chem. Rev. 112, 1910-1956.]; Jo et al., 2014[Jo, H. H., Lin, C. Y. & Anslyn, E. V. (2014). Acc. Chem. Res. 47, 2212-2221.]; Zhang et al., 2014[Zhang, X., Yin, J. & Yoon, J. (2014). Chem. Rev. 114, 4918-4959.]; Yu & Pu, 2015[Yu, S. & Pu, L. (2015). Tetrahedron, 71, 745-772.]). Supra­molecular sensors, such as modified rhodamine derivatives, have garnered recent inter­est as sensors with biological applications (Pak et al., 2015[Pak, Y. L., Swamy, K. M. & Yoon, J. (2015). Sensors (Basel), 15, 24374-24396.]; You et al., 2015[You, L., Zha, D. & Anslyn, E. V. (2015). Chem. Rev. 115, 7840-7892.]). Additionally, recent work has shown that rhodamine B can function as a sensor differentiating between diastereomers (Shimizu & Stephenson, 2010[Shimizu, K. D. & Stephenson, C. J. (2010). Curr. Opin. Chem. Biol. 14, 743-750.]). Herein, we report the synthesis, resolution and structures of two asymmetric rhodamine derivatives 4 and 5 which are being investigated for potential as chiral sensors.

[Scheme 1]
[Scheme 2]

2. Structural commentary

In general terms, the structures of 35 are similar to those of other rhodamine derivatives that have been reported in that the xanthene portion is modestly folded along the O⋯C axis of the central ring and the benzo­furan­one unit is nearly perpendicular to the mean plane of the xanthene unit. Of note in the present work is the variation in the fold of the xanthene portion which is largest in 3, distinctly smaller in 4 and smallest in 5 but with a significant difference in this angle between the two independent mol­ecules (see the first four entries in Table 1[link]Fig. 1[link]). We attribute these differences to the different packing modes for the three structures. In 3 (Fig. 2[link]), the mol­ecules form zigzag stacks with each pair of adjacent mol­ecules related by centers of symmetry. This leads to pairwise H17C⋯C4 separations of 3.04 Å which are only 0.14 Å less than the sum of the van der Waals radii. Were the xanthene portions flatter, these would develop into significant inter­molecular contacts. With 4 and 5 (Figs. 3[link] and 4[link]) in the non-centrosymmetric space group P212121, this stacking is no longer possible and while in 4 there is a van der Waals contact of 2.90 Å between H17A and C4i [symmetry code: (i) [{3\over 2}] − x, 1 − y, −[{1\over 2}] + z] which could be lessened by a greater folding, this is opposed by a H2⋯H19ii [symmetry code: (ii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z] separation of 2.48 (4) Å which is only 0.08 Å greater than the sum of the van der Waals radii. In the case of 5, the C8–C13 ring experiences the opposing contacts H40B⋯C13 (2.79 Å) and H41Biii⋯C11 [2.79 Å; symmetry code: (iii) 1 + x, y, z], both of which are 0.11 Å less than a van der Waals contact and serve to hold this ring in position in the packing. On the other side of this xanthene moiety there is a Br1⋯O6iv [symmetry code: (iv) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z] contact of 3.251 (3) Å which is 0.12 Å less than a van der Waals contact and imparts more of a twist than a simple fold to this portion. This can be seen from the dihedral angle of 5.7 (2)° between the C1–C6 ring and the C1/C6/C7/O1 plane. For the second mol­ecule, there are no short inter­molecular contacts with either side of the xanthene moiety to influence its conformation.

Table 1
Dihedral angles (°) in selected rhodamine derivatives.

R1R6 positions are defined in Fig. 1[link].

R1 R2 R3 R4 R5 R6 ring 1–ring 2 ring 3–ring 4 Ref.
H Et2N H H Br H 88.05 (14) 15.15 (13) a
H Et2N H H Br H 88.11 (11) 9.74 (11) b
H Et2N H H Br H 84.2 (2) 6.45 (19) c
H Et2N H H Br H 89.6 (2) 2.4 (2) c
H Et2N H H Et2N H 89.2 (2) 4.2 (2) d
H OH mbz H OH H 88.17 (19) 2.82 (2) e
Cl OH CH2tm CH2tm OH Cl 901 15.0 (3) f
Cl OH CH2mo CH2mo OH Cl 901 7.5 (17) f
H Et2N H H Et2N H 89.59 (5) 7.36 (5) g
H Et2n H H Et2N H 89.58 (5) 4.59 (5) g
H Et2N H H Me NH(x­yl) 88.8 (14) 3.74 (17) h
H Et2N H H H NO2 89.4 (2) 6.1 (2) i
H MeO H H OH H 88.7 (3) 6.3 (3) j
H Ethm H H Ethm H 88.64 (17) 14.62 (13) k
NO2 Ethm Br Br Ethm NO2 89.7 (4) 17.5 (5) k
H OH H H OH H 89.67 (12) 8.19 (11) l
H OH H H OH H 901 4.24 (11) l
H OH H H OH H 87.30 (7) 6.25 (7) l
H OH H H OH H 90.0 (2) 2.4 (2) l
H OH CHO H OH H 89.7 (3) 2.5 (3) m
H OH CHO CHO OH H 88.47 (13) 4.68 (12) m
H Bu2N H H Me NHPh 87.08 (13) 13.76 (12) n
H EtC(O)O H H EtC(O)O H 89.29 (14) 15.16 (11) o
MeNH2 H H H Et2N H 89.1 (3) 6.9 (3) p
1Ring 1 lies on a crystallographic mirror. Notes: (a) This work (compound 3); (b) this work (compound 4); (c) this work (compound 5); (d) Zhang et al. (2015[Zhang, I., Wang, Y., Wan, C., Xing, Z., Li, W., Li, M. & Zhang, S. X.-A. (2015). RSC Adv. 5, 66416-66419.]); (e) Hou et al. (2012[Hou, F., Cheng, J., Xi, P., Chen, F., Huang, L., Xie, G., Shi, Y., Liu, H., Bai, D. & Zeng, Z. (2012). Dalton Trans. 41, 5799-5804.]) (mbz = PhC(O)NHN=CH); (f) Swamy et al. (2009[Swamy, K. M. K., Kim, H. N., Soh, J. H., Kim, Y., Kim, S.-J. & Yoon, J. (2009). Chem. Commun. pp. 1234-1236.]) (tm = thio­morpholino; mo = morpholino); (g) Kvick et al. (2000[Kvick, Å., Vaughan, G. B. M., Wang, X., Sun, Y. & Long, Y. (2000). Acta Cryst. C56, 1232-1233.]) (first line = mol­ecule 1, second line = mol­ecule 2); (h) Li et al. (2006[Li, X. M., Ding, C. F., Tian, B. Q., Liu, Q., Zhang, S. S., Xu, H. & Ouyang, P. K. (2006). Chem. Pap. 60, 220-223.]) (xyl = 2,4-Me2C6H3); (i) Liu et al. (1995[Liu, X.-L., Wang, J.-L., Liu, J.-W. & Miao, F.-M. (1995). Acta Cryst. C51, 324-326.]); (j) Mchedlov-Petrossyan et al. (2015[Mchedlov-Petrossyan, N. O., Cheipesh, T. A., Shekhovtsov, S. V., Redko, A. N., Rybachenko, V. I., Omelchenko, I. V. & Shishkin, O. V. (2015). Spectrochim. Acta Part A, 150, 151-161.]); (k) Berscheid et al. (1992[Berscheid, R., Nieger, M. & Vögtle, F. (1992). Chem. Ber. 125, 2539-2552.]) (Ethm = OCH2C≡CH); (l) Bučar et al. (2013[Bučar, D.-K., Filip, S., Arhangelskis, M., Lloyd, G. O. & Jones, W. (2013). CrystEngComm, 15, 6289-6291.]); (m) Wang et al. (2005[Wang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I. M. & Strongin, R. M. (2005). J. Am. Chem. Soc. 127, 15949-15958.]); (n) Okada (1996[Okada, K. (1996). J. Mol. Struct. 380, 235-247.]); (o) Wang et al. (1990[Wang, L.-F., Wang, X., Peng, Z., He, F. & Wang, Q. (1990). Acta Cryst. C46, 1676-1678.]); (p) Miao et al. (1996[Miao, F.-M., Zhang, L.-J., Wen, X., Zhou, W.-H., Niu, Z.-C., Han, J.-G. & Liu, X.-L. (1996). Acta Cryst. C52, 700-702.]).
[Figure 1]
Figure 1
Key for Table 1[link].
[Figure 2]
Figure 2
Perspective view of 3, with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 3]
Figure 3
Perspective view of 4, with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 4]
Figure 4
The asymmetric unit of 5, with the atom-numbering scheme and 50% probability displacement ellipsoids.

3. Supra­molecular features

Fig. 5[link] illustrates the inter­molecular inter­actions in the crystal of 3 with numerical details given in Table 2[link]. These include two sets of pairwise C—H⋯O hydrogen bonds, two additional sets of C—H⋯O hydrogen bonds and a set of C—H⋯π(ring) inter­actions. The C14⋯H14B⋯O2i and C19—H19⋯O1iii inter­actions bind the mol­ecules into stacks along the a-axis direction while the C16—H16A⋯O3i and C17—H17Aπ(ring)iv inter­actions tie the stacks together (Fig. 6[link]). Inter­molecular inter­actions are much fewer in the crystal of 4 with C14—H14B⋯O3v and C20—H20⋯O3vi hydrogen bonds (Table 3[link]) forming zigzag chains (Fig. 7[link]) running approximately along the c-axis direction and arranged to form rectangular channels along the a-axis direction (Fig. 8[link]). In the crystal of 5, the two independent mol­ecules are associated through C40—H40ACg1 and C40—H40BCg2 inter­actions with these units tied together on one side by C16—H16BCgi inter­actions (Table 4[link]) and on the other by a ππ inter­action between the C24=O3 bond and the (C18–C23)ii ring [Fig. 9[link], centroid–centroid distance = 3.349 (3) Å, angle of C=O vector to centroid = 99.5 (3)°]. The result is a more open 3D structure for this enanti­omer (Fig. 10[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 3[link]

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.99 2.68 3.649 (4) 165
C16—H16A⋯O3ii 0.99 2.64 3.522 (3) 148
C16—H16B⋯Br1iii 0.99 2.99 3.939 (3) 162
C17—H17ACgiv 0.98 2.75 3.666 (4) 156
C19—H19⋯O1iii 0.95 2.57 3.485 (4) 161
C20—H20⋯O3v 0.95 2.58 3.421 (3) 148
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) x+1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3i 0.99 (2) 2.68 (2) 3.621 (3) 160.7 (19)
C20—H20⋯O3ii 0.94 (2) 2.41 (3) 3.163 (3) 138 (3)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 5[link]

Cg1 and Cg2 are the centroids of the C8–C13 and O1,C1,C6,C7,C8,C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCgi 0.99 2.81 3.583 (4) 136
C40—H40ACg1 0.99 2.79 3.534 (4) 132
C40—H40BCg2 0.99 2.83 3.580 (4) 133
Symmetry code: (i) x+1, y, z.
[Figure 5]
Figure 5
Detail of the inter­molecular inter­actions in 3 with C19—H19⋯O1iii, C14—H14B⋯O2i, and C16—H16A⋯O3ii hydrogen bonds shown, respectively, as black, red and green dotted lines, while the C17—H17ACgiv inter­action is given by a purple dotted line. [Symmetry codes: (i) x, y, −1 + z; (ii) −x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; (iv) 1 − x, 2 − y, 1 − z; Cg is the centroid of the indicated ring.]
[Figure 6]
Figure 6
Packing of 3, viewed along the a-axis direction, with the color code for C—H⋯O inter­actions as in Fig. 5[link].
[Figure 7]
Figure 7
Detail of the inter­molecular inter­actions in 4. [Symmetry codes: (v) 2 − x, [{1\over 2}] + y, [{1\over 2}] − z; (vi) 2 − x, [{1\over 2}] + y, [{3\over 2}] − z.]
[Figure 8]
Figure 8
Packing of 4, viewed along the a-axis direction, with C—H⋯O hydrogen bonds shown as dotted lines.
[Figure 9]
Figure 9
Detail of the inter­molecular inter­actions in 5. [Symmetry codes: (vii) 1 + x, y, z; (viii) −[{1\over 2}] + x, [{1\over 2}] − y, 1 − z.]
[Figure 10]
Figure 10
Packing of 5, viewed along the a-axis direction.

4. Database survey

There are 71 structures of rhodamine derivatives in the literature, although many are considerably more substituted than 4 and 5 and include a variety of fused-ring systems. Table 1[link] lists, in addition to those reported here, 20 other structures which are most nearly comparable to those of this work. In all of these, the lactone ring (ring 1, Fig. 1[link]) is nearly perpendicular to the mean plane of the central pyran ring (ring 2, Fig. 1[link]) with dihedral angles ranging from 87.08 (13) to 90.0 (2)° and with three structures having the lactone ring on a crystallographic mirror (Table 1[link]). In all cases, the xanthene moiety is folded across the O⋯C axis, with the majority having a dihedral angle between rings 3 and 4 (Fig. 1[link]) in the range 2.42 (3)–7.36 (5)°, but there are six having angles up to 17.5 (5)° (Table 1[link]). In this latter group, those with the largest angles involve a twist of the xanthene moiety as well as a fold, and this is seen in both symmetrically and unsymmetrically substituted examples. Inspection of inter­molecular contact calculations indicates that the largest dihedral angles correlate with inter­molecular contacts at or somewhat less than the sums of the relevant van der Waals radii.

5. Synthesis and crystallization

As outlined in the scheme[link], compound 1 (2.00 g, 6.73 mmol) was mixed with compound 2 (1.10g, 6.35 mmol) in 16 mL of methyl­sulfonic acid. The mixture was stirred and heated for 1 h at 373 K. The cooled solution was poured over ice and then extracted with dicholoro­methane. A crude yield of the racemate 3 was obtained. A portion of the crude product (1.343 g) was purified on a flash column with 15% ethyl acetate in hexa­nes followed by 100% ethyl acetate. The fractions containing the product were combined and left in a beaker covered with a tissue and the solvent was allowed to evaporate slowly. After about two weeks, the purified racemate yielded a mixture of long needle-shaped as well as plate-shaped crystals (0.293 g, 0.651 mmol, 21.8% yield). Thin layer chromatography demonstrated that both crystal shapes were the desired product (racemate 3), but only the needles provided a well-refined structure. The melting point range was found to be 420.6–428.9 K for the needles and 415.9–429.8 K for the plates. An NMR spectrum of compound 3 was also obtained (Figs. S1 and S2).

To separate the enanti­omers a mobile phase of 70% hexa­nes, 29.97% ethanol and 0.03% di­ethyl­amine was used. A 4 mg mL−1 solution of the racemic bromo-rhodamine deriv­ative, 3 was dissolved in the mobile phase. A two-pump system, both Shimadzu LC-20AD pumps, was utilized for moving the mobile phase through the column. Pump A pumped hexa­nes and Pump B pumped the mixture of 95% ethanol and 0.5% di­ethyl­amine at a flow rate of 3.0 mL min −1 for a total of 16 minutes. The sample was placed in a Shimadzu SIL-20AC autosampler, which injected 400 µL of the sample into the mobile phase. A Shimadzu CTO-20A oven, set at 298 k, held the ChiralPak AD-H column whose stationary phase is amylose tris (3,5-di­methyl­phenyl­carbamate) coated on 5 µm silica-gel. The compounds were eluted and then detected with a Shimadzu SPD-20A UV photodiode array detector with a deuterium lamp set at 230 nm. Each enanti­omer was collected with a Shimadzu FRC-10A fraction collector. One enanti­omer (4) elutes from 11.6-12.8 minutes, and the other (5) elutes from 13.4–14.8 minutes using the method described above. Slow evaporation of the solutions of the pure enanti­omers at room temperature afforded X-ray quality crystals over 1-5 days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In 3 and 5, H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. In 4, the methyl group H atoms were placed in calculated positions as in 3 and 5 (due to poor geometry resulting from individual refinement) while the remainder were refined.

Table 5
Experimental details

  3 4 5
Crystal data
Chemical formula C24H20BrNO3 C24H20BrNO3 C24H20BrNO3
Mr 450.32 450.32 450.32
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 150 100 100
a, b, c (Å) 8.3074 (4), 11.1871 (5), 11.7693 (6) 11.0772 (6), 13.0582 (8), 13.8966 (8) 8.1529 (13), 18.185 (3), 26.860 (4)
α, β, γ (°) 102.384 (2), 91.106 (2), 109.581 (2) 90, 90, 90 90, 90, 90
V3) 1001.60 (8) 2010.1 (2) 3982.3 (11)
Z 2 4 8
Radiation type Cu Kα Mo Kα Mo Kα
μ (mm−1) 3.01 2.07 2.09
Crystal size (mm) 0.11 × 0.07 × 0.06 0.31 × 0.12 × 0.10 0.26 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.59, 0.84 0.69, 0.82 0.70, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 7525, 3725, 3415 39006, 5417, 4926 38240, 10174, 7285
Rint 0.037 0.043 0.075
(sin θ/λ)max−1) 0.618 0.687 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.03 0.026, 0.058, 0.99 0.045, 0.093, 0.97
No. of reflections 3725 5417 10174
No. of parameters 264 320 527
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.98 0.62, −0.25 0.92, −0.34
Absolute structure Flack x determined using 1981 quotients [(I+)−(I)]/[(I+)+(I) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2575 quotients [(I+)−(I)]/[(I+)+(I) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.006 (3) −0.002 (6)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For all compounds, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3) rac-6'-Bromo-3'-diethylamino-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one top
Crystal data top
C24H20BrNO3Z = 2
Mr = 450.32F(000) = 460
Triclinic, P1Dx = 1.493 Mg m3
a = 8.3074 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.1871 (5) ÅCell parameters from 6586 reflections
c = 11.7693 (6) Åθ = 3.9–72.5°
α = 102.384 (2)°µ = 3.01 mm1
β = 91.106 (2)°T = 150 K
γ = 109.581 (2)°Column, colourless
V = 1001.60 (8) Å30.11 × 0.07 × 0.06 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3725 independent reflections
Radiation source: INCOATEC IµS micro-focus source3415 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 3.9°
ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.59, Tmax = 0.84l = 1214
7525 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.6226P]
where P = (Fo2 + 2Fc2)/3
3725 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.98 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19033 (4)0.02441 (3)0.64991 (3)0.03278 (14)
O10.1667 (2)0.41446 (18)0.49152 (16)0.0248 (4)
O20.2042 (2)0.65283 (18)0.77320 (15)0.0217 (4)
O30.1991 (3)0.7974 (2)0.93699 (17)0.0301 (4)
N10.2392 (3)0.7234 (2)0.25883 (19)0.0265 (5)
C10.2155 (3)0.3798 (3)0.5878 (2)0.0224 (5)
C20.1813 (3)0.2475 (3)0.5752 (2)0.0257 (5)
H20.12660.18710.50400.031*
C30.2281 (3)0.2048 (3)0.6683 (2)0.0263 (6)
C40.3066 (4)0.2908 (3)0.7742 (2)0.0272 (6)
H40.33600.26010.83810.033*
C50.3404 (3)0.4226 (3)0.7836 (2)0.0256 (5)
H50.39480.48260.85510.031*
C60.2970 (3)0.4704 (3)0.6915 (2)0.0210 (5)
C70.3359 (3)0.6138 (3)0.7025 (2)0.0205 (5)
C80.3204 (3)0.6420 (3)0.5850 (2)0.0213 (5)
C90.3837 (3)0.7690 (3)0.5676 (2)0.0256 (6)
H90.44630.83860.63130.031*
C100.3584 (4)0.7966 (3)0.4618 (2)0.0268 (6)
H100.40440.88410.45400.032*
C110.2647 (3)0.6962 (3)0.3641 (2)0.0228 (5)
C120.1999 (3)0.5689 (3)0.3810 (2)0.0227 (5)
H120.13480.49900.31820.027*
C130.2302 (3)0.5445 (2)0.4882 (2)0.0206 (5)
C140.1323 (3)0.6234 (3)0.1601 (2)0.0265 (6)
H14A0.08190.66520.11010.032*
H14B0.03660.56140.18990.032*
C150.2312 (4)0.5483 (3)0.0865 (3)0.0342 (7)
H15A0.15330.48190.02230.051*
H15B0.28060.50600.13540.051*
H15C0.32360.60870.05450.051*
C160.3190 (3)0.8529 (3)0.2376 (2)0.0271 (6)
H16A0.33610.84440.15360.033*
H16B0.43340.89490.28270.033*
C170.2128 (4)0.9391 (3)0.2713 (3)0.0376 (7)
H17A0.27461.02630.25940.056*
H17B0.19240.94570.35380.056*
H17C0.10270.90130.22270.056*
C180.5013 (3)0.6985 (2)0.7778 (2)0.0205 (5)
C190.6676 (3)0.7027 (3)0.7611 (3)0.0267 (6)
H190.69220.65160.69280.032*
C200.7980 (3)0.7847 (3)0.8483 (3)0.0306 (6)
H200.91280.78810.83990.037*
C210.7623 (4)0.8615 (3)0.9472 (3)0.0317 (6)
H210.85300.91601.00540.038*
C220.5968 (4)0.8599 (3)0.9619 (2)0.0270 (6)
H220.57250.91421.02820.032*
C230.4670 (3)0.7756 (3)0.8758 (2)0.0208 (5)
C240.2804 (3)0.7489 (3)0.8704 (2)0.0220 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02583 (19)0.02119 (19)0.0485 (2)0.00731 (13)0.00533 (13)0.00453 (13)
O10.0247 (9)0.0208 (10)0.0236 (9)0.0047 (7)0.0068 (7)0.0006 (7)
O20.0143 (8)0.0264 (10)0.0211 (8)0.0080 (7)0.0022 (7)0.0023 (7)
O30.0251 (10)0.0369 (12)0.0259 (9)0.0147 (9)0.0003 (8)0.0039 (8)
N10.0280 (12)0.0273 (12)0.0217 (11)0.0089 (10)0.0037 (9)0.0022 (9)
C10.0155 (11)0.0237 (13)0.0266 (13)0.0072 (10)0.0008 (10)0.0029 (10)
C20.0184 (12)0.0216 (13)0.0306 (13)0.0041 (10)0.0037 (10)0.0023 (10)
C30.0172 (12)0.0250 (14)0.0341 (14)0.0070 (10)0.0015 (11)0.0026 (11)
C40.0247 (13)0.0263 (14)0.0302 (14)0.0082 (11)0.0018 (11)0.0069 (11)
C50.0238 (13)0.0256 (14)0.0246 (12)0.0077 (10)0.0021 (10)0.0015 (10)
C60.0176 (11)0.0195 (13)0.0243 (12)0.0066 (9)0.0003 (10)0.0017 (9)
C70.0155 (11)0.0222 (13)0.0220 (12)0.0072 (9)0.0003 (9)0.0004 (9)
C80.0201 (12)0.0231 (13)0.0197 (12)0.0094 (10)0.0015 (9)0.0002 (9)
C90.0269 (13)0.0200 (13)0.0251 (13)0.0062 (10)0.0049 (10)0.0012 (10)
C100.0275 (13)0.0217 (14)0.0272 (13)0.0066 (11)0.0049 (11)0.0013 (10)
C110.0198 (12)0.0262 (14)0.0225 (12)0.0106 (10)0.0022 (10)0.0019 (10)
C120.0196 (12)0.0249 (14)0.0213 (12)0.0094 (10)0.0029 (10)0.0018 (10)
C130.0151 (11)0.0199 (13)0.0248 (12)0.0069 (9)0.0019 (9)0.0002 (9)
C140.0206 (12)0.0318 (15)0.0236 (13)0.0072 (11)0.0063 (10)0.0032 (11)
C150.0327 (15)0.0360 (17)0.0280 (14)0.0104 (13)0.0036 (12)0.0021 (11)
C160.0211 (12)0.0316 (15)0.0258 (13)0.0050 (11)0.0012 (10)0.0078 (10)
C170.0331 (16)0.0339 (17)0.0481 (18)0.0124 (13)0.0026 (13)0.0138 (13)
C180.0162 (11)0.0200 (12)0.0239 (12)0.0050 (9)0.0041 (9)0.0044 (9)
C190.0203 (12)0.0267 (14)0.0337 (14)0.0096 (11)0.0009 (11)0.0064 (11)
C200.0170 (12)0.0315 (16)0.0430 (16)0.0067 (11)0.0027 (11)0.0115 (12)
C210.0198 (13)0.0340 (16)0.0325 (14)0.0010 (11)0.0100 (11)0.0075 (11)
C220.0263 (14)0.0268 (14)0.0208 (12)0.0027 (11)0.0058 (10)0.0019 (10)
C230.0186 (12)0.0223 (13)0.0198 (11)0.0065 (10)0.0019 (9)0.0029 (9)
C240.0197 (12)0.0256 (14)0.0186 (12)0.0082 (10)0.0023 (10)0.0007 (9)
Geometric parameters (Å, º) top
Br1—C31.898 (3)C11—C121.403 (4)
O1—C11.369 (3)C12—C131.383 (4)
O1—C131.381 (3)C12—H120.9500
O2—C241.362 (3)C14—C151.520 (4)
O2—C71.510 (3)C14—H14A0.9900
O3—C241.203 (3)C14—H14B0.9900
N1—C111.366 (3)C15—H15A0.9800
N1—C161.455 (4)C15—H15B0.9800
N1—C141.458 (3)C15—H15C0.9800
C1—C21.384 (4)C16—C171.512 (4)
C1—C61.397 (3)C16—H16A0.9900
C2—C31.383 (4)C16—H16B0.9900
C2—H20.9500C17—H17A0.9800
C3—C41.393 (4)C17—H17B0.9800
C4—C51.384 (4)C17—H17C0.9800
C4—H40.9500C18—C231.380 (4)
C5—C61.398 (4)C18—C191.386 (4)
C5—H50.9500C19—C201.398 (4)
C6—C71.502 (4)C19—H190.9500
C7—C81.496 (4)C20—C211.390 (5)
C7—C181.514 (3)C20—H200.9500
C8—C131.391 (3)C21—C221.384 (4)
C8—C91.402 (4)C21—H210.9500
C9—C101.373 (4)C22—C231.395 (3)
C9—H90.9500C22—H220.9500
C10—C111.420 (4)C23—C241.475 (3)
C10—H100.9500
C1—O1—C13118.1 (2)C12—C13—C8123.2 (2)
C24—O2—C7111.26 (18)N1—C14—C15112.8 (2)
C11—N1—C16122.3 (2)N1—C14—H14A109.0
C11—N1—C14121.8 (2)C15—C14—H14A109.0
C16—N1—C14115.9 (2)N1—C14—H14B109.0
O1—C1—C2115.3 (2)C15—C14—H14B109.0
O1—C1—C6123.1 (2)H14A—C14—H14B107.8
C2—C1—C6121.6 (2)C14—C15—H15A109.5
C3—C2—C1118.8 (2)C14—C15—H15B109.5
C3—C2—H2120.6H15A—C15—H15B109.5
C1—C2—H2120.6C14—C15—H15C109.5
C2—C3—C4121.9 (3)H15A—C15—H15C109.5
C2—C3—Br1119.1 (2)H15B—C15—H15C109.5
C4—C3—Br1119.0 (2)N1—C16—C17112.6 (2)
C5—C4—C3117.9 (3)N1—C16—H16A109.1
C5—C4—H4121.0C17—C16—H16A109.1
C3—C4—H4121.0N1—C16—H16B109.1
C4—C5—C6122.2 (3)C17—C16—H16B109.1
C4—C5—H5118.9H16A—C16—H16B107.8
C6—C5—H5118.9C16—C17—H17A109.5
C1—C6—C5117.6 (2)C16—C17—H17B109.5
C1—C6—C7120.7 (2)H17A—C17—H17B109.5
C5—C6—C7121.7 (2)C16—C17—H17C109.5
C8—C7—C6110.8 (2)H17A—C17—H17C109.5
C8—C7—O2107.84 (19)H17B—C17—H17C109.5
C6—C7—O2107.9 (2)C23—C18—C19120.9 (2)
C8—C7—C18114.7 (2)C23—C18—C7110.1 (2)
C6—C7—C18113.2 (2)C19—C18—C7129.0 (2)
O2—C7—C18101.64 (19)C18—C19—C20117.7 (3)
C13—C8—C9115.9 (2)C18—C19—H19121.2
C13—C8—C7121.6 (2)C20—C19—H19121.2
C9—C8—C7122.3 (2)C21—C20—C19121.1 (3)
C10—C9—C8122.5 (2)C21—C20—H20119.4
C10—C9—H9118.8C19—C20—H20119.4
C8—C9—H9118.8C22—C21—C20121.0 (2)
C9—C10—C11121.0 (3)C22—C21—H21119.5
C9—C10—H10119.5C20—C21—H21119.5
C11—C10—H10119.5C21—C22—C23117.5 (3)
N1—C11—C12122.0 (2)C21—C22—H22121.3
N1—C11—C10121.1 (2)C23—C22—H22121.3
C12—C11—C10116.9 (2)C18—C23—C22121.8 (2)
C13—C12—C11120.5 (2)C18—C23—C24108.6 (2)
C13—C12—H12119.7C22—C23—C24129.6 (2)
C11—C12—H12119.7O3—C24—O2122.2 (2)
O1—C13—C12114.7 (2)O3—C24—C23129.5 (2)
O1—C13—C8122.1 (2)O2—C24—C23108.3 (2)
C13—O1—C1—C2165.8 (2)C9—C10—C11—C120.0 (4)
C13—O1—C1—C613.1 (4)N1—C11—C12—C13179.1 (2)
O1—C1—C2—C3179.4 (2)C10—C11—C12—C131.0 (4)
C6—C1—C2—C30.5 (4)C1—O1—C13—C12169.3 (2)
C1—C2—C3—C40.8 (4)C1—O1—C13—C89.3 (3)
C1—C2—C3—Br1177.47 (19)C11—C12—C13—O1176.9 (2)
C2—C3—C4—C51.3 (4)C11—C12—C13—C81.7 (4)
Br1—C3—C4—C5176.9 (2)C9—C8—C13—O1177.3 (2)
C3—C4—C5—C60.6 (4)C7—C8—C13—O17.6 (4)
O1—C1—C6—C5180.0 (2)C9—C8—C13—C121.2 (4)
C2—C1—C6—C51.2 (4)C7—C8—C13—C12173.9 (2)
O1—C1—C6—C70.1 (4)C11—N1—C14—C1587.3 (3)
C2—C1—C6—C7178.9 (2)C16—N1—C14—C1591.6 (3)
C4—C5—C6—C10.6 (4)C11—N1—C16—C1787.7 (3)
C4—C5—C6—C7179.4 (2)C14—N1—C16—C1793.4 (3)
C1—C6—C7—C815.1 (3)C8—C7—C18—C23115.2 (2)
C5—C6—C7—C8164.9 (2)C6—C7—C18—C23116.3 (2)
C1—C6—C7—O2102.7 (3)O2—C7—C18—C230.9 (3)
C5—C6—C7—O277.3 (3)C8—C7—C18—C1966.8 (4)
C1—C6—C7—C18145.7 (2)C6—C7—C18—C1961.7 (4)
C5—C6—C7—C1834.4 (3)O2—C7—C18—C19177.1 (3)
C24—O2—C7—C8118.3 (2)C23—C18—C19—C201.8 (4)
C24—O2—C7—C6122.0 (2)C7—C18—C19—C20176.0 (3)
C24—O2—C7—C182.7 (3)C18—C19—C20—C211.4 (4)
C6—C7—C8—C1318.8 (3)C19—C20—C21—C220.5 (5)
O2—C7—C8—C1399.0 (3)C20—C21—C22—C231.9 (4)
C18—C7—C8—C13148.5 (2)C19—C18—C23—C220.4 (4)
C6—C7—C8—C9166.4 (2)C7—C18—C23—C22177.8 (2)
O2—C7—C8—C975.8 (3)C19—C18—C23—C24179.2 (2)
C18—C7—C8—C936.7 (3)C7—C18—C23—C241.0 (3)
C13—C8—C9—C100.1 (4)C21—C22—C23—C181.5 (4)
C7—C8—C9—C10174.9 (3)C21—C22—C23—C24177.1 (3)
C8—C9—C10—C110.5 (4)C7—O2—C24—O3177.5 (2)
C16—N1—C11—C12174.2 (2)C7—O2—C24—C233.4 (3)
C14—N1—C11—C124.7 (4)C18—C23—C24—O3178.2 (3)
C16—N1—C11—C105.9 (4)C22—C23—C24—O33.1 (5)
C14—N1—C11—C10175.2 (2)C18—C23—C24—O22.7 (3)
C9—C10—C11—N1179.9 (3)C22—C23—C24—O2175.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.992.683.649 (4)165
C16—H16A···O3ii0.992.643.522 (3)148
C16—H16B···Br1iii0.992.993.939 (3)162
C17—H17A···Cgiv0.982.753.666 (4)156
C19—H19···O1iii0.952.573.485 (4)161
C20—H20···O3v0.952.583.421 (3)148
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x+1, y, z.
(4) (1S)-6'-Bromo-3'-diethylamino-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one top
Crystal data top
C24H20BrNO3Dx = 1.488 Mg m3
Mr = 450.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9874 reflections
a = 11.0772 (6) Åθ = 2.4–28.7°
b = 13.0582 (8) ŵ = 2.07 mm1
c = 13.8966 (8) ÅT = 100 K
V = 2010.1 (2) Å3Column, colourless
Z = 40.31 × 0.12 × 0.10 mm
F(000) = 920
Data collection top
Bruker SMART APEX CCD
diffractometer
5417 independent reflections
Radiation source: fine-focus sealed tube4926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 2.1°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.69, Tmax = 0.82l = 1818
39006 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0299P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5417 reflectionsΔρmax = 0.62 e Å3
320 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack x determined using 1981 quotients [(I+)-(I-)]/[(I+)+(I-) (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (3)
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23778 (2)0.57329 (2)0.58190 (2)0.02156 (7)
O10.62242 (14)0.63049 (13)0.37859 (12)0.0174 (4)
O20.83447 (14)0.44945 (12)0.52206 (11)0.0149 (3)
O30.96324 (16)0.34761 (13)0.60162 (12)0.0232 (4)
N10.93770 (19)0.75727 (16)0.17844 (14)0.0191 (4)
C10.5808 (2)0.59393 (17)0.46462 (16)0.0132 (5)
C20.4557 (2)0.59644 (18)0.47625 (18)0.0166 (5)
H20.412 (3)0.617 (2)0.427 (2)0.023 (7)*
C30.40723 (19)0.56383 (17)0.56230 (16)0.0154 (5)
C40.4786 (2)0.52661 (19)0.63625 (18)0.0178 (5)
H40.440 (2)0.5053 (19)0.693 (2)0.017 (7)*
C50.6020 (2)0.52317 (19)0.62259 (18)0.0163 (5)
H50.651 (3)0.495 (2)0.6671 (19)0.020 (8)*
C60.6556 (2)0.55733 (18)0.53668 (17)0.0138 (5)
C70.79072 (19)0.55778 (16)0.52627 (16)0.0126 (4)
C80.8285 (2)0.61105 (17)0.43527 (16)0.0132 (4)
C90.9502 (2)0.63061 (18)0.41480 (19)0.0170 (5)
H91.007 (2)0.6057 (19)0.4633 (18)0.012 (6)*
C100.9872 (2)0.67728 (19)0.33110 (18)0.0178 (5)
H101.070 (3)0.685 (2)0.3211 (19)0.020 (7)*
C110.9017 (2)0.70912 (17)0.26139 (16)0.0148 (5)
C120.7793 (2)0.68911 (17)0.28086 (17)0.0152 (5)
H120.722 (2)0.7083 (19)0.2415 (17)0.013 (6)*
C130.7462 (2)0.64179 (15)0.36616 (15)0.0129 (4)
C140.8504 (2)0.7873 (2)0.10481 (18)0.0227 (5)
H14A0.787 (3)0.733 (2)0.098 (2)0.031 (8)*
H14B0.891 (2)0.789 (2)0.0417 (18)0.014 (6)*
C150.7924 (2)0.8904 (2)0.1260 (2)0.0285 (6)
H15A0.75630.88900.19030.043*
H15B0.72960.90430.07810.043*
H15C0.85390.94420.12310.043*
C161.0602 (2)0.7975 (2)0.16496 (19)0.0198 (5)
H16A1.047 (2)0.866 (2)0.1302 (18)0.017 (7)*
H16B1.089 (2)0.820 (2)0.230 (2)0.021 (7)*
C171.1432 (2)0.7252 (2)0.1109 (2)0.0253 (6)
H17A1.15640.66330.14930.038*
H17B1.22080.75910.09900.038*
H17C1.10620.70660.04930.038*
C180.8524 (2)0.59745 (18)0.61583 (17)0.0139 (5)
C190.8402 (2)0.69192 (19)0.65983 (18)0.0179 (5)
H190.788 (2)0.739 (2)0.6336 (19)0.019 (7)*
C200.9055 (2)0.7091 (2)0.74369 (19)0.0228 (5)
H200.909 (3)0.770 (3)0.779 (2)0.039 (9)*
C210.9793 (2)0.6332 (2)0.78279 (19)0.0230 (6)
H211.024 (2)0.649 (2)0.8452 (19)0.021 (7)*
C220.9906 (2)0.5390 (2)0.73893 (18)0.0202 (5)
H221.040 (2)0.4897 (19)0.7606 (19)0.013 (7)*
C230.9256 (2)0.52284 (19)0.65427 (18)0.0158 (5)
C240.91472 (18)0.42975 (18)0.59411 (15)0.0151 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01162 (10)0.03082 (12)0.02224 (12)0.00078 (9)0.00204 (9)0.00572 (10)
O10.0111 (8)0.0258 (9)0.0152 (8)0.0016 (7)0.0013 (7)0.0059 (7)
O20.0166 (8)0.0134 (8)0.0148 (8)0.0025 (6)0.0012 (6)0.0002 (6)
O30.0250 (9)0.0233 (9)0.0215 (10)0.0091 (7)0.0017 (8)0.0044 (7)
N10.0158 (10)0.0272 (11)0.0142 (10)0.0032 (9)0.0012 (8)0.0036 (9)
C10.0139 (11)0.0135 (11)0.0123 (11)0.0014 (8)0.0008 (9)0.0005 (8)
C20.0135 (11)0.0208 (12)0.0155 (12)0.0006 (9)0.0034 (9)0.0008 (9)
C30.0106 (9)0.0156 (10)0.0199 (12)0.0024 (9)0.0005 (8)0.0047 (10)
C40.0176 (12)0.0199 (12)0.0161 (12)0.0039 (9)0.0022 (10)0.0019 (10)
C50.0159 (12)0.0192 (11)0.0138 (12)0.0002 (9)0.0023 (9)0.0025 (10)
C60.0121 (10)0.0130 (11)0.0162 (11)0.0002 (9)0.0005 (9)0.0008 (9)
C70.0127 (10)0.0124 (10)0.0127 (10)0.0014 (8)0.0002 (8)0.0001 (8)
C80.0125 (10)0.0159 (10)0.0111 (11)0.0020 (8)0.0004 (8)0.0009 (9)
C90.0132 (10)0.0221 (11)0.0157 (11)0.0019 (9)0.0022 (11)0.0012 (11)
C100.0119 (11)0.0243 (13)0.0173 (12)0.0011 (10)0.0021 (9)0.0009 (10)
C110.0176 (11)0.0146 (10)0.0123 (11)0.0002 (9)0.0021 (9)0.0019 (9)
C120.0148 (11)0.0179 (11)0.0130 (11)0.0005 (9)0.0024 (9)0.0006 (8)
C130.0099 (10)0.0143 (9)0.0146 (10)0.0000 (9)0.0001 (9)0.0019 (8)
C140.0230 (13)0.0319 (14)0.0133 (12)0.0058 (11)0.0017 (10)0.0062 (10)
C150.0240 (14)0.0340 (14)0.0275 (14)0.0012 (11)0.0029 (11)0.0130 (12)
C160.0191 (12)0.0241 (13)0.0162 (12)0.0046 (10)0.0026 (10)0.0020 (10)
C170.0207 (12)0.0305 (14)0.0248 (14)0.0004 (11)0.0038 (10)0.0014 (11)
C180.0092 (10)0.0201 (11)0.0124 (10)0.0034 (8)0.0010 (8)0.0010 (9)
C190.0150 (12)0.0175 (12)0.0210 (13)0.0009 (9)0.0006 (10)0.0012 (10)
C200.0182 (12)0.0271 (14)0.0231 (14)0.0071 (11)0.0028 (10)0.0078 (11)
C210.0164 (12)0.0373 (15)0.0152 (12)0.0080 (11)0.0015 (10)0.0020 (11)
C220.0128 (11)0.0318 (14)0.0159 (12)0.0015 (10)0.0009 (10)0.0062 (10)
C230.0116 (11)0.0210 (12)0.0149 (12)0.0004 (9)0.0017 (9)0.0033 (10)
C240.0120 (9)0.0199 (10)0.0133 (11)0.0011 (9)0.0024 (8)0.0033 (10)
Geometric parameters (Å, º) top
Br1—C31.901 (2)C11—C121.408 (3)
O1—C11.367 (3)C12—C131.386 (3)
O1—C131.389 (3)C12—H120.87 (2)
O2—C241.363 (3)C14—C151.520 (4)
O2—C71.496 (3)C14—H14A1.01 (3)
O3—C241.204 (3)C14—H14B0.98 (3)
N1—C111.372 (3)C15—H15A0.9800
N1—C141.461 (3)C15—H15B0.9800
N1—C161.467 (3)C15—H15C0.9800
C1—C61.385 (3)C16—C171.517 (4)
C1—C21.395 (3)C16—H16A1.02 (3)
C2—C31.378 (3)C16—H16B0.99 (3)
C2—H20.88 (3)C17—H17A0.9800
C3—C41.385 (3)C17—H17B0.9800
C4—C51.381 (4)C17—H17C0.9800
C4—H40.93 (3)C18—C231.375 (3)
C5—C61.406 (3)C18—C191.384 (3)
C5—H50.90 (3)C19—C201.390 (3)
C6—C71.504 (3)C19—H190.92 (3)
C7—C81.503 (3)C20—C211.395 (4)
C7—C181.512 (3)C20—H200.93 (3)
C8—C131.384 (3)C21—C221.378 (4)
C8—C91.401 (3)C21—H211.02 (3)
C9—C101.376 (3)C22—C231.396 (3)
C9—H90.98 (3)C22—H220.90 (3)
C10—C111.417 (3)C23—C241.480 (3)
C10—H100.93 (3)
C1—O1—C13118.57 (17)C12—C13—O1114.49 (19)
C24—O2—C7111.15 (17)N1—C14—C15112.5 (2)
C11—N1—C14121.3 (2)N1—C14—H14A109.6 (17)
C11—N1—C16122.7 (2)C15—C14—H14A110.3 (16)
C14—N1—C16115.2 (2)N1—C14—H14B109.3 (15)
O1—C1—C6123.4 (2)C15—C14—H14B110.3 (15)
O1—C1—C2115.3 (2)H14A—C14—H14B105 (2)
C6—C1—C2121.2 (2)C14—C15—H15A109.5
C3—C2—C1118.7 (2)C14—C15—H15B109.5
C3—C2—H2123.4 (18)H15A—C15—H15B109.5
C1—C2—H2117.9 (18)C14—C15—H15C109.5
C2—C3—C4122.0 (2)H15A—C15—H15C109.5
C2—C3—Br1119.29 (17)H15B—C15—H15C109.5
C4—C3—Br1118.69 (17)N1—C16—C17113.6 (2)
C5—C4—C3118.3 (2)N1—C16—H16A104.1 (15)
C5—C4—H4123.7 (17)C17—C16—H16A113.0 (15)
C3—C4—H4118.0 (17)N1—C16—H16B106.5 (16)
C4—C5—C6121.6 (2)C17—C16—H16B115.7 (16)
C4—C5—H5120.9 (19)H16A—C16—H16B103 (2)
C6—C5—H5117.3 (19)C16—C17—H17A109.5
C1—C6—C5118.1 (2)C16—C17—H17B109.5
C1—C6—C7121.6 (2)H17A—C17—H17B109.5
C5—C6—C7120.2 (2)C16—C17—H17C109.5
O2—C7—C8108.32 (17)H17A—C17—H17C109.5
O2—C7—C6108.81 (18)H17B—C17—H17C109.5
C8—C7—C6111.12 (19)C23—C18—C19121.2 (2)
O2—C7—C18102.10 (17)C23—C18—C7110.1 (2)
C8—C7—C18114.09 (18)C19—C18—C7128.7 (2)
C6—C7—C18111.86 (19)C18—C19—C20117.6 (2)
C13—C8—C9116.1 (2)C18—C19—H19119.1 (17)
C13—C8—C7122.29 (19)C20—C19—H19123.2 (17)
C9—C8—C7121.6 (2)C19—C20—C21121.1 (3)
C10—C9—C8122.6 (2)C19—C20—H20127 (2)
C10—C9—H9122.6 (15)C21—C20—H20112 (2)
C8—C9—H9114.8 (15)C22—C21—C20121.0 (2)
C9—C10—C11120.6 (2)C22—C21—H21120.7 (16)
C9—C10—H10118.0 (17)C20—C21—H21118.3 (16)
C11—C10—H10121.4 (17)C21—C22—C23117.5 (2)
N1—C11—C12121.8 (2)C21—C22—H22123.2 (16)
N1—C11—C10121.0 (2)C23—C22—H22119.3 (16)
C12—C11—C10117.3 (2)C18—C23—C22121.6 (2)
C13—C12—C11120.1 (2)C18—C23—C24108.3 (2)
C13—C12—H12118.2 (16)C22—C23—C24130.0 (2)
C11—C12—H12121.6 (16)O3—C24—O2121.5 (2)
C8—C13—C12123.2 (2)O3—C24—C23130.2 (2)
C8—C13—O1122.23 (18)O2—C24—C23108.23 (19)
C13—O1—C1—C67.0 (3)C9—C10—C11—C121.2 (3)
C13—O1—C1—C2172.46 (19)N1—C11—C12—C13178.9 (2)
O1—C1—C2—C3178.0 (2)C10—C11—C12—C131.2 (3)
C6—C1—C2—C31.5 (3)C9—C8—C13—C120.2 (3)
C1—C2—C3—C41.5 (3)C7—C8—C13—C12178.6 (2)
C1—C2—C3—Br1176.79 (17)C9—C8—C13—O1177.6 (2)
C2—C3—C4—C50.5 (4)C7—C8—C13—O13.6 (3)
Br1—C3—C4—C5177.88 (18)C11—C12—C13—C80.7 (3)
C3—C4—C5—C60.7 (4)C11—C12—C13—O1177.3 (2)
O1—C1—C6—C5179.1 (2)C1—O1—C13—C84.4 (3)
C2—C1—C6—C50.4 (3)C1—O1—C13—C12173.62 (18)
O1—C1—C6—C71.7 (3)C11—N1—C14—C1584.3 (3)
C2—C1—C6—C7177.8 (2)C16—N1—C14—C1585.6 (3)
C4—C5—C6—C10.7 (4)C11—N1—C16—C1796.7 (3)
C4—C5—C6—C7176.7 (2)C14—N1—C16—C1793.5 (3)
C24—O2—C7—C8117.59 (19)O2—C7—C18—C232.5 (2)
C24—O2—C7—C6121.50 (19)C8—C7—C18—C23114.1 (2)
C24—O2—C7—C183.1 (2)C6—C7—C18—C23118.7 (2)
C1—C6—C7—O2113.6 (2)O2—C7—C18—C19175.5 (2)
C5—C6—C7—O269.1 (3)C8—C7—C18—C1967.9 (3)
C1—C6—C7—C85.6 (3)C6—C7—C18—C1959.3 (3)
C5—C6—C7—C8171.8 (2)C23—C18—C19—C200.7 (3)
C1—C6—C7—C18134.4 (2)C7—C18—C19—C20178.5 (2)
C5—C6—C7—C1843.0 (3)C18—C19—C20—C211.0 (4)
O2—C7—C8—C13111.4 (2)C19—C20—C21—C220.6 (4)
C6—C7—C8—C138.1 (3)C20—C21—C22—C230.0 (4)
C18—C7—C8—C13135.7 (2)C19—C18—C23—C220.1 (4)
O2—C7—C8—C967.3 (3)C7—C18—C23—C22178.3 (2)
C6—C7—C8—C9173.2 (2)C19—C18—C23—C24177.1 (2)
C18—C7—C8—C945.6 (3)C7—C18—C23—C241.1 (3)
C13—C8—C9—C100.2 (3)C21—C22—C23—C180.3 (4)
C7—C8—C9—C10178.6 (2)C21—C22—C23—C24176.8 (2)
C8—C9—C10—C110.8 (4)C7—O2—C24—O3177.8 (2)
C14—N1—C11—C121.9 (3)C7—O2—C24—C232.6 (2)
C16—N1—C11—C12167.3 (2)C18—C23—C24—O3179.5 (2)
C14—N1—C11—C10178.0 (2)C22—C23—C24—O33.6 (4)
C16—N1—C11—C1012.9 (4)C18—C23—C24—O20.9 (3)
C9—C10—C11—N1178.9 (2)C22—C23—C24—O2176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.99 (2)2.68 (2)3.621 (3)160.7 (19)
C20—H20···O3ii0.94 (2)2.41 (3)3.163 (3)138 (3)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2.
(5) (1R)-6'-Bromo-3'-diethylamino-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one top
Crystal data top
C24H20BrNO3Dx = 1.502 Mg m3
Mr = 450.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7498 reflections
a = 8.1529 (13) Åθ = 2.2–25.3°
b = 18.185 (3) ŵ = 2.09 mm1
c = 26.860 (4) ÅT = 100 K
V = 3982.3 (11) Å3Column, colourless
Z = 80.26 × 0.06 × 0.04 mm
F(000) = 1840
Data collection top
Bruker SMART APEX CCD
diffractometer
10174 independent reflections
Radiation source: fine-focus sealed tube7285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.4°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2324
Tmin = 0.70, Tmax = 0.92l = 3536
38240 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0089P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
10174 reflectionsΔρmax = 0.92 e Å3
527 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack x determined using 2575 quotients [(I+)-(I-)]/[(I+)+(I-) (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (6)
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 60 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52585 (6)0.63496 (3)0.28218 (2)0.02849 (13)
O10.6662 (4)0.57150 (16)0.46407 (11)0.0189 (7)
O20.4245 (3)0.39341 (16)0.46124 (11)0.0153 (7)
O30.2630 (4)0.29559 (18)0.44638 (11)0.0207 (7)
N10.8582 (5)0.5506 (2)0.63051 (13)0.0178 (8)
C10.6260 (5)0.5413 (2)0.41884 (16)0.0160 (10)
C20.6056 (5)0.5918 (2)0.38032 (16)0.0181 (10)
H20.62120.64290.38600.022*
C30.5626 (5)0.5663 (3)0.33398 (16)0.0191 (10)
C40.5443 (5)0.4916 (3)0.32441 (16)0.0199 (10)
H40.51750.47470.29200.024*
C50.5659 (5)0.4425 (2)0.36318 (16)0.0180 (10)
H50.55520.39130.35710.022*
C60.6035 (5)0.4671 (2)0.41148 (16)0.0149 (9)
C70.6029 (5)0.4136 (2)0.45477 (15)0.0136 (9)
C80.6652 (5)0.4501 (2)0.50108 (15)0.0130 (9)
C90.6964 (5)0.4098 (2)0.54461 (16)0.0157 (10)
H90.67780.35830.54430.019*
C100.7528 (5)0.4418 (2)0.58754 (16)0.0137 (9)
H100.76990.41240.61630.016*
C110.7859 (5)0.5186 (2)0.58949 (16)0.0152 (9)
C120.7507 (5)0.5598 (2)0.54662 (16)0.0156 (10)
H120.76570.61160.54670.019*
C130.6939 (5)0.5246 (2)0.50400 (16)0.0147 (9)
C140.8803 (6)0.5091 (3)0.67630 (16)0.0214 (11)
H14A0.96440.53370.69700.026*
H14B0.92150.45940.66800.026*
C150.7228 (6)0.5018 (3)0.70632 (17)0.0221 (11)
H15A0.68870.55040.71820.033*
H15B0.74200.46930.73490.033*
H15C0.63650.48090.68520.033*
C160.8935 (5)0.6297 (3)0.63138 (17)0.0219 (10)
H16A0.94420.64370.59930.026*
H16B0.97460.63960.65800.026*
C170.7432 (6)0.6778 (3)0.64011 (19)0.0303 (13)
H17A0.77560.72970.63930.045*
H17B0.69550.66630.67270.045*
H17C0.66200.66840.61400.045*
C180.6792 (5)0.3401 (2)0.44466 (15)0.0131 (9)
C190.8454 (5)0.3221 (2)0.44054 (16)0.0153 (10)
H190.92820.35860.44300.018*
C200.8845 (6)0.2494 (2)0.43276 (15)0.0179 (10)
H200.99640.23570.42950.022*
C210.7630 (6)0.1948 (2)0.42956 (16)0.0174 (10)
H210.79430.14510.42440.021*
C220.5991 (6)0.2123 (2)0.43380 (15)0.0163 (10)
H220.51620.17570.43150.020*
C230.5604 (5)0.2865 (2)0.44160 (15)0.0132 (9)
C240.3991 (6)0.3206 (2)0.44915 (15)0.0146 (9)
Br20.41662 (7)0.36508 (3)0.88995 (2)0.03217 (14)
O40.3369 (4)0.51090 (15)0.72672 (11)0.0169 (7)
O50.2069 (3)0.69908 (16)0.79230 (11)0.0160 (7)
O60.1534 (4)0.80937 (16)0.82613 (12)0.0197 (7)
N20.2868 (5)0.61160 (19)0.56403 (13)0.0177 (9)
C250.3579 (5)0.5173 (2)0.77747 (15)0.0138 (9)
C260.3746 (5)0.4512 (2)0.80330 (16)0.0181 (10)
H260.37530.40540.78630.022*
C270.3900 (6)0.4545 (2)0.85438 (17)0.0216 (11)
C280.3868 (6)0.5198 (2)0.88052 (17)0.0210 (11)
H280.39400.52020.91580.025*
C290.3727 (5)0.5850 (3)0.85389 (16)0.0188 (10)
H290.37220.63050.87130.023*
C300.3594 (5)0.5848 (2)0.80207 (16)0.0147 (9)
C310.3510 (5)0.6566 (2)0.77414 (16)0.0149 (9)
C320.3316 (5)0.6439 (2)0.71915 (16)0.0134 (9)
C330.3218 (5)0.7029 (2)0.68601 (17)0.0167 (10)
H330.32610.75150.69880.020*
C340.3063 (5)0.6929 (2)0.63567 (17)0.0157 (10)
H340.29800.73470.61460.019*
C350.3021 (5)0.6217 (2)0.61428 (16)0.0140 (9)
C360.3144 (5)0.5622 (2)0.64719 (16)0.0155 (10)
H360.31420.51340.63460.019*
C370.3271 (5)0.5742 (2)0.69832 (17)0.0153 (10)
C380.2429 (6)0.6721 (3)0.53094 (16)0.0206 (11)
H38A0.17400.70750.54950.025*
H38B0.17620.65240.50320.025*
C390.3903 (7)0.7128 (3)0.50945 (19)0.0316 (13)
H39A0.46310.67760.49280.047*
H39B0.44990.73730.53640.047*
H39C0.35250.74950.48530.047*
C400.3094 (5)0.5399 (2)0.54013 (16)0.0157 (10)
H40A0.39040.51130.55960.019*
H40B0.35590.54770.50650.019*
C410.1539 (6)0.4950 (3)0.53531 (18)0.0235 (11)
H41A0.07190.52320.51670.035*
H41B0.11130.48350.56850.035*
H41C0.17800.44910.51760.035*
C420.4921 (5)0.7074 (2)0.78662 (15)0.0146 (9)
C430.6590 (5)0.6963 (2)0.78122 (17)0.0173 (10)
H430.70090.65080.76920.021*
C440.7637 (6)0.7538 (3)0.79392 (16)0.0202 (11)
H440.87890.74710.79120.024*
C450.7029 (6)0.8208 (3)0.81042 (16)0.0188 (10)
H450.77650.86010.81710.023*
C460.5359 (6)0.8311 (2)0.81717 (15)0.0171 (10)
H460.49360.87610.82960.021*
C470.4327 (5)0.7732 (2)0.80510 (15)0.0140 (10)
C480.2526 (6)0.7669 (2)0.80989 (15)0.0143 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0362 (3)0.0288 (3)0.0205 (2)0.0066 (2)0.0075 (2)0.0118 (2)
O10.0273 (19)0.0155 (17)0.0138 (16)0.0017 (14)0.0018 (14)0.0019 (13)
O20.0097 (16)0.0177 (15)0.0185 (16)0.0001 (12)0.0024 (13)0.0030 (12)
O30.0149 (18)0.028 (2)0.0191 (18)0.0049 (15)0.0008 (14)0.0029 (14)
N10.018 (2)0.021 (2)0.0152 (19)0.0014 (17)0.0011 (16)0.0002 (16)
C10.013 (2)0.020 (2)0.015 (2)0.0021 (19)0.0005 (18)0.0004 (18)
C20.019 (3)0.014 (2)0.021 (2)0.000 (2)0.002 (2)0.0045 (18)
C30.016 (3)0.024 (3)0.017 (2)0.002 (2)0.0003 (19)0.0095 (19)
C40.019 (3)0.027 (3)0.014 (2)0.004 (2)0.0009 (19)0.0027 (19)
C50.017 (3)0.016 (2)0.022 (2)0.0027 (19)0.0017 (19)0.0015 (19)
C60.010 (2)0.015 (2)0.019 (2)0.0011 (19)0.0011 (19)0.0013 (18)
C70.010 (2)0.014 (2)0.017 (2)0.0022 (19)0.0011 (18)0.0006 (18)
C80.011 (2)0.016 (2)0.012 (2)0.0033 (18)0.0044 (18)0.0017 (18)
C90.015 (2)0.011 (2)0.021 (2)0.0030 (19)0.0031 (19)0.0022 (18)
C100.015 (2)0.014 (2)0.012 (2)0.0042 (19)0.0017 (18)0.0010 (17)
C110.010 (2)0.018 (2)0.018 (2)0.0016 (19)0.0016 (19)0.0004 (19)
C120.013 (2)0.013 (2)0.021 (2)0.0006 (18)0.0000 (19)0.0001 (19)
C130.013 (2)0.016 (2)0.015 (2)0.0046 (18)0.0008 (18)0.0054 (18)
C140.023 (3)0.024 (3)0.017 (2)0.001 (2)0.006 (2)0.000 (2)
C150.025 (3)0.025 (3)0.016 (2)0.003 (2)0.001 (2)0.000 (2)
C160.022 (2)0.021 (2)0.023 (2)0.000 (2)0.0003 (19)0.001 (2)
C170.035 (3)0.026 (3)0.030 (3)0.008 (2)0.001 (2)0.002 (2)
C180.016 (2)0.015 (2)0.009 (2)0.0005 (18)0.0009 (17)0.0006 (17)
C190.013 (2)0.018 (2)0.014 (2)0.0031 (19)0.0002 (18)0.0012 (18)
C200.016 (3)0.023 (3)0.015 (2)0.002 (2)0.0020 (19)0.0012 (19)
C210.025 (3)0.010 (2)0.018 (2)0.006 (2)0.002 (2)0.0019 (18)
C220.017 (2)0.016 (2)0.016 (2)0.007 (2)0.0005 (19)0.0013 (18)
C230.010 (2)0.018 (2)0.011 (2)0.0027 (18)0.0023 (17)0.0008 (17)
C240.019 (2)0.017 (2)0.009 (2)0.002 (2)0.0042 (19)0.0048 (17)
Br20.0550 (4)0.0189 (2)0.0226 (3)0.0016 (3)0.0038 (2)0.0063 (2)
O40.0253 (18)0.0118 (16)0.0137 (16)0.0004 (13)0.0002 (13)0.0007 (12)
O50.0130 (16)0.0137 (16)0.0214 (18)0.0008 (13)0.0012 (13)0.0047 (13)
O60.0212 (18)0.0146 (17)0.0234 (18)0.0058 (14)0.0011 (14)0.0038 (13)
N20.025 (2)0.0130 (19)0.0146 (19)0.0028 (16)0.0010 (17)0.0005 (15)
C250.011 (2)0.019 (2)0.011 (2)0.0026 (18)0.0023 (18)0.0015 (18)
C260.023 (3)0.013 (2)0.018 (2)0.002 (2)0.001 (2)0.0002 (18)
C270.024 (3)0.016 (2)0.025 (3)0.001 (2)0.005 (2)0.002 (2)
C280.030 (3)0.017 (2)0.016 (2)0.001 (2)0.003 (2)0.0015 (18)
C290.023 (3)0.017 (2)0.017 (2)0.003 (2)0.002 (2)0.0030 (19)
C300.012 (2)0.016 (2)0.017 (2)0.0029 (19)0.0013 (18)0.0002 (18)
C310.011 (2)0.015 (2)0.019 (2)0.0036 (17)0.0035 (18)0.0014 (18)
C320.013 (2)0.012 (2)0.016 (2)0.0023 (18)0.0001 (18)0.0016 (19)
C330.014 (2)0.014 (2)0.022 (3)0.0023 (19)0.002 (2)0.0011 (19)
C340.014 (2)0.011 (2)0.022 (2)0.0005 (19)0.0011 (19)0.0038 (19)
C350.011 (2)0.016 (2)0.015 (2)0.0015 (17)0.0013 (17)0.0025 (18)
C360.015 (2)0.013 (2)0.019 (2)0.0032 (19)0.0007 (19)0.0016 (19)
C370.011 (2)0.015 (2)0.020 (2)0.0014 (19)0.0010 (18)0.0013 (19)
C380.027 (3)0.021 (3)0.014 (2)0.004 (2)0.003 (2)0.0025 (19)
C390.040 (3)0.023 (3)0.032 (3)0.001 (3)0.011 (3)0.006 (2)
C400.014 (2)0.020 (2)0.013 (2)0.004 (2)0.0001 (18)0.0015 (18)
C410.019 (3)0.024 (3)0.027 (3)0.001 (2)0.001 (2)0.004 (2)
C420.018 (2)0.012 (2)0.014 (2)0.0009 (18)0.0014 (19)0.0008 (18)
C430.017 (2)0.020 (2)0.015 (2)0.0016 (19)0.000 (2)0.001 (2)
C440.017 (3)0.025 (3)0.019 (3)0.002 (2)0.0004 (19)0.003 (2)
C450.020 (3)0.021 (3)0.016 (2)0.007 (2)0.0051 (19)0.0021 (19)
C460.026 (3)0.013 (2)0.013 (2)0.001 (2)0.002 (2)0.0020 (18)
C470.018 (3)0.015 (2)0.009 (2)0.0012 (19)0.0036 (18)0.0028 (17)
C480.019 (2)0.016 (2)0.008 (2)0.004 (2)0.0014 (18)0.0019 (18)
Geometric parameters (Å, º) top
Br1—C31.893 (4)Br2—C271.899 (4)
O1—C11.373 (5)O4—C251.379 (5)
O1—C131.389 (5)O4—C371.383 (5)
O2—C241.379 (5)O5—C481.373 (5)
O2—C71.510 (5)O5—C311.488 (5)
O3—C241.201 (5)O6—C481.200 (5)
N1—C111.379 (5)N2—C351.368 (5)
N1—C141.455 (5)N2—C381.458 (5)
N1—C161.466 (6)N2—C401.465 (5)
C1—C61.376 (6)C25—C261.394 (6)
C1—C21.394 (6)C25—C301.394 (6)
C2—C31.374 (6)C26—C271.379 (6)
C2—H20.9500C26—H260.9500
C3—C41.390 (6)C27—C281.380 (6)
C4—C51.383 (6)C28—C291.388 (6)
C4—H40.9500C28—H280.9500
C5—C61.406 (6)C29—C301.396 (6)
C5—H50.9500C29—H290.9500
C6—C71.516 (6)C30—C311.508 (6)
C7—C81.499 (6)C31—C321.503 (6)
C7—C181.499 (6)C31—C421.513 (6)
C8—C131.376 (6)C32—C371.387 (6)
C8—C91.403 (6)C32—C331.395 (6)
C9—C101.371 (6)C33—C341.370 (6)
C9—H90.9500C33—H330.9500
C10—C111.423 (6)C34—C351.418 (6)
C10—H100.9500C34—H340.9500
C11—C121.403 (6)C35—C361.401 (6)
C12—C131.391 (6)C36—C371.394 (6)
C12—H120.9500C36—H360.9500
C14—C151.522 (6)C38—C391.525 (7)
C14—H14A0.9900C38—H38A0.9900
C14—H14B0.9900C38—H38B0.9900
C15—H15A0.9800C39—H39A0.9800
C15—H15B0.9800C39—H39B0.9800
C15—H15C0.9800C39—H39C0.9800
C16—C171.524 (6)C40—C411.513 (6)
C16—H16A0.9900C40—H40A0.9900
C16—H16B0.9900C40—H40B0.9900
C17—H17A0.9800C41—H41A0.9800
C17—H17B0.9800C41—H41B0.9800
C17—H17C0.9800C41—H41C0.9800
C18—C231.377 (6)C42—C471.382 (6)
C18—C191.398 (6)C42—C431.384 (6)
C19—C201.376 (6)C43—C441.393 (6)
C19—H190.9500C43—H430.9500
C20—C211.404 (6)C44—C451.388 (6)
C20—H200.9500C44—H440.9500
C21—C221.378 (6)C45—C461.386 (6)
C21—H210.9500C45—H450.9500
C22—C231.402 (6)C46—C471.386 (6)
C22—H220.9500C46—H460.9500
C23—C241.467 (6)C47—C481.478 (6)
C1—O1—C13118.4 (3)C25—O4—C37118.8 (3)
C24—O2—C7110.6 (3)C48—O5—C31111.4 (3)
C11—N1—C14120.6 (4)C35—N2—C38121.5 (4)
C11—N1—C16120.7 (4)C35—N2—C40122.7 (3)
C14—N1—C16118.1 (4)C38—N2—C40115.8 (4)
O1—C1—C6123.5 (4)O4—C25—C26115.6 (4)
O1—C1—C2114.9 (4)O4—C25—C30122.9 (4)
C6—C1—C2121.6 (4)C26—C25—C30121.5 (4)
C3—C2—C1118.7 (4)C27—C26—C25117.8 (4)
C3—C2—H2120.7C27—C26—H26121.1
C1—C2—H2120.7C25—C26—H26121.1
C2—C3—C4121.7 (4)C26—C27—C28122.8 (4)
C2—C3—Br1118.9 (3)C26—C27—Br2118.3 (3)
C4—C3—Br1119.4 (3)C28—C27—Br2118.9 (3)
C5—C4—C3118.6 (4)C27—C28—C29118.3 (4)
C5—C4—H4120.7C27—C28—H28120.9
C3—C4—H4120.7C29—C28—H28120.9
C4—C5—C6121.1 (4)C28—C29—C30121.2 (4)
C4—C5—H5119.4C28—C29—H29119.4
C6—C5—H5119.4C30—C29—H29119.4
C1—C6—C5118.2 (4)C25—C30—C29118.4 (4)
C1—C6—C7121.3 (4)C25—C30—C31121.8 (4)
C5—C6—C7120.2 (4)C29—C30—C31119.8 (4)
C8—C7—C18113.9 (4)O5—C31—C32108.6 (3)
C8—C7—O2109.8 (3)O5—C31—C30108.8 (3)
C18—C7—O2101.8 (3)C32—C31—C30111.1 (3)
C8—C7—C6110.6 (3)O5—C31—C42102.2 (3)
C18—C7—C6115.5 (3)C32—C31—C42113.0 (3)
O2—C7—C6104.3 (3)C30—C31—C42112.6 (3)
C13—C8—C9115.8 (4)C37—C32—C33116.3 (4)
C13—C8—C7122.7 (4)C37—C32—C31122.6 (4)
C9—C8—C7121.4 (4)C33—C32—C31121.0 (4)
C10—C9—C8122.7 (4)C34—C33—C32122.2 (4)
C10—C9—H9118.7C34—C33—H33118.9
C8—C9—H9118.7C32—C33—H33118.9
C9—C10—C11120.7 (4)C33—C34—C35121.5 (4)
C9—C10—H10119.6C33—C34—H34119.2
C11—C10—H10119.6C35—C34—H34119.2
N1—C11—C12121.1 (4)N2—C35—C36121.7 (4)
N1—C11—C10121.7 (4)N2—C35—C34121.6 (4)
C12—C11—C10117.1 (4)C36—C35—C34116.6 (4)
C13—C12—C11119.8 (4)C37—C36—C35120.4 (4)
C13—C12—H12120.1C37—C36—H36119.8
C11—C12—H12120.1C35—C36—H36119.8
C8—C13—O1122.2 (4)O4—C37—C32122.5 (4)
C8—C13—C12123.8 (4)O4—C37—C36114.7 (4)
O1—C13—C12114.0 (4)C32—C37—C36122.8 (4)
N1—C14—C15112.9 (4)N2—C38—C39113.8 (4)
N1—C14—H14A109.0N2—C38—H38A108.8
C15—C14—H14A109.0C39—C38—H38A108.8
N1—C14—H14B109.0N2—C38—H38B108.8
C15—C14—H14B109.0C39—C38—H38B108.8
H14A—C14—H14B107.8H38A—C38—H38B107.7
C14—C15—H15A109.5C38—C39—H39A109.5
C14—C15—H15B109.5C38—C39—H39B109.5
H15A—C15—H15B109.5H39A—C39—H39B109.5
C14—C15—H15C109.5C38—C39—H39C109.5
H15A—C15—H15C109.5H39A—C39—H39C109.5
H15B—C15—H15C109.5H39B—C39—H39C109.5
N1—C16—C17114.1 (4)N2—C40—C41114.3 (4)
N1—C16—H16A108.7N2—C40—H40A108.7
C17—C16—H16A108.7C41—C40—H40A108.7
N1—C16—H16B108.7N2—C40—H40B108.7
C17—C16—H16B108.7C41—C40—H40B108.7
H16A—C16—H16B107.6H40A—C40—H40B107.6
C16—C17—H17A109.5C40—C41—H41A109.5
C16—C17—H17B109.5C40—C41—H41B109.5
H17A—C17—H17B109.5H41A—C41—H41B109.5
C16—C17—H17C109.5C40—C41—H41C109.5
H17A—C17—H17C109.5H41A—C41—H41C109.5
H17B—C17—H17C109.5H41B—C41—H41C109.5
C23—C18—C19120.7 (4)C47—C42—C43120.6 (4)
C23—C18—C7110.5 (4)C47—C42—C31110.0 (4)
C19—C18—C7128.8 (4)C43—C42—C31129.4 (4)
C20—C19—C18117.5 (4)C42—C43—C44117.8 (4)
C20—C19—H19121.2C42—C43—H43121.1
C18—C19—H19121.2C44—C43—H43121.1
C19—C20—C21121.7 (4)C45—C44—C43121.3 (4)
C19—C20—H20119.2C45—C44—H44119.4
C21—C20—H20119.2C43—C44—H44119.4
C22—C21—C20121.0 (4)C46—C45—C44120.7 (4)
C22—C21—H21119.5C46—C45—H45119.7
C20—C21—H21119.5C44—C45—H45119.7
C21—C22—C23116.9 (4)C47—C46—C45117.6 (4)
C21—C22—H22121.5C47—C46—H46121.2
C23—C22—H22121.5C45—C46—H46121.2
C18—C23—C22122.1 (4)C42—C47—C46121.9 (4)
C18—C23—C24108.9 (4)C42—C47—C48108.2 (4)
C22—C23—C24129.0 (4)C46—C47—C48129.9 (4)
O3—C24—O2121.1 (4)O6—C48—O5121.3 (4)
O3—C24—C23131.2 (4)O6—C48—C47130.7 (4)
O2—C24—C23107.7 (4)O5—C48—C47108.0 (4)
C13—O1—C1—C63.3 (6)C37—O4—C25—C26177.1 (4)
C13—O1—C1—C2177.9 (4)C37—O4—C25—C304.2 (6)
O1—C1—C2—C3179.0 (4)O4—C25—C26—C27177.7 (4)
C6—C1—C2—C30.2 (7)C30—C25—C26—C271.1 (6)
C1—C2—C3—C42.1 (7)C25—C26—C27—C281.1 (7)
C1—C2—C3—Br1177.4 (3)C25—C26—C27—Br2178.9 (3)
C2—C3—C4—C51.8 (7)C26—C27—C28—C292.1 (7)
Br1—C3—C4—C5177.7 (3)Br2—C27—C28—C29177.9 (3)
C3—C4—C5—C60.8 (7)C27—C28—C29—C301.0 (7)
O1—C1—C6—C5178.7 (4)O4—C25—C30—C29176.6 (4)
C2—C1—C6—C52.7 (7)C26—C25—C30—C292.1 (6)
O1—C1—C6—C77.1 (7)O4—C25—C30—C314.8 (6)
C2—C1—C6—C7171.5 (4)C26—C25—C30—C31176.5 (4)
C4—C5—C6—C13.0 (7)C28—C29—C30—C251.0 (7)
C4—C5—C6—C7171.3 (4)C28—C29—C30—C31177.6 (4)
C24—O2—C7—C8128.9 (4)C48—O5—C31—C32116.1 (4)
C24—O2—C7—C187.9 (4)C48—O5—C31—C30122.8 (3)
C24—O2—C7—C6112.6 (3)C48—O5—C31—C423.5 (4)
C1—C6—C7—C812.5 (6)C25—C30—C31—O5122.8 (4)
C5—C6—C7—C8173.4 (4)C29—C30—C31—O558.7 (5)
C1—C6—C7—C18143.7 (4)C25—C30—C31—C323.3 (5)
C5—C6—C7—C1842.2 (5)C29—C30—C31—C32178.2 (4)
C1—C6—C7—O2105.5 (4)C25—C30—C31—C42124.7 (4)
C5—C6—C7—O268.6 (5)C29—C30—C31—C4253.8 (5)
C18—C7—C8—C13141.0 (4)O5—C31—C32—C37121.2 (4)
O2—C7—C8—C13105.6 (4)C30—C31—C32—C371.6 (5)
C6—C7—C8—C139.0 (6)C42—C31—C32—C37126.2 (4)
C18—C7—C8—C939.6 (5)O5—C31—C32—C3360.6 (5)
O2—C7—C8—C973.7 (5)C30—C31—C32—C33179.8 (4)
C6—C7—C8—C9171.7 (4)C42—C31—C32—C3352.0 (5)
C13—C8—C9—C100.3 (6)C37—C32—C33—C340.9 (6)
C7—C8—C9—C10179.7 (4)C31—C32—C33—C34179.1 (4)
C8—C9—C10—C111.4 (7)C32—C33—C34—C351.1 (7)
C14—N1—C11—C12174.3 (4)C38—N2—C35—C36168.1 (4)
C16—N1—C11—C122.9 (6)C40—N2—C35—C3610.5 (6)
C14—N1—C11—C109.5 (6)C38—N2—C35—C3411.8 (6)
C16—N1—C11—C10179.0 (4)C40—N2—C35—C34169.5 (4)
C9—C10—C11—N1173.3 (4)C33—C34—C35—N2179.9 (4)
C9—C10—C11—C123.0 (6)C33—C34—C35—C360.1 (6)
N1—C11—C12—C13173.2 (4)N2—C35—C36—C37178.9 (4)
C10—C11—C12—C133.1 (6)C34—C35—C36—C371.1 (6)
C9—C8—C13—O1179.1 (4)C25—O4—C37—C322.4 (6)
C7—C8—C13—O10.3 (6)C25—O4—C37—C36176.8 (4)
C9—C8—C13—C120.2 (6)C33—C32—C37—O4179.5 (4)
C7—C8—C13—C12179.6 (4)C31—C32—C37—O41.3 (6)
C1—O1—C13—C87.1 (6)C33—C32—C37—C360.4 (6)
C1—O1—C13—C12173.5 (4)C31—C32—C37—C36177.9 (4)
C11—C12—C13—C81.6 (7)C35—C36—C37—O4179.4 (4)
C11—C12—C13—O1179.1 (4)C35—C36—C37—C321.4 (7)
C11—N1—C14—C1577.4 (5)C35—N2—C38—C3991.9 (5)
C16—N1—C14—C1594.2 (5)C40—N2—C38—C3989.4 (5)
C11—N1—C16—C1776.2 (5)C35—N2—C40—C4190.8 (5)
C14—N1—C16—C1795.4 (5)C38—N2—C40—C4187.9 (5)
C8—C7—C18—C23122.5 (4)O5—C31—C42—C475.1 (4)
O2—C7—C18—C234.4 (4)C32—C31—C42—C47111.4 (4)
C6—C7—C18—C23107.9 (4)C30—C31—C42—C47121.7 (4)
C8—C7—C18—C1954.7 (6)O5—C31—C42—C43175.9 (4)
O2—C7—C18—C19172.8 (4)C32—C31—C42—C4367.6 (6)
C6—C7—C18—C1974.9 (6)C30—C31—C42—C4359.3 (6)
C23—C18—C19—C200.8 (6)C47—C42—C43—C441.4 (7)
C7—C18—C19—C20177.7 (4)C31—C42—C43—C44177.5 (4)
C18—C19—C20—C210.7 (6)C42—C43—C44—C451.4 (7)
C19—C20—C21—C220.4 (7)C43—C44—C45—C463.4 (7)
C20—C21—C22—C230.2 (6)C44—C45—C46—C472.4 (6)
C19—C18—C23—C220.7 (6)C43—C42—C47—C462.4 (7)
C7—C18—C23—C22178.1 (4)C31—C42—C47—C46176.7 (4)
C19—C18—C23—C24177.7 (4)C43—C42—C47—C48176.1 (4)
C7—C18—C23—C240.3 (5)C31—C42—C47—C484.8 (5)
C21—C22—C23—C180.4 (6)C45—C46—C47—C420.4 (6)
C21—C22—C23—C24177.7 (4)C45—C46—C47—C48177.6 (4)
C7—O2—C24—O3171.6 (4)C31—O5—C48—O6179.9 (4)
C7—O2—C24—C238.4 (4)C31—O5—C48—C470.9 (4)
C18—C23—C24—O3174.5 (4)C42—C47—C48—O6176.6 (4)
C22—C23—C24—O37.2 (8)C46—C47—C48—O61.7 (8)
C18—C23—C24—O25.4 (5)C42—C47—C48—O52.5 (5)
C22—C23—C24—O2172.8 (4)C46—C47—C48—O5179.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and O1,C1,C6,C7,C8,C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16B···Cgi0.992.813.583 (4)136
C40—H40A···Cg10.992.793.534 (4)132
C40—H40B···Cg20.992.833.580 (4)133
Symmetry code: (i) x+1, y, z.
Dihedral angles (°) in selected rhodamine derivatives. top
R1R6 positions are defined in Fig. 1.
R1R2R3R4R5R6ring 1–ring 2ring 3–ring 4Ref.
HEt2NHHBrH88.05 (14)15.15 (13)a
HEt2NHHBrH88.11 (11)9.74 (11)b
HEt2NHHBrH84.2 (2)6.45 (19)c
HEt2NHHBrH89.6 (2)2.4 (2)c
HEt2NHHEt2NH89.2 (2)4.2 (2)d
HOHmbzHOHH88.17 (19)2.82 (2)e
ClOHCH2tmCH2tmOHCl90115.0 (3)f
ClOHCH2moCH2moOHCl9017.5 (17)f
HEt2NHHEt2NH89.59 (5)7.36 (5)g
HEt2nHHEt2NH89.58 (5)4.59 (5)g
HEt2NHHMeNH(xyl)88.8 (14)3.74 (17)h
HEt2NHHHNO289.4 (2)6.1 (2)i
HMeOHHOHH88.7 (3)6.3 (3)j
HEthmHHEthmH88.64 (17)14.62 (13)k
NO2EthmBrBrEthmNO289.7 (4)17.5 (5)k
HOHHHOHH89.67 (12)8.19 (11)l
HOHHHOHH9014.24 (11)l
HOHHHOHH87.30 (7)6.25 (7)l
HOHHHOHH90.0 (2)2.4 (2)l
HOHCHOHOHH89.7 (3)2.5 (3)m
HOHCHOCHOOHH88.47 (13)4.68 (12)m
HBu2NHHMeNHPh87.08 (13)13.76 (12)n
HEtC(O)OHHEtC(O)OH89.29 (14)15.16 (11)o
MeNH2HHHEt2NH89.1 (3)6.9 (3)p
1Ring 1 lies on a crystallographic mirror. Notes: (a) This work (compound 3); (b) this work (compound 4); (c) this work (compound 5); (d) Zhang et al. (2015); (e) Hou et al. (2012) (mbz = PhC(O)NHNCH); (f) Swamy et al. (2009) (tm = thiomorpholino; mo = morpholino); (g) Kvick et al. (2000) (first line = molecule 1, second line = molecule 2); (h) Li et al. (2006) (xyl = 2,4-Me2C6H3); (i) Liu et al. (1995); (j) Mchedlov-Petrossyan et al. (2015); (k) Berscheid et al. (1992) (Ethm = OCH2CCH); (l) Bučar et al. (2013); (m) Wang et al. (2005); (n) Okada (1996); (o) Wang et al. (1990); (p) Miao et al. (1996).
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the D8 diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBerscheid, R., Nieger, M. & Vögtle, F. (1992). Chem. Ber. 125, 2539–2552.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBučar, D.-K., Filip, S., Arhangelskis, M., Lloyd, G. O. & Jones, W. (2013). CrystEngComm, 15, 6289–6291.  Google Scholar
First citationChen, X. Q., Pradhan, T., Wang, F., Kim, J. S. & Yoon, J. (2012). Chem. Rev. 112, 1910–1956.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHou, F., Cheng, J., Xi, P., Chen, F., Huang, L., Xie, G., Shi, Y., Liu, H., Bai, D. & Zeng, Z. (2012). Dalton Trans. 41, 5799–5804.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJo, H. H., Lin, C. Y. & Anslyn, E. V. (2014). Acc. Chem. Res. 47, 2212–2221.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKvick, Å., Vaughan, G. B. M., Wang, X., Sun, Y. & Long, Y. (2000). Acta Cryst. C56, 1232–1233.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaPlante, S. R. F., Fader, L. D., Fandrick, K. R., Fandrick, D. R., Hucke, O., Kemper, R., Miller, S. P. F. & Edwards, P. J. (2011). J. Med. Chem. 54, 7005–7022.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X. M., Ding, C. F., Tian, B. Q., Liu, Q., Zhang, S. S., Xu, H. & Ouyang, P. K. (2006). Chem. Pap. 60, 220–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-L., Wang, J.-L., Liu, J.-W. & Miao, F.-M. (1995). Acta Cryst. C51, 324–326.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMchedlov-Petrossyan, N. O., Cheipesh, T. A., Shekhovtsov, S. V., Redko, A. N., Rybachenko, V. I., Omelchenko, I. V. & Shishkin, O. V. (2015). Spectrochim. Acta Part A, 150, 151–161.  CAS Google Scholar
First citationMiao, F.-M., Zhang, L.-J., Wen, X., Zhou, W.-H., Niu, Z.-C., Han, J.-G. & Liu, X.-L. (1996). Acta Cryst. C52, 700–702.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkada, K. (1996). J. Mol. Struct. 380, 235–247.  CAS Google Scholar
First citationPak, Y. L., Swamy, K. M. & Yoon, J. (2015). Sensors (Basel), 15, 24374–24396.  Web of Science CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReist, M., Carrupt, P. A., Francotte, E. & Testa, B. (1998). Chem. Res. Toxicol. 11, 1521–1528.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, K. D. & Stephenson, C. J. (2010). Curr. Opin. Chem. Biol. 14, 743–750.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSwamy, K. M. K., Kim, H. N., Soh, J. H., Kim, Y., Kim, S.-J. & Yoon, J. (2009). Chem. Commun. pp. 1234–1236.  Web of Science CSD CrossRef Google Scholar
First citationWang, M., Marriott, P. J., Chan, W. H., Lee, A. W. M. & Huie, C. W. (2006). J. Chromatogr. A, 1112, 361–368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I. M. & Strongin, R. M. (2005). J. Am. Chem. Soc. 127, 15949–15958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, L.-F., Wang, X., Peng, Z., He, F. & Wang, Q. (1990). Acta Cryst. C46, 1676–1678.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYou, L., Zha, D. & Anslyn, E. V. (2015). Chem. Rev. 115, 7840–7892.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYu, S. & Pu, L. (2015). Tetrahedron, 71, 745–772.  Web of Science CrossRef CAS Google Scholar
First citationZhang, I., Wang, Y., Wan, C., Xing, Z., Li, W., Li, M. & Zhang, S. X.-A. (2015). RSC Adv. 5, 66416–66419.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Yin, J. & Yoon, J. (2014). Chem. Rev. 114, 4918–4959.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds