research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[(oxalato-κ2O1,O2)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III)] dichromate octa­hydrate from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 13 February 2017; accepted 14 February 2017; online 17 February 2017)

The asymmetric unit of the title compound, [Cr(C2O4)(C10H24N4)]2[Cr2O7]·8H2O (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; C2O4 = oxalate, ox) contains one [Cr(ox)(cyclam)]+ cation, one half of a dichromate anion that lies about an inversion centre so that the bridging O atom is equally disordered over two positions, and four water mol­ecules. The terminal O atoms of the dichromate anion are also disordered over two positions with a refined occupancy ratio 0.586 (6):0.414 (6). The CrIII ion is coordinated by the four N atoms of the cyclam ligand and one bidentate oxalato ligand in a cis arrangement, resulting in a distorted octa­hedral geometry. The Cr—N(cyclam) bond lengths are in the range 2.069 (2)–2.086 (2) Å, while the average Cr—O(ox) bond length is 1.936 Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The dichromate anion has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donors, and the O atoms of oxalate ligand, water mol­ecules and the Cr2O72− anion as acceptors, giving rise to a three-dimensional network.

1. Chemical context

Chromium (Cr) is considered a trace element essential for the proper functioning of living organisms and is also a highly toxic material (Yusof & Malek, 2009[Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019-1024.]). Cr can exist in all oxidation states from 0 to VI, the most common oxidation states in water being CrIII and CrVI. In an aqueous environment, the toxicity of CrVI has been shown to be greater than that of CrIII (Guzel et al., 2016[Guzel, P., Aydın, Y. A. & Deveci Aksoy, N. (2016). Int. J. Environ. Sci. Technol. 13, 1277-1288.]). Transition metal complexes of the cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) ligand have been the subject of numerous investigations because of their particular conformational stereochemistry (Poon & Pun, 1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). Recently, it has been found that cyclam derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). The conformation of the macrocyclic ligand is a very important factor for co-receptor recognition. Therefore, knowledge of the conformation and hydrogen-bonding inter­actions in CrIII–CrVI complex systems containing the cyclam ligand has become important in the development of new anti-HIV drugs (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). The use of such complexes for the more effective removal of toxic metals is also important (Guzel et al., 2016[Guzel, P., Aydın, Y. A. & Deveci Aksoy, N. (2016). Int. J. Environ. Sci. Technol. 13, 1277-1288.]). As part of a study of the conformation and structure of (cyclam)chromium(III) complexes with auxiliary ligand(s) and various anions, we report here the structural characterization of the new complex salt, [Cr(C2O4)(C10H24N4)]2[Cr2O7]·8H2O, (I)[link].

[Scheme 1]

2. Structural commentary

An ellipsoid plot of the mol­ecular components in (I)[link] is shown in Fig. 1[link] along with the atom-numbering scheme. The structure is another example of a [Cr(ox)(cyclam)]+ cation (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]; Moon & Choi, 2016b[Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417-1420.]), but with a different counter-anion. The asymmetric unit contains one [Cr(ox)(cyclam)]+ cation, one half of a Cr2O72− anion (completed by inversion symmetry with the bridging O atom disordered about the inversion centre) and four non-coordinating water mol­ecules. The three terminal O atoms of the dichromate anion are also disordered over two positions with occupancy ratio of the atom pairs O2B1/O2B2, O3B1/O3B2 and O4B1/O4B2 converging at 0.586 (6):0.414 (6). The conformation of the cyclam ligand can be described as cis-V (antianti) (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). In the complex cation, the CrIII ion is coordinated by the four nitro­gen atoms of the cyclam ligand in a folded conformation. Two oxygen atoms of the oxalato ligand complete the distorted octa­hedral coordination sphere. The Cr—N bond lengths from the donor atoms of cyclam ligand lie in the range 2.069 (2) to 2.086 (2) Å, in good agreement with those determined in cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å] (Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]), cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å] (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]), [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070 (5)–2.089 (5) Å] (acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]), cis-[Cr(NCS)2(cyclam)]NCS [2.0851 (14)–2.0897 (14) Å] (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]) and [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.075 (5)–2.096 (5) Å] (Moon & Choi, 2016b[Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417-1420.]). However, the Cr—N bond lengths of the cyclam ligand with a cis geometry are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å] (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), trans-[Cr(ONO)2)(cyclam)]BF4 [2.064 (4)–2.073 (4) Å] (De Leo et al., 2000[De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.]), trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å] (Moon & Choi, 2016a[Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456-459.]) and trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4)–2.064 (4) Å] (nic-O = O-coordinated nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]).

[Figure 1]
Figure 1
A perspective view of the asymmetric unit of the title of compound, (I)[link], with the dichromate anion, which lies about an inversion centre, drawn in full. Displacement ellipsoids are drawn at the 30% probability level and primed atoms are related by the symmetry operation (2 − x, −y, 1 − z). For clarity, only the major disorder components are shown for the disordered dichromate anion.

The Cr1A—O1A distance [1.9665 (16) Å] in the oxalate ligand is very slightly longer than the Cr1A—O3A [1.9600 (16) Å] bond length. This elongation may be attributed to the weak hydrogen bond formed by O1A (x, −y + [{1\over 2}], z − [{1\over 2}]) with the O3S—H2O3 atoms of a water mol­ecule. The mean Cr—O bond length is comparable to the mean values of 1.959, 1.956 and 1.969 Å observed in [Cr(ox)(cyclam)]ClO4 (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]), [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 (Moon & Choi, 2016b[Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417-1420.]) and K3[Cr(ox)3]·3H2O (Taylor, 1978[Taylor, D. (1978). Aust. J. Chem. 31, 1455-1462.]), respectively. The five- and six-membered chelate rings of the cyclam ligand adopt gauche and stable chair conformations, respectively. As expected for a bidentate ox ligand, the O1A—Cr1A—O3A bite angle 82.34 (7)° is considerably less than 90°, while the folding angle of the cyclam in the [Cr(ox)(cyclam)]+ cation is 98.97 (8)°. The significant distortion of the octa­hedron and the larger folding angle in the [Cr(ox)(cyclam)]+ cation seem to arise from the small bite angle of the bidentate oxalato ligand.

It is of inter­est to compare the conformation of the Cr2O72− anion with that found in other ionic crystals. In (I)[link], the Cr2O72− anion exhibits a staggered conformation whereas a nearly eclipsed conformation is observed for (C9H14N)2[Cr2O7] and (C10H22N2)[Cr2O7], when viewed along the backbone of the dichromate anion (Trabelsi et al., 2015[Trabelsi, S., Roisnel, T. & Marouani, H. (2015). J. Advan. Chem. 11, 3394-3403.]; Chebbi et al., 2016[Chebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632-635.]). This structural conformation of dichromate seems to depend on the size of the associated counter-cation (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.], 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]). The O1B—Cr2B—O bond angles range from 107.1 (3) to 117.0 (3)°; while the terminal Cr2B—O bond lengths vary from 1.572 (12) to 1.673 (5) Å, with a mean terminal Cr2B—O bond length of 1.627 Å. The bridging Cr2B—O1B bond is 1.684 (4) Å long, with the Cr2B—O1B—Cr2B(−x + 2, −y, −z + 1) bond angle of 136.0 (3)°. These values are similar to those reported for the anions in the structures of [Cr(urea)6][Cr2O7]Br·H2O (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.]) and [Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (Moon et al., 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]). A further distortion of the anion undoubtedly results from its involvement in hydrogen-bonding inter­actions with the solvent water mol­ecules (see Supra­molecular features).

3. Supra­molecular features

In the asymmetric unit, O—H⋯O and N—H⋯O hydrogen bonds link the water mol­ecules to the Cr2O72− anion, [Cr(ox)(cyclam)]+ cation and other water mol­ecules, while N—H⋯O hydrogen bonds involving the cyclam N–H groups and the O atoms of oxalate inter­connect two [Cr(ox)(cyclam)]+ cations (Table 1[link], Figs. 1[link] and 2[link]). An extensive array of these contacts generate a three-dimensional network of mol­ecules (Fig. 2[link]), and these hydrogen-bonding inter­actions help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O4Ai 0.98 1.99 2.804 (3) 139
N2A—H2A⋯O1S 0.98 2.00 2.894 (3) 150
N3A—H3A⋯O2Ai 0.98 1.89 2.842 (3) 163
N4A—H4A⋯O2B1ii 0.98 2.25 3.100 (16) 144
N4A—H4A⋯O4B1ii 0.98 2.37 3.108 (6) 132
N4A—H4A⋯O4B2ii 0.98 2.15 3.05 (2) 151
O1S—H1O1⋯O4B1 0.85 (1) 2.33 (5) 2.876 (6) 123 (5)
O1S—H1O1⋯O3B2 0.85 (1) 2.20 (4) 2.903 (10) 141 (5)
O2S—H2O2⋯O3S 0.85 (1) 1.91 (2) 2.729 (6) 164 (6)
O3S—H1O3⋯O3B1 0.85 (1) 1.93 (3) 2.725 (6) 156 (7)
O3S—H1O3⋯O3B2 0.85 (1) 2.28 (2) 3.113 (10) 167 (6)
O3S—H2O3⋯O1Aiii 0.85 (1) 2.52 (3) 3.301 (4) 154 (6)
O3S—H2O3⋯O2Aiii 0.85 (1) 2.21 (5) 2.911 (5) 140 (6)
O4S—H1O4⋯O4A 0.84 (1) 2.11 (4) 2.834 (4) 144 (6)
O4S—H2O4⋯O2S 0.85 (1) 1.89 (2) 2.723 (5) 166 (6)
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing in compound (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯O (pink) and O—H⋯O (cyan) hydrogen-bonding inter­actions, respectively. C-bound H atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just one hit for a [Cr(C2O4)(C10H24N4)]+ unit, namely the complex [Cr(ox)(cyclam)]ClO4 (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]). However, the structure of [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 (Moon & Choi, 2016b[Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417-1420.]) has also been reported recently. Until now, no structure of the [Cr(ox)(cyclam)]+ cation with a dichromate counter-anion has been deposited.

5. Synthesis and crystallization

The free ligand cyclam (98%) was purchased from Sigma–Aldrich and used without further purification. All chemicals were reagent grade materials, and were used as received. The starting material, [Cr(ox)(cyclam)]ClO4 was prepared according to the literature method (House & McKee, 1984[House, D. A. & McKee, V. (1984). Inorg. Chem. 23, 4237-4242.]). The perchlorate salt of the complex (0.03 g) was dissolved in 10 mL of distilled water at 347 K. The solution was filtered and the filtrate was added to 5 mL of water containing solid K2Cr2O7 (0.02 g). Orange block-like crystals of (I)[link] suitable for X-ray structural analysis were obtained after one week of slow evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.98 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The hydrogen atoms of the solvent water mol­ecules were assigned based on a difference-Fourier map, and the O—H distance and the H—O—H angle were restrained using DFIX and DANG constraints. The terminal O atoms of the dichromate anion are positionally disordered over two sets of sites. The occupancies of the respective pairs, O2B1/O2B2, O3B1/O3B2 and O4B1/O4B2, were refined freely and, for the O2B2 and O3B2 atoms, ISOR restraints were applied. The occupancy ratio refined to 0.586 (6):0.414 (6). The bridging O1B atom of the dichromate anion is also disordered, in this case about the inversion centre. Consequently the components were refined at half-occupancy. The bridging atoms O1B/O1B (−x + 2, −y, −z + 1) sites were refined using EXYZ/EADP restraints.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(C2O4)(C10H24N4)]2[Cr2O7]·8H2O
Mr 1040.83
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 7.8270 (16), 15.407 (3), 18.086 (4)
β (°) 100.86 (3)
V3) 2141.9 (8)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.71
Crystal size (mm) 0.15 × 0.09 × 0.08
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.889, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21270, 5775, 4844
Rint 0.027
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.04
No. of reflections 5775
No. of parameters 324
No. of restraints 24
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.62, −0.69
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[(oxalato-κ2O1,O2)(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III)] dichromate octahydrate top
Crystal data top
[Cr(C2O4)(C10H24N4)]2[Cr2O7]·8H2OF(000) = 1088
Mr = 1040.83Dx = 1.614 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.610 Å
a = 7.8270 (16) ÅCell parameters from 63673 reflections
b = 15.407 (3) Åθ = 0.4–33.7°
c = 18.086 (4) ŵ = 0.71 mm1
β = 100.86 (3)°T = 298 K
V = 2141.9 (8) Å3Block, orange
Z = 20.15 × 0.09 × 0.08 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
4844 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.027
ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.889, Tmax = 1.000k = 2020
21270 measured reflectionsl = 2525
5775 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0902P)2 + 1.1358P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max = 0.002
S = 1.04Δρmax = 1.62 e Å3
5775 reflectionsΔρmin = 0.69 e Å3
324 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
24 restraintsExtinction coefficient: 0.037 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr1A0.38205 (4)0.34112 (2)0.73752 (2)0.02641 (13)
O1A0.59297 (19)0.27010 (12)0.76591 (10)0.0396 (4)
O2A0.8739 (2)0.26797 (16)0.76043 (14)0.0626 (6)
O3A0.54391 (19)0.41929 (11)0.69995 (10)0.0396 (4)
O4A0.8222 (2)0.43225 (16)0.69140 (14)0.0598 (6)
N1A0.1816 (2)0.42579 (13)0.69489 (12)0.0378 (4)
H1A0.0755470.4052100.7106380.045*
N2A0.3113 (2)0.27935 (15)0.63360 (12)0.0409 (4)
H2A0.4036740.2938060.6058480.049*
N3A0.2422 (2)0.25158 (13)0.78721 (12)0.0390 (4)
H3A0.1196370.2690260.7754300.047*
N4A0.4158 (3)0.40170 (14)0.84214 (11)0.0406 (4)
H4A0.5359610.3891150.8665500.049*
C1A0.1568 (4)0.4172 (2)0.61046 (18)0.0582 (8)
H1AA0.0490760.4450140.5868570.070*
H1AB0.2520880.4451690.5923500.070*
C2A0.1514 (4)0.3226 (2)0.59104 (18)0.0612 (8)
H2AA0.0485920.2961620.6041420.073*
H2AB0.1457820.3154140.5373580.073*
C3A0.3008 (4)0.1838 (2)0.6321 (2)0.0609 (8)
H3AA0.4170780.1602070.6470970.073*
H3AB0.2565900.1651220.5808180.073*
C4A0.1857 (4)0.1466 (2)0.6829 (2)0.0638 (9)
H4AA0.0712360.1726740.6695840.077*
H4AB0.1726240.0847360.6734350.077*
C5A0.2513 (4)0.16009 (18)0.7649 (2)0.0586 (8)
H5AA0.1830710.1251050.7932220.070*
H5AB0.3710130.1405300.7775150.070*
C6A0.3031 (4)0.2623 (2)0.87113 (18)0.0597 (8)
H6AA0.2248230.2323510.8981890.072*
H6AB0.4187100.2380330.8864110.072*
C7A0.3053 (5)0.3571 (3)0.88827 (18)0.0640 (8)
H7AA0.1879530.3801980.8768540.077*
H7AB0.3511790.3666530.9413120.077*
C8A0.3993 (4)0.4980 (2)0.8437 (2)0.0605 (8)
H8AA0.4939860.5237120.8235210.073*
H8AB0.4107810.5168640.8955980.073*
C9A0.2285 (4)0.5313 (2)0.7993 (2)0.0657 (9)
H9AA0.1339590.5023730.8172290.079*
H9AB0.2195910.5928610.8091180.079*
C10A0.2063 (4)0.51784 (19)0.7163 (2)0.0595 (8)
H10A0.1063580.5508000.6912760.071*
H10B0.3081320.5398630.6990870.071*
C11A0.7305 (3)0.30305 (18)0.74841 (14)0.0415 (5)
C12A0.7022 (3)0.39281 (18)0.70995 (14)0.0412 (5)
Cr2B0.86158 (6)0.07641 (3)0.46646 (2)0.04561 (15)
O1B0.9327 (6)0.0145 (4)0.5141 (3)0.0780 (16)0.5
O2B10.814 (2)0.0661 (9)0.3785 (7)0.068 (3)0.586 (6)
O3B10.9854 (7)0.1624 (3)0.4827 (3)0.0797 (17)0.586 (6)
O4B10.6779 (6)0.1061 (4)0.4942 (3)0.0811 (16)0.586 (6)
O2B20.7152 (9)0.0097 (6)0.4864 (4)0.093 (3)0.414 (6)
O3B20.8779 (13)0.1556 (6)0.5165 (5)0.097 (3)0.414 (6)
O4B20.812 (3)0.0895 (14)0.3789 (11)0.075 (5)0.414 (6)
O1S0.6259 (5)0.2636 (2)0.57243 (19)0.0909 (10)
H1O10.698 (7)0.222 (3)0.577 (3)0.136*
H2O10.596 (8)0.269 (4)0.5252 (8)0.136*
O2S0.6340 (5)0.3977 (2)0.4684 (2)0.0935 (9)
H1O20.576 (7)0.382 (4)0.501 (3)0.140*
H2O20.698 (7)0.362 (3)0.450 (3)0.140*
O3S0.8777 (6)0.3113 (2)0.4068 (2)0.1014 (11)
H1O30.880 (9)0.264 (2)0.431 (3)0.152*
H2O30.827 (8)0.300 (4)0.3622 (14)0.152*
O4S0.7101 (5)0.5364 (2)0.56219 (18)0.0920 (9)
H1O40.708 (9)0.519 (3)0.6063 (12)0.138*
H2O40.675 (8)0.499 (3)0.528 (2)0.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.01035 (16)0.0353 (2)0.03406 (19)0.00068 (10)0.00548 (11)0.00334 (12)
O1A0.0188 (7)0.0472 (10)0.0521 (9)0.0076 (6)0.0050 (6)0.0005 (7)
O2A0.0197 (8)0.0833 (16)0.0835 (15)0.0165 (8)0.0066 (8)0.0129 (12)
O3A0.0177 (7)0.0490 (10)0.0546 (10)0.0027 (6)0.0133 (6)0.0023 (7)
O4A0.0229 (8)0.0871 (16)0.0737 (14)0.0124 (9)0.0203 (8)0.0010 (11)
N1A0.0173 (8)0.0424 (11)0.0544 (11)0.0062 (7)0.0089 (7)0.0063 (8)
N2A0.0258 (9)0.0561 (12)0.0409 (10)0.0004 (8)0.0066 (7)0.0124 (9)
N3A0.0216 (8)0.0435 (11)0.0537 (11)0.0007 (7)0.0115 (8)0.0059 (8)
N4A0.0273 (9)0.0533 (12)0.0408 (10)0.0009 (8)0.0058 (7)0.0127 (8)
C1A0.0373 (13)0.080 (2)0.0565 (16)0.0114 (13)0.0069 (11)0.0225 (15)
C2A0.0434 (15)0.087 (2)0.0473 (15)0.0015 (15)0.0069 (12)0.0098 (14)
C3A0.0495 (16)0.0600 (18)0.073 (2)0.0032 (13)0.0114 (14)0.0286 (15)
C4A0.0488 (17)0.0501 (17)0.093 (2)0.0108 (12)0.0130 (16)0.0183 (15)
C5A0.0442 (15)0.0407 (15)0.092 (2)0.0025 (10)0.0169 (15)0.0052 (13)
C6A0.0497 (16)0.077 (2)0.0546 (16)0.0013 (14)0.0162 (13)0.0168 (14)
C7A0.067 (2)0.086 (2)0.0446 (15)0.0042 (17)0.0243 (14)0.0113 (14)
C8A0.0517 (17)0.0561 (18)0.074 (2)0.0037 (13)0.0125 (14)0.0275 (15)
C9A0.0498 (17)0.0528 (18)0.097 (3)0.0099 (13)0.0195 (16)0.0179 (16)
C10A0.0376 (14)0.0447 (15)0.098 (2)0.0084 (11)0.0189 (14)0.0074 (14)
C11A0.0160 (9)0.0608 (15)0.0470 (12)0.0055 (9)0.0041 (8)0.0140 (10)
C12A0.0177 (9)0.0612 (15)0.0472 (12)0.0071 (9)0.0120 (8)0.0119 (10)
Cr2B0.0406 (2)0.0553 (3)0.0379 (2)0.00143 (17)0.00027 (16)0.00325 (16)
O1B0.058 (3)0.083 (3)0.094 (4)0.032 (3)0.016 (3)0.051 (3)
O2B10.074 (5)0.082 (6)0.042 (4)0.010 (4)0.002 (3)0.009 (4)
O3B10.076 (3)0.065 (3)0.086 (3)0.025 (2)0.016 (3)0.006 (2)
O4B10.066 (3)0.095 (4)0.087 (3)0.011 (2)0.027 (2)0.005 (3)
O2B20.065 (4)0.126 (6)0.094 (5)0.007 (4)0.027 (3)0.045 (4)
O3B20.096 (3)0.095 (3)0.097 (3)0.0059 (19)0.0135 (19)0.0124 (18)
O4B20.050 (5)0.113 (13)0.060 (7)0.023 (7)0.009 (5)0.047 (7)
O1S0.097 (2)0.102 (2)0.089 (2)0.0078 (17)0.0558 (19)0.0074 (17)
O2S0.110 (3)0.082 (2)0.089 (2)0.0060 (18)0.0202 (18)0.0030 (16)
O3S0.131 (3)0.084 (2)0.082 (2)0.013 (2)0.003 (2)0.0045 (16)
O4S0.111 (3)0.091 (2)0.0739 (18)0.0025 (19)0.0187 (19)0.0037 (15)
Geometric parameters (Å, º) top
Cr1A—O3A1.9600 (16)C5A—H5AB0.9700
Cr1A—O1A1.9665 (16)C6A—C7A1.493 (5)
Cr1A—N3A2.069 (2)C6A—H6AA0.9700
Cr1A—N1A2.0739 (19)C6A—H6AB0.9700
Cr1A—N4A2.081 (2)C7A—H7AA0.9700
Cr1A—N2A2.086 (2)C7A—H7AB0.9700
O1A—C11A1.283 (3)C8A—C9A1.513 (5)
O2A—C11A1.228 (3)C8A—H8AA0.9700
O3A—C12A1.284 (3)C8A—H8AB0.9700
O4A—C12A1.218 (3)C9A—C10A1.493 (5)
N1A—C10A1.473 (4)C9A—H9AA0.9700
N1A—C1A1.508 (4)C9A—H9AB0.9700
N1A—H1A0.9800C10A—H10A0.9700
N2A—C3A1.475 (4)C10A—H10B0.9700
N2A—C2A1.497 (4)C11A—C12A1.545 (4)
N2A—H2A0.9800Cr2B—O3B21.511 (8)
N3A—C5A1.472 (4)Cr2B—O4B21.571 (19)
N3A—C6A1.512 (4)Cr2B—O2B11.572 (12)
N3A—H3A0.9800Cr2B—O2B21.630 (7)
N4A—C7A1.479 (4)Cr2B—O3B11.635 (4)
N4A—C8A1.491 (4)Cr2B—O4B11.673 (5)
N4A—H4A0.9800Cr2B—O1B1.684 (4)
C1A—C2A1.498 (5)Cr2B—O1Bi1.847 (4)
C1A—H1AA0.9700O1B—O1Bi1.332 (10)
C1A—H1AB0.9700O1B—O2B21.723 (9)
C2A—H2AA0.9700O1S—H1O10.845 (10)
C2A—H2AB0.9700O1S—H2O10.847 (10)
C3A—C4A1.516 (5)O2S—H1O20.841 (10)
C3A—H3AA0.9700O2S—H2O20.845 (10)
C3A—H3AB0.9700O3S—H1O30.845 (10)
C4A—C5A1.489 (5)O3S—H2O30.848 (10)
C4A—H4AA0.9700O4S—H1O40.843 (10)
C4A—H4AB0.9700O4S—H2O40.851 (10)
C5A—H5AA0.9700
O3A—Cr1A—O1A82.34 (7)N3A—C5A—H5AB109.1
O3A—Cr1A—N3A171.83 (8)C4A—C5A—H5AB109.1
O1A—Cr1A—N3A90.14 (8)H5AA—C5A—H5AB107.8
O3A—Cr1A—N1A88.72 (7)C7A—C6A—N3A107.7 (2)
O1A—Cr1A—N1A170.42 (8)C7A—C6A—H6AA110.2
N3A—Cr1A—N1A98.97 (8)N3A—C6A—H6AA110.2
O3A—Cr1A—N4A93.44 (8)C7A—C6A—H6AB110.2
O1A—Cr1A—N4A93.19 (8)N3A—C6A—H6AB110.2
N3A—Cr1A—N4A83.74 (9)H6AA—C6A—H6AB108.5
N1A—Cr1A—N4A90.77 (9)N4A—C7A—C6A108.8 (2)
O3A—Cr1A—N2A92.69 (8)N4A—C7A—H7AA109.9
O1A—Cr1A—N2A92.78 (8)C6A—C7A—H7AA109.9
N3A—Cr1A—N2A90.86 (9)N4A—C7A—H7AB109.9
N1A—Cr1A—N2A84.17 (9)C6A—C7A—H7AB109.9
N4A—Cr1A—N2A171.96 (8)H7AA—C7A—H7AB108.3
C11A—O1A—Cr1A114.69 (16)N4A—C8A—C9A113.4 (2)
C12A—O3A—Cr1A115.17 (17)N4A—C8A—H8AA108.9
C10A—N1A—C1A109.6 (2)C9A—C8A—H8AA108.9
C10A—N1A—Cr1A117.10 (17)N4A—C8A—H8AB108.9
C1A—N1A—Cr1A105.39 (15)C9A—C8A—H8AB108.9
C10A—N1A—H1A108.1H8AA—C8A—H8AB107.7
C1A—N1A—H1A108.1C10A—C9A—C8A114.2 (3)
Cr1A—N1A—H1A108.1C10A—C9A—H9AA108.7
C3A—N2A—C2A113.4 (2)C8A—C9A—H9AA108.7
C3A—N2A—Cr1A118.47 (19)C10A—C9A—H9AB108.7
C2A—N2A—Cr1A108.32 (17)C8A—C9A—H9AB108.7
C3A—N2A—H2A105.2H9AA—C9A—H9AB107.6
C2A—N2A—H2A105.2N1A—C10A—C9A112.5 (3)
Cr1A—N2A—H2A105.2N1A—C10A—H10A109.1
C5A—N3A—C6A111.0 (2)C9A—C10A—H10A109.1
C5A—N3A—Cr1A117.56 (18)N1A—C10A—H10B109.1
C6A—N3A—Cr1A105.70 (17)C9A—C10A—H10B109.1
C5A—N3A—H3A107.4H10A—C10A—H10B107.8
C6A—N3A—H3A107.4O2A—C11A—O1A124.3 (3)
Cr1A—N3A—H3A107.4O2A—C11A—C12A121.5 (2)
C7A—N4A—C8A112.9 (2)O1A—C11A—C12A114.15 (18)
C7A—N4A—Cr1A108.49 (17)O4A—C12A—O3A125.2 (3)
C8A—N4A—Cr1A117.86 (19)O4A—C12A—C11A121.2 (2)
C7A—N4A—H4A105.5O3A—C12A—C11A113.63 (19)
C8A—N4A—H4A105.5O3B2—Cr2B—O4B2118.5 (8)
Cr1A—N4A—H4A105.5O3B2—Cr2B—O2B2111.1 (5)
C2A—C1A—N1A108.4 (2)O4B2—Cr2B—O2B2104.7 (8)
C2A—C1A—H1AA110.0O2B1—Cr2B—O3B1106.5 (6)
N1A—C1A—H1AA110.0O2B1—Cr2B—O4B1106.1 (6)
C2A—C1A—H1AB110.0O3B1—Cr2B—O4B1103.8 (3)
N1A—C1A—H1AB110.0O3B2—Cr2B—O1B112.5 (4)
H1AA—C1A—H1AB108.4O4B2—Cr2B—O1B128.2 (8)
N2A—C2A—C1A109.2 (2)O2B1—Cr2B—O1B115.3 (6)
N2A—C2A—H2AA109.8O2B2—Cr2B—O1B62.6 (3)
C1A—C2A—H2AA109.8O3B1—Cr2B—O1B117.0 (3)
N2A—C2A—H2AB109.8O4B1—Cr2B—O1B107.1 (3)
C1A—C2A—H2AB109.8O3B2—Cr2B—O1Bi109.3 (4)
H2AA—C2A—H2AB108.3O4B2—Cr2B—O1Bi107.5 (8)
N2A—C3A—C4A113.8 (2)O2B1—Cr2B—O1Bi100.0 (6)
N2A—C3A—H3AA108.8O2B2—Cr2B—O1Bi104.8 (3)
C4A—C3A—H3AA108.8O3B1—Cr2B—O1Bi85.3 (3)
N2A—C3A—H3AB108.8O4B1—Cr2B—O1Bi148.4 (2)
C4A—C3A—H3AB108.8O1B—Cr2B—O1Bi44.0 (3)
H3AA—C3A—H3AB107.7O1Bi—O1B—Cr2B74.5 (3)
C5A—C4A—C3A114.7 (3)O1Bi—O1B—O2B2128.7 (5)
C5A—C4A—H4AA108.6Cr2B—O1B—O2B257.1 (3)
C3A—C4A—H4AA108.6O1Bi—O1B—Cr2Bi61.5 (3)
C5A—C4A—H4AB108.6Cr2B—O1B—Cr2Bi136.0 (3)
C3A—C4A—H4AB108.6Cr2B—O2B2—O1B60.2 (3)
H4AA—C4A—H4AB107.6H1O1—O1S—H2O1104 (2)
N3A—C5A—C4A112.4 (3)H1O2—O2S—H2O2122 (3)
N3A—C5A—H5AA109.1H1O3—O3S—H2O3105 (2)
C4A—C5A—H5AA109.1H1O4—O4S—H2O4114 (3)
C10A—N1A—C1A—C2A174.0 (2)O2A—C11A—C12A—O4A1.2 (4)
Cr1A—N1A—C1A—C2A47.1 (2)O1A—C11A—C12A—O4A178.8 (2)
C3A—N2A—C2A—C1A166.9 (3)O2A—C11A—C12A—O3A178.4 (2)
Cr1A—N2A—C2A—C1A33.3 (3)O1A—C11A—C12A—O3A1.6 (3)
N1A—C1A—C2A—N2A54.5 (3)O3B2—Cr2B—O1B—O1Bi95.0 (7)
C2A—N2A—C3A—C4A75.2 (3)O4B2—Cr2B—O1B—O1Bi74.6 (12)
Cr1A—N2A—C3A—C4A53.4 (3)O2B1—Cr2B—O1B—O1Bi77.7 (9)
N2A—C3A—C4A—C5A66.3 (4)O2B2—Cr2B—O1B—O1Bi162.1 (8)
C6A—N3A—C5A—C4A177.8 (2)O3B1—Cr2B—O1B—O1Bi48.7 (7)
Cr1A—N3A—C5A—C4A60.4 (3)O4B1—Cr2B—O1B—O1Bi164.6 (5)
C3A—C4A—C5A—N3A69.8 (4)O3B2—Cr2B—O1B—O2B2103.0 (6)
C5A—N3A—C6A—C7A175.0 (2)O4B2—Cr2B—O1B—O2B287.4 (11)
Cr1A—N3A—C6A—C7A46.5 (3)O1Bi—Cr2B—O1B—O2B2162.1 (8)
C8A—N4A—C7A—C6A168.8 (3)O3B2—Cr2B—O1B—Cr2Bi95.0 (7)
Cr1A—N4A—C7A—C6A36.2 (3)O4B2—Cr2B—O1B—Cr2Bi74.6 (12)
N3A—C6A—C7A—N4A55.8 (3)O2B1—Cr2B—O1B—Cr2Bi77.7 (9)
C7A—N4A—C8A—C9A72.7 (4)O2B2—Cr2B—O1B—Cr2Bi162.1 (8)
Cr1A—N4A—C8A—C9A55.1 (3)O3B1—Cr2B—O1B—Cr2Bi48.7 (7)
N4A—C8A—C9A—C10A67.0 (4)O4B1—Cr2B—O1B—Cr2Bi164.6 (5)
C1A—N1A—C10A—C9A179.0 (2)O1Bi—Cr2B—O1B—Cr2Bi0.005 (1)
Cr1A—N1A—C10A—C9A61.1 (3)O3B2—Cr2B—O2B2—O1B105.2 (5)
C8A—C9A—C10A—N1A70.3 (4)O4B2—Cr2B—O2B2—O1B125.8 (8)
Cr1A—O1A—C11A—O2A178.9 (2)O1Bi—Cr2B—O2B2—O1B12.8 (5)
Cr1A—O1A—C11A—C12A1.1 (3)O1Bi—O1B—O2B2—Cr2B22.3 (10)
Cr1A—O3A—C12A—O4A179.2 (2)Cr2Bi—O1B—O2B2—Cr2B138.9 (13)
Cr1A—O3A—C12A—C11A1.2 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O4Aii0.981.992.804 (3)139
N2A—H2A···O1S0.982.002.894 (3)150
N3A—H3A···O2Aii0.981.892.842 (3)163
N4A—H4A···O2B1iii0.982.253.100 (16)144
N4A—H4A···O4B1iii0.982.373.108 (6)132
N4A—H4A···O4B2iii0.982.153.05 (2)151
O1S—H1O1···O4B10.85 (1)2.33 (5)2.876 (6)123 (5)
O1S—H1O1···O3B20.85 (1)2.20 (4)2.903 (10)141 (5)
O2S—H2O2···O3S0.85 (1)1.91 (2)2.729 (6)164 (6)
O3S—H1O3···O3B10.85 (1)1.93 (3)2.725 (6)156 (7)
O3S—H1O3···O3B20.85 (1)2.28 (2)3.113 (10)167 (6)
O3S—H2O3···O1Aiv0.85 (1)2.52 (3)3.301 (4)154 (6)
O3S—H2O3···O2Aiv0.85 (1)2.21 (5)2.911 (5)140 (6)
O4S—H1O4···O4A0.84 (1)2.11 (4)2.834 (4)144 (6)
O4S—H2O4···O2S0.85 (1)1.89 (2)2.723 (5)166 (6)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a grant from 2017 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationChebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632–635.  CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuzel, P., Aydın, Y. A. & Deveci Aksoy, N. (2016). Int. J. Environ. Sci. Technol. 13, 1277–1288.  CrossRef CAS Google Scholar
First citationHouse, D. A. & McKee, V. (1984). Inorg. Chem. 23, 4237–4242.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456–459.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417–1420.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72–75.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaylor, D. (1978). Aust. J. Chem. 31, 1455–1462.  CSD CrossRef CAS Google Scholar
First citationTrabelsi, S., Roisnel, T. & Marouani, H. (2015). J. Advan. Chem. 11, 3394–3403.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds