research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three sterically congested disilanes

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 February 2017; accepted 14 February 2017; online 28 February 2017)

In the three sterically congested silanes, C24H38Si2 (1) (1,1,2,2-tetra­isopropyl-1,2-di­phenyl­disilane), C24H34Br4Si2 (2) [1,1,2,2-tetra­kis­(2-bromo­propan-2-yl)-1,2-di­phenyl­disilane] and C32H38Si2 (3) (1,2-di-tert-butyl-1,1,2,2-tetra­phenyl­disilane), the Si—Si bond length is shortest in (1) and longest in (2), with (3) having an inter­mediate value, which parallels the increasing steric congestion. A comparison of the two isopropyl derivatives, (1 and 2), shows a significant increase in the Si—C(ipso) distance with the introduction of bromine. Also, in the brominated compound 2, attractive inter­molecular Br⋯Br inter­actions exist with Br⋯Br separations ca 0.52 Å shorter than the sum of the van der Waals radii. In compound 2, one of the bromo­isopropyl groups is rotationally disordered in an 0.8812 (9):0.1188 (9) ratio. Compound 3 exhibits `whole mol­ecule' disorder in a 0.9645 (7):0.0355 (7) ratio with the Si—Si bonds in the two components making an angle of ca 66°.

1. Chemical context

The study of tetra­isopropyl- and tetra­kis­(2-bromo­propan-2-yl)-substituted disilanes is of inter­est due to their importance in the synthesis of bis­(silanes), which are precursors for generating transient disilynes (Pichaandi et al., 2011[Pichaandi, K. R., Mague, J. T. & Fink, M. J. (2011). J. Organomet. Chem. 696, 1957-1963.]; Kabe et al., 2000[Kabe, Y., Ohkubo, Z., Ishikawa, H. & Ando, W. (2000). J. Am. Chem. Soc. 122, 3775-3776.]; Ando et al., 1997[Ando, W., Shiba, T., Hidaka, T., Morihashi, K. & Kikuchi, O. (1997). J. Am. Chem. Soc. 119, 3629-3630.]). The synthesis of 1,1,2,2-tetra­isopropyl-1,2-di-tert-butyl­disilane and 1,1,2,2-tetra­kis­(2-bromo­propan-2-yl)-1,2-di-tert-butyl­disilane were recently reported by our group (Pichaandi et al., 2011[Pichaandi, K. R., Mague, J. T. & Fink, M. J. (2011). J. Organomet. Chem. 696, 1957-1963.]) and the crystal structure of the former determined. However, the structure of the latter could not be solved due to its highly disordered nature, so the exact nature of the influence of the bromine atom in the isopropyl group on the disilane structure could not be determined. We report here a comparison of the structures of 1,1,2,2-tetra­isopropyl-1,2-di­phenyl­disilane (1) and 1,1,2,2-tetra­kis­(2-bromo­propan-2-yl)-1,2-di­phenyl­disilane (2), as well as that of the related 1,2-di-tert-butyl-1,1,2,2-tetra­phenyl­disilane (3).

[Scheme 1]

2. Structural commentary

The asymmetric unit for 1 consists of two independent mol­ecules (Fig. 1[link]), one having an anti­clinal conformation and the other a gauche conformation about the Si—Si bond. Thus, the torsion angle defined by the Si—Si bond and the ipso carbon atoms of the phenyl groups are −140.15 (5)° (C2—Si1—Si2—C19) for the former and 59.58 (6)° (C31—Si3—Si4—C43) for the latter. In contrast, the two independent mol­ecules in the low-temperature form of 1,1,2,2-tetra-tert-butyl-1,2-di­phenyl­disilane both adopt the gauche arrangement with corresponding torsion angles of −71.47 (9) and −68.61 (9)° (Scholz et al., 2014[Scholz, S., Lerner, H.-W. & Bats, J. W. (2014). Acta Cryst. C70, 697-701.]). Disilane 2 (Fig. 2[link]) has a gauche conformation with the corresponding torsion angle being 75.55 (5)° (C7—Si1—Si2—C19). The gauche conformation in 2 appears to be preferred over other conformations when the rotational barrier around the Si—Si bond is high. This trend is observed in the crowded 1,1,2,2-tetra­isopropyl-1,2-di-tert-butyl­disilane (Pichaandi et al., 2011[Pichaandi, K. R., Mague, J. T. & Fink, M. J. (2011). J. Organomet. Chem. 696, 1957-1963.]) and 1,1,2,2-tetra-tert-butyl-1,2-di­phenyl­disilane (Lerner et al., 2001[Lerner, H. W., Scholz, S. & Bolte, M. (2001). Z. Anorg. Allg. Chem. 627, 1638-1642.]), which both exhibit a gauche conformation. However, the sterically less hindered 1,1,2,2-tetra-tert-butyl-1,2-di­chloro­disilane (Peters et al., 1998[Peters, K., Peters, E.-M., Kirmaier, L. & Weidenbruch, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 747-748.]) and tetra-tert-butyl-1,2-di­hydroxy­disilane (West & Pham, 1991[West, R. & Pham, E. K. (1991). J. Organomet. Chem. 403, 43-48.]) have an anti­clinal conformation, similar to 1. The higher rotational barrier in 2 comes from the presence of the bulky bromo­isopropyl group.

[Figure 1]
Figure 1
Perspective view of the two independent mol­ecules of 1, with labeling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Perspective view of 2, with labeling scheme and 50% probability displacement ellipsoids. Only the major orientation of the disordered bromo­isopropyl group is shown.

Compound 3 has crystallographically imposed centrosymmetry and so adopts a staggered conformation (Fig. 3[link]). Inter­estingly, in this crystal there is an example of `whole mol­ecule' disorder with 4% of the contents of the asymmetric unit adopting an orientation in which the Si—Si bond is inclined by approximately 66° to that of the major component. Since this work was undertaken, the structure of 3 has been reported by two different groups (Monakhov et al., 2010[Monakhov, K. Yu., Zessin, T. & Linti, G. (2010). Eur. J. Inorg. Chem. pp. 322-332.]; Wei et al., 2014[Wei, Y.-L., Yang, K.-F., Li, F., Zheng, Z.-J., Xu, Z. & Xu, L.-W. (2014). RSC Adv. 4, 37859-37867.]), but only mentioned cursorily and with no discussion of structural details. The Si—Si bond lengths in 13 are, respectively, 2.3898 (4), 2.4746 (10) and 2.4002 (6) Å, significantly longer than the typical values for less-congested disilanes, e.g. 2.340 (9) Å in hexa­methyl­disilane (Beagley et al., 1971[Beagley, B. A., Monaghan, J. J. & Hewitt, T. G. (1971). J. Mol. Struct. 8, 401-411.]). The longest compares favorably with those found in the sterically congested disilanes 1,1,2,2-tetra­isopropyl-1,2-di-tert-butyl­disilane [2.4787 (6) Å; Pichaandi et al., 2011[Pichaandi, K. R., Mague, J. T. & Fink, M. J. (2011). J. Organomet. Chem. 696, 1957-1963.]] and 1,1,2,2-tetra-tert-butyl-1,2-di­phenyl­disilane [2.4973 (8) Å; Lerner et al., 2001[Lerner, H. W., Scholz, S. & Bolte, M. (2001). Z. Anorg. Allg. Chem. 627, 1638-1642.]; Scholz et al., 2014[Scholz, S., Lerner, H.-W. & Bats, J. W. (2014). Acta Cryst. C70, 697-701.]], but is shorter than that in the extremely congested hexa-tert-butyl­disilane [2.6863 (5) Å; Scholz et al., 2014[Scholz, S., Lerner, H.-W. & Bats, J. W. (2014). Acta Cryst. C70, 697-701.]]. The effects of the steric congestion are also seen in the Si—C bond lengths, e.g. Si1—C2 = 1.9005 (12) Å in 1, Si1—C1 = 1.965 (3) Å in 2 and Si1—C13 = 1.9226 (12) Å in 3, all of which are significantly longer than a typical Si—C single bond (1.87 Å; Sheldrick, 1989[Sheldrick, W. S. (1989). Vol. 1. The Chemistry of Organic Silicon Compounds, edited by S. Patai & Z. Rappaport, p. 245. Chichester: John Wiley & Sons Ltd.]). Additionally, the significant increase in the quoted Si—C bond length between 2 and 1 indicates the increase in steric congestion on brominating the isopropyl group.

[Figure 3]
Figure 3
Perspective view of 3, with labeling scheme and 50% probability displacement ellipsoids. Only the major orientation of the disorder is shown [symmetry code: (i) 2 − x, −y, −z].

3. Supra­molecular features

In 1, the packing consists of layers two mol­ecules thick which are parallel to (001) with only normal van der Waals contacts between mol­ecules (Fig. 4[link]). In 2, the mol­ecules form chains running parallel to the b-axis direction through weak C—H⋯Br hydrogen bonds (see Table 1[link]). These chains pair up through Br4⋯Br4 (−x + 1, −y + 1, −z + 1) inter­actions, where the Br⋯Br separation of 3.1755 (7) Å is 0.52 Å shorter than the sum of the van der Waals radii (3.70 Å) (see Fig. 5[link]). We consider these to be attractive inter­actions as has been argued previously (Desiraju & Parthasarthy, 1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]). Only normal van der Waals contacts occur between the double chains. The primary inter­molecular inter­action in 3 is a C—H⋯π inter­action (see Table 2[link]), which forms chains running parallel to the c-axis direction (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯Br1i 0.98 2.82 3.771 (3) 166
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for 3[link]

Cg1 is the centroid of C1–C6 the ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15CCg1i 0.98 2.93 3.8955 (14) 171
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Packing of 1, viewed along the b-axis direction.
[Figure 5]
Figure 5
Packing of 2, viewed along the a-axis direction, with the C—H⋯Br hydrogen bonds (Table 1[link]) shown as black dotted lines and Br⋯Br inter­actions as brown dotted lines.
[Figure 6]
Figure 6
Packing of 3, viewed along the b-axis direction, with the C—H⋯π(ring) inter­actions (Table 2[link]) shown as dotted lines.

4. Database survey

There are 390 structures of disilanes containing only Si—C bonds to the substituents in the Cambridge Crystallographic Database (CSD, V5.38, last update November, 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), but in only 43 of these is the Si—Si distance greater than 2.40 Å. In this set, the distances range from 2.401 (2) Å in 4 (Kyushin et al., 1996[Kyushin, S., Ikarugi, M., Takatsuna, K., Goto, M. & Matsumoto, H. (1996). J. Organomet. Chem. 510, 121-133.]) (Fig. 7[link]). to 2.6863 (5) Å in one structure of hexa-tert-butyl­disilane (Scholz et al., 2014[Scholz, S., Lerner, H.-W. & Bats, J. W. (2014). Acta Cryst. C70, 697-701.]). In addition to the four reported structures of hexa-tert-butyl­disilane (Scholz et al., 2012[Scholz, S., Lerner, H.-W. & Bolte, M. (2012). CCDC Private Communication. CSD refcode DIVKIC03. CCDC, Cambridge, UK.], 2014[Scholz, S., Lerner, H.-W. & Bats, J. W. (2014). Acta Cryst. C70, 697-701.]; Wiberg et al., 1986[Wiberg, N., Schuster, H., Simon, A. & Peters, K. (1986). Angew. Chem. 98, 100-101.]; Wiberg & Niedermayer, 2000[Wiberg, N. & Niedermayer, W. (2000). Z. Naturforsch. Teil B, 55, 398-405.]), but excluding the five examples where it is co-crystallized with [NaOR]4 (Lerner et al., 2002[Lerner, H. W., Scholz, S. & Bolte, M. (2002). Organometallics, 21, 3827-3830.]), [SnR]6 (Wiberg et al., 1999[Wiberg, N., Lerner, H.-W., Nöth, H. & Ponikwar, W. (1999). Angew. Chem. Int. Ed. 38, 1103-1105.]), [SiR]4 (Wiberg et al., 1993[Wiberg, N., Finger, C. M. M. & Polborn, K. (1993). Angew. Chem. Int. Ed. Engl. 32, 1054-1056.]; Meyer-Wegner et al., 2009[Meyer-Wegner, F., Scholz, S., Sänger, I., Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Organometallics, 28, 6835-6837.]) and [GeR]4 (Wiberg et al., 1996[Wiberg, N., Hochmuth, W., Nöth, H., Appel, A. & Schmidt-Amelunxen, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 1333-1334.]) [R = Si(t-Bu)3 in all cases], only four other mol­ecules have Si—Si distances greater than 2.5 Å. These are 5 [2.5149 (13) Å; Kabe et al., 2000[Kabe, Y., Ohkubo, Z., Ishikawa, H. & Ando, W. (2000). J. Am. Chem. Soc. 122, 3775-3776.]), Ph6Si2 as a solid solution with Ph6Pb2 [2.519 (4) Å; Kleiner & Dräger, 1984[Kleiner, N. & Dräger, M. (1984). J. Organomet. Chem. 270, 151-170.]], 6 [2.5428 (18) Å; Gottschling et al., 2005[Gottschling, S. E., Milnes, K. K., Jennings, M. C. & Baines, K. M. (2005). Organometallics, 24, 3811-3814.]] and 7 [2.6468 (9) Å; Goetze et al., 1997[Goetze, B., Herrschaft, B. & Auner, N. (1997). Chem. Eur. J. 3, 948-957.]] (Fig. 7[link]).

[Figure 7]
Figure 7
Compounds from the database survey.

5. Synthesis and crystallization

Disilanes 1 and 2 were prepared according to the literature procedures (Lambert & Urdaneta-Perez, 1978[Lambert, J. B. & Urdaneta-Perez, M. (1978). J. Am. Chem. Soc. 100, 157-162.]; Pichaandi et al., 2011[Pichaandi, K. R., Mague, J. T. & Fink, M. J. (2011). J. Organomet. Chem. 696, 1957-1963.]). Colorless crystals of 1 and 2 were obtained from hexane and di­chloro­methane solutions, respectively. To prepare 3, a 50 ml Schlenk flask was loaded with tert-butyl­diphenyl­chloro­silane (10 g, 37 mmol), finely cut Li wire (0.26 g, 0.038 g-atom) and 20 ml of THF under nitro­gen and the mixture was stirred overnight at 298 K. The reaction mixture was then diluted with 350 ml of CH2Cl2 and dilute HCl (10 ml) and 20 ml of water were added. The organic layer was then separated from the aqueous layer, dried with MgSO4 and the solvent removed in vacuo to give 3 as a white powder. Crystals suitable for X-ray diffraction were obtained from CH2Cl2 solution (yield 8.1 g, 94%). 1H NMR (δ, CD2Cl2) 0.76–1.02 (s, 18H) 7.27–7.52 (m, 12H) 7.65–7.85 (m, 8H); 13C{1H} NMR (δ, CD2Cl2) 20.0, 28.8, 127.8, 128.9, 136.6, 137.5; 29Si{1H} NMR (δ, CD2Cl2) −13.5.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In compound 2, the bromo­isopropyl group containing Br4 is rotationally disordered about the Si2—C16 axis in an 0.8812 (9):0.1188 (9) ratio. The two components of the disorder were refined with restraints that their geometries be comparable to one another and to those of the other three bromo­isopropyl groups. Compound 3 exhibits `whole mol­ecule' disorder in a 0.9645 (7):0.0355 (7) ratio with the Si—Si bonds in the two components making an angle of ca 66°. The alternate location of the unique Si atom was obtained from a difference Fourier map and its inclusion in the structure-factor calculation allowed enough atoms of its phenyl groups to be located so that these could be completed and refined as rigid hexa­gons. Following this, the remaining atoms of the minor component could be located and they were refined with restraints that the geometry be comparable with that of the major component. In all three structures, the H atoms were included as riding contributions in idealized positions: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  1 2 3
Crystal data
Chemical formula C24H38Si2 C24H34Br4Si2 C32H38Si2
Mr 382.72 698.33 478.80
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 19.8418 (14), 8.2554 (6), 28.454 (2) 8.8779 (7), 10.4042 (8), 29.699 (2) 8.5622 (5), 10.2107 (6), 15.4586 (10)
β (°) 97.838 (1) 90.975 (1) 95.452 (1)
V3) 4617.3 (6) 2742.8 (4) 1345.37 (14)
Z 8 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.16 5.97 0.15
Crystal size (mm) 0.22 × 0.19 × 0.14 0.14 × 0.12 × 0.07 0.17 × 0.15 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.96, 0.98 0.49, 0.69 0.98, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 81051, 12375, 10320 47392, 6875, 5471 23513, 3566, 3065
Rint 0.046 0.052 0.031
(sin θ/λ)max−1) 0.696 0.669 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.03 0.028, 0.062, 1.03 0.034, 0.092, 1.06
No. of reflections 12375 6875 3566
No. of parameters 485 287 179
No. of restraints 0 38 43
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.29 1.00, −1.05 0.38, −0.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For all compounds, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1) 1,1,2,2-Tetraisopropyl-1,2-diphenyldisilane top
Crystal data top
C24H38Si2F(000) = 1680
Mr = 382.72Dx = 1.101 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 19.8418 (14) ÅCell parameters from 9612 reflections
b = 8.2554 (6) Åθ = 2.4–29.4°
c = 28.454 (2) ŵ = 0.16 mm1
β = 97.838 (1)°T = 100 K
V = 4617.3 (6) Å3Block, colorless
Z = 80.22 × 0.19 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
12375 independent reflections
Radiation source: fine-focus sealed tube10320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 29.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2727
Tmin = 0.96, Tmax = 0.98k = 1111
81051 measured reflectionsl = 3938
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.8169P]
where P = (Fo2 + 2Fc2)/3
12375 reflections(Δ/σ)max = 0.002
485 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.94710 (2)0.33575 (4)0.11131 (2)0.01283 (7)
Si20.84650 (2)0.49225 (4)0.11451 (2)0.01282 (7)
C10.94625 (7)0.22143 (17)0.20748 (4)0.0246 (3)
H1A0.94140.12650.22740.037*
H1B0.90600.29050.20680.037*
H1C0.98680.28270.22050.037*
C20.95337 (6)0.16598 (14)0.15680 (4)0.0182 (2)
H20.91330.09440.14690.022*
C31.01631 (7)0.05704 (16)0.15684 (5)0.0246 (3)
H3A1.05760.12320.16280.037*
H3B1.01460.00360.12590.037*
H3C1.01680.02510.18180.037*
C40.89382 (6)0.09978 (15)0.04237 (4)0.0211 (2)
H4A0.88970.06260.00940.032*
H4B0.84900.13250.04980.032*
H4C0.91160.01170.06360.032*
C50.94264 (6)0.24497 (14)0.04919 (4)0.0153 (2)
H50.92320.33050.02640.018*
C61.01195 (6)0.19787 (15)0.03505 (4)0.0197 (2)
H6A1.03150.10890.05530.030*
H6B1.04260.29150.03900.030*
H6C1.00600.16320.00180.030*
C71.02387 (6)0.47398 (14)0.12040 (4)0.0155 (2)
C81.07141 (6)0.47422 (15)0.16149 (4)0.0192 (2)
H81.06590.40060.18630.023*
C91.12668 (6)0.57976 (16)0.16690 (5)0.0228 (3)
H91.15810.57790.19530.027*
C101.13605 (6)0.68737 (16)0.13106 (5)0.0235 (3)
H101.17380.75910.13470.028*
C111.08994 (7)0.68980 (16)0.08981 (5)0.0247 (3)
H111.09610.76310.06500.030*
C121.03465 (6)0.58479 (15)0.08477 (4)0.0207 (2)
H121.00330.58810.05640.025*
C130.81154 (7)0.81277 (15)0.14411 (5)0.0250 (3)
H13A0.77660.76060.16010.037*
H13B0.79220.84140.11160.037*
H13C0.82760.91110.16140.037*
C140.87141 (6)0.69571 (14)0.14283 (4)0.0180 (2)
H140.90170.74800.12190.022*
C150.91391 (7)0.68311 (16)0.19195 (4)0.0233 (3)
H15A0.92780.79170.20330.035*
H15B0.95440.61710.18980.035*
H15C0.88670.63240.21420.035*
C160.72602 (6)0.57119 (16)0.04877 (4)0.0218 (2)
H16A0.72310.67570.06470.033*
H16B0.70100.48920.06430.033*
H16C0.70610.58110.01540.033*
C170.80103 (6)0.52024 (14)0.05162 (4)0.0163 (2)
H170.80130.41230.03570.020*
C180.83872 (7)0.63765 (17)0.02249 (5)0.0252 (3)
H18A0.81810.63410.01080.038*
H18B0.88670.60600.02490.038*
H18C0.83550.74790.03480.038*
C190.78538 (6)0.37687 (14)0.14769 (4)0.0164 (2)
C200.76958 (7)0.41958 (18)0.19242 (5)0.0263 (3)
H200.78880.51510.20730.032*
C210.72620 (7)0.3252 (2)0.21575 (5)0.0330 (3)
H210.71680.35580.24640.040*
C220.69685 (7)0.18726 (18)0.19442 (5)0.0274 (3)
H220.66790.12200.21060.033*
C230.70962 (7)0.14443 (16)0.14959 (5)0.0241 (3)
H230.68840.05160.13440.029*
C240.75370 (6)0.23788 (15)0.12678 (5)0.0206 (2)
H240.76260.20650.09610.025*
Si30.44829 (2)0.13947 (4)0.11813 (2)0.01413 (7)
Si40.33848 (2)0.01815 (4)0.10635 (2)0.01342 (7)
C250.43042 (7)0.20987 (16)0.21584 (4)0.0218 (2)
H25A0.45720.11390.22660.033*
H25B0.38240.17960.20810.033*
H25C0.43510.29160.24110.033*
C260.45634 (6)0.27984 (14)0.17149 (4)0.0185 (2)
H260.42590.37390.16160.022*
C270.52755 (7)0.35206 (17)0.18431 (5)0.0270 (3)
H27A0.52710.43070.21010.041*
H27B0.54120.40630.15650.041*
H27C0.56000.26530.19460.041*
C280.42502 (7)0.41899 (17)0.05920 (5)0.0300 (3)
H28A0.44460.49220.08450.045*
H28B0.37710.39850.06220.045*
H28C0.42820.46880.02830.045*
C290.46428 (6)0.25840 (15)0.06313 (4)0.0212 (2)
H290.44510.19180.03510.025*
C300.53954 (7)0.28767 (18)0.05824 (5)0.0301 (3)
H30A0.54300.33650.02730.045*
H30B0.56400.18430.06090.045*
H30C0.55960.36090.08340.045*
C310.51227 (6)0.03158 (14)0.12520 (4)0.0164 (2)
C320.52628 (6)0.11673 (15)0.08469 (4)0.0206 (2)
H320.50300.08730.05450.025*
C330.57320 (7)0.24251 (16)0.08779 (5)0.0238 (3)
H330.58160.29770.05990.029*
C340.60787 (6)0.28779 (16)0.13150 (5)0.0237 (3)
H340.64020.37330.13360.028*
C350.59481 (6)0.20691 (15)0.17197 (5)0.0225 (3)
H350.61820.23750.20200.027*
C360.54761 (6)0.08103 (15)0.16883 (4)0.0190 (2)
H360.53920.02740.19700.023*
C370.27046 (7)0.31327 (16)0.13141 (5)0.0252 (3)
H37A0.23520.39320.12070.038*
H37B0.31520.36530.13450.038*
H37C0.26270.26950.16220.038*
C380.26779 (6)0.17514 (14)0.09508 (4)0.0177 (2)
H380.27430.22820.06440.021*
C390.19554 (6)0.10389 (16)0.08694 (5)0.0237 (3)
H39A0.18630.04750.11570.035*
H39B0.19190.02720.06040.035*
H39C0.16250.19150.07950.035*
C400.28249 (7)0.26623 (17)0.05571 (5)0.0276 (3)
H40A0.23620.22210.05140.041*
H40B0.29140.32100.08650.041*
H40C0.28720.34390.03030.041*
C410.33377 (6)0.12780 (16)0.05397 (4)0.0203 (2)
H410.37960.17940.05560.024*
C420.32034 (7)0.0415 (2)0.00566 (4)0.0298 (3)
H42A0.32260.12050.01980.045*
H42B0.35480.04250.00400.045*
H42C0.27510.00830.00200.045*
C430.33233 (6)0.10919 (14)0.16082 (4)0.0156 (2)
C440.28518 (6)0.08099 (16)0.19235 (4)0.0202 (2)
H440.25340.00500.18600.024*
C450.28362 (7)0.17546 (17)0.23271 (4)0.0246 (3)
H450.25070.15470.25320.030*
C460.33015 (7)0.29972 (17)0.24291 (5)0.0254 (3)
H460.32970.36330.27070.031*
C470.37739 (7)0.33090 (15)0.21243 (5)0.0239 (3)
H470.40930.41630.21930.029*
C480.37817 (6)0.23746 (14)0.17185 (4)0.0194 (2)
H480.41050.26100.15110.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01238 (14)0.01453 (14)0.01153 (14)0.00076 (11)0.00148 (11)0.00086 (11)
Si20.01241 (15)0.01469 (14)0.01148 (14)0.00064 (11)0.00200 (11)0.00024 (11)
C10.0270 (7)0.0314 (7)0.0158 (6)0.0038 (5)0.0040 (5)0.0076 (5)
C20.0184 (6)0.0185 (5)0.0176 (5)0.0008 (4)0.0020 (4)0.0040 (4)
C30.0274 (7)0.0220 (6)0.0241 (6)0.0061 (5)0.0025 (5)0.0058 (5)
C40.0182 (6)0.0236 (6)0.0218 (6)0.0034 (5)0.0035 (5)0.0057 (5)
C50.0143 (5)0.0166 (5)0.0149 (5)0.0001 (4)0.0021 (4)0.0010 (4)
C60.0171 (6)0.0228 (6)0.0201 (6)0.0007 (5)0.0058 (4)0.0024 (5)
C70.0141 (5)0.0162 (5)0.0164 (5)0.0005 (4)0.0022 (4)0.0012 (4)
C80.0183 (6)0.0219 (6)0.0170 (5)0.0008 (5)0.0004 (4)0.0013 (4)
C90.0177 (6)0.0268 (6)0.0224 (6)0.0026 (5)0.0024 (5)0.0029 (5)
C100.0180 (6)0.0222 (6)0.0299 (7)0.0052 (5)0.0019 (5)0.0020 (5)
C110.0241 (6)0.0236 (6)0.0261 (6)0.0073 (5)0.0023 (5)0.0059 (5)
C120.0185 (6)0.0235 (6)0.0191 (6)0.0043 (5)0.0014 (4)0.0039 (5)
C130.0239 (6)0.0193 (6)0.0314 (7)0.0015 (5)0.0029 (5)0.0068 (5)
C140.0174 (6)0.0176 (5)0.0191 (6)0.0018 (4)0.0036 (4)0.0029 (4)
C150.0211 (6)0.0277 (6)0.0207 (6)0.0034 (5)0.0012 (5)0.0078 (5)
C160.0177 (6)0.0272 (6)0.0195 (6)0.0050 (5)0.0006 (4)0.0007 (5)
C170.0160 (5)0.0188 (5)0.0139 (5)0.0014 (4)0.0010 (4)0.0001 (4)
C180.0238 (6)0.0313 (7)0.0206 (6)0.0021 (5)0.0034 (5)0.0101 (5)
C190.0133 (5)0.0198 (5)0.0161 (5)0.0010 (4)0.0025 (4)0.0029 (4)
C200.0251 (7)0.0361 (7)0.0184 (6)0.0095 (6)0.0057 (5)0.0044 (5)
C210.0296 (7)0.0532 (9)0.0182 (6)0.0108 (7)0.0105 (5)0.0001 (6)
C220.0185 (6)0.0358 (7)0.0289 (7)0.0031 (5)0.0071 (5)0.0111 (6)
C230.0194 (6)0.0198 (6)0.0340 (7)0.0022 (5)0.0068 (5)0.0022 (5)
C240.0191 (6)0.0206 (6)0.0236 (6)0.0006 (5)0.0085 (5)0.0011 (5)
Si30.01442 (15)0.01542 (14)0.01257 (14)0.00162 (11)0.00185 (11)0.00045 (11)
Si40.01289 (15)0.01534 (14)0.01194 (14)0.00043 (11)0.00134 (11)0.00046 (11)
C250.0242 (6)0.0246 (6)0.0165 (5)0.0027 (5)0.0028 (5)0.0042 (5)
C260.0208 (6)0.0171 (5)0.0170 (5)0.0013 (4)0.0004 (4)0.0015 (4)
C270.0284 (7)0.0268 (6)0.0249 (6)0.0098 (5)0.0001 (5)0.0032 (5)
C280.0286 (7)0.0293 (7)0.0316 (7)0.0009 (6)0.0028 (6)0.0148 (6)
C290.0234 (6)0.0235 (6)0.0166 (5)0.0049 (5)0.0027 (5)0.0040 (5)
C300.0294 (7)0.0304 (7)0.0330 (7)0.0038 (6)0.0135 (6)0.0083 (6)
C310.0129 (5)0.0178 (5)0.0189 (5)0.0025 (4)0.0032 (4)0.0005 (4)
C320.0183 (6)0.0237 (6)0.0198 (6)0.0003 (5)0.0032 (4)0.0002 (5)
C330.0223 (6)0.0244 (6)0.0262 (6)0.0006 (5)0.0089 (5)0.0038 (5)
C340.0182 (6)0.0206 (6)0.0333 (7)0.0017 (5)0.0077 (5)0.0039 (5)
C350.0201 (6)0.0237 (6)0.0239 (6)0.0007 (5)0.0030 (5)0.0063 (5)
C360.0177 (6)0.0207 (6)0.0191 (6)0.0013 (4)0.0042 (4)0.0010 (5)
C370.0232 (6)0.0218 (6)0.0310 (7)0.0054 (5)0.0048 (5)0.0021 (5)
C380.0146 (5)0.0203 (5)0.0181 (5)0.0019 (4)0.0012 (4)0.0039 (4)
C390.0152 (6)0.0281 (6)0.0269 (6)0.0013 (5)0.0002 (5)0.0053 (5)
C400.0292 (7)0.0248 (6)0.0271 (7)0.0044 (5)0.0025 (5)0.0079 (5)
C410.0174 (6)0.0263 (6)0.0166 (5)0.0001 (5)0.0003 (4)0.0060 (5)
C420.0300 (7)0.0453 (8)0.0139 (6)0.0067 (6)0.0018 (5)0.0051 (6)
C430.0151 (5)0.0167 (5)0.0143 (5)0.0035 (4)0.0001 (4)0.0002 (4)
C440.0176 (6)0.0253 (6)0.0176 (6)0.0000 (5)0.0022 (4)0.0010 (5)
C450.0235 (6)0.0342 (7)0.0172 (6)0.0041 (5)0.0061 (5)0.0024 (5)
C460.0277 (7)0.0286 (7)0.0190 (6)0.0081 (5)0.0001 (5)0.0067 (5)
C470.0255 (7)0.0194 (6)0.0253 (6)0.0008 (5)0.0013 (5)0.0051 (5)
C480.0196 (6)0.0179 (5)0.0207 (6)0.0016 (4)0.0027 (4)0.0005 (4)
Geometric parameters (Å, º) top
Si1—C71.8926 (12)Si3—C311.8911 (12)
Si1—C21.9005 (12)Si3—C261.8993 (12)
Si1—C51.9107 (12)Si3—C291.9101 (12)
Si1—Si22.3898 (4)Si3—Si42.3799 (5)
Si2—C191.8926 (12)Si4—C431.8906 (12)
Si2—C141.8990 (12)Si4—C381.9045 (12)
Si2—C171.9051 (12)Si4—C411.9087 (12)
C1—C21.5375 (17)C25—C261.5387 (17)
C1—H1A0.9800C25—H25A0.9800
C1—H1B0.9800C25—H25B0.9800
C1—H1C0.9800C25—H25C0.9800
C2—C31.5388 (17)C26—C271.5312 (17)
C2—H21.0000C26—H261.0000
C3—H3A0.9800C27—H27A0.9800
C3—H3B0.9800C27—H27B0.9800
C3—H3C0.9800C27—H27C0.9800
C4—C51.5367 (16)C28—C291.5340 (19)
C4—H4A0.9800C28—H28A0.9800
C4—H4B0.9800C28—H28B0.9800
C4—H4C0.9800C28—H28C0.9800
C5—C61.5347 (16)C29—C301.5379 (18)
C5—H51.0000C29—H291.0000
C6—H6A0.9800C30—H30A0.9800
C6—H6B0.9800C30—H30B0.9800
C6—H6C0.9800C30—H30C0.9800
C7—C81.3987 (16)C31—C361.4008 (16)
C7—C121.4033 (16)C31—C321.4096 (17)
C8—C91.3927 (17)C32—C331.3893 (17)
C8—H80.9500C32—H320.9500
C9—C101.3839 (18)C33—C341.3881 (19)
C9—H90.9500C33—H330.9500
C10—C111.3864 (18)C34—C351.3860 (19)
C10—H100.9500C34—H340.9500
C11—C121.3903 (17)C35—C361.3935 (17)
C11—H110.9500C35—H350.9500
C12—H120.9500C36—H360.9500
C13—C141.5357 (17)C37—C381.5350 (17)
C13—H13A0.9800C37—H37A0.9800
C13—H13B0.9800C37—H37B0.9800
C13—H13C0.9800C37—H37C0.9800
C14—C151.5342 (17)C38—C391.5375 (17)
C14—H141.0000C38—H381.0000
C15—H15A0.9800C39—H39A0.9800
C15—H15B0.9800C39—H39B0.9800
C15—H15C0.9800C39—H39C0.9800
C16—C171.5381 (16)C40—C411.5354 (18)
C16—H16A0.9800C40—H40A0.9800
C16—H16B0.9800C40—H40B0.9800
C16—H16C0.9800C40—H40C0.9800
C17—C181.5346 (17)C41—C421.5388 (18)
C17—H171.0000C41—H411.0000
C18—H18A0.9800C42—H42A0.9800
C18—H18B0.9800C42—H42B0.9800
C18—H18C0.9800C42—H42C0.9800
C19—C201.3968 (17)C43—C441.4011 (16)
C19—C241.4014 (17)C43—C481.4033 (16)
C20—C211.3944 (18)C44—C451.3921 (17)
C20—H200.9500C44—H440.9500
C21—C221.381 (2)C45—C461.3842 (19)
C21—H210.9500C45—H450.9500
C22—C231.3801 (19)C46—C471.3851 (19)
C22—H220.9500C46—H460.9500
C23—C241.3915 (17)C47—C481.3903 (17)
C23—H230.9500C47—H470.9500
C24—H240.9500C48—H480.9500
C7—Si1—C2112.02 (5)C31—Si3—C26112.86 (5)
C7—Si1—C5107.32 (5)C31—Si3—C29106.67 (5)
C2—Si1—C5109.35 (5)C26—Si3—C29109.63 (6)
C7—Si1—Si2109.25 (4)C31—Si3—Si4106.81 (4)
C2—Si1—Si2110.49 (4)C26—Si3—Si4110.18 (4)
C5—Si1—Si2108.29 (4)C29—Si3—Si4110.61 (4)
C19—Si2—C14112.39 (5)C43—Si4—C38112.83 (5)
C19—Si2—C17106.02 (5)C43—Si4—C41106.70 (5)
C14—Si2—C17110.72 (5)C38—Si4—C41109.98 (5)
C19—Si2—Si1110.02 (4)C43—Si4—Si3106.18 (4)
C14—Si2—Si1108.90 (4)C38—Si4—Si3112.11 (4)
C17—Si2—Si1108.71 (4)C41—Si4—Si3108.79 (4)
C2—C1—H1A109.5C26—C25—H25A109.5
C2—C1—H1B109.5C26—C25—H25B109.5
H1A—C1—H1B109.5H25A—C25—H25B109.5
C2—C1—H1C109.5C26—C25—H25C109.5
H1A—C1—H1C109.5H25A—C25—H25C109.5
H1B—C1—H1C109.5H25B—C25—H25C109.5
C1—C2—C3110.59 (10)C27—C26—C25110.58 (10)
C1—C2—Si1114.42 (8)C27—C26—Si3113.72 (9)
C3—C2—Si1114.16 (8)C25—C26—Si3115.18 (8)
C1—C2—H2105.6C27—C26—H26105.5
C3—C2—H2105.6C25—C26—H26105.5
Si1—C2—H2105.6Si3—C26—H26105.5
C2—C3—H3A109.5C26—C27—H27A109.5
C2—C3—H3B109.5C26—C27—H27B109.5
H3A—C3—H3B109.5H27A—C27—H27B109.5
C2—C3—H3C109.5C26—C27—H27C109.5
H3A—C3—H3C109.5H27A—C27—H27C109.5
H3B—C3—H3C109.5H27B—C27—H27C109.5
C5—C4—H4A109.5C29—C28—H28A109.5
C5—C4—H4B109.5C29—C28—H28B109.5
H4A—C4—H4B109.5H28A—C28—H28B109.5
C5—C4—H4C109.5C29—C28—H28C109.5
H4A—C4—H4C109.5H28A—C28—H28C109.5
H4B—C4—H4C109.5H28B—C28—H28C109.5
C6—C5—C4109.95 (10)C28—C29—C30110.32 (11)
C6—C5—Si1114.32 (8)C28—C29—Si3111.38 (9)
C4—C5—Si1111.81 (8)C30—C29—Si3115.26 (9)
C6—C5—H5106.8C28—C29—H29106.4
C4—C5—H5106.8C30—C29—H29106.4
Si1—C5—H5106.8Si3—C29—H29106.4
C5—C6—H6A109.5C29—C30—H30A109.5
C5—C6—H6B109.5C29—C30—H30B109.5
H6A—C6—H6B109.5H30A—C30—H30B109.5
C5—C6—H6C109.5C29—C30—H30C109.5
H6A—C6—H6C109.5H30A—C30—H30C109.5
H6B—C6—H6C109.5H30B—C30—H30C109.5
C8—C7—C12116.81 (11)C36—C31—C32116.65 (11)
C8—C7—Si1123.61 (9)C36—C31—Si3124.02 (9)
C12—C7—Si1119.57 (9)C32—C31—Si3119.33 (9)
C9—C8—C7121.63 (11)C33—C32—C31121.74 (12)
C9—C8—H8119.2C33—C32—H32119.1
C7—C8—H8119.2C31—C32—H32119.1
C10—C9—C8120.20 (11)C34—C33—C32120.27 (12)
C10—C9—H9119.9C34—C33—H33119.9
C8—C9—H9119.9C32—C33—H33119.9
C9—C10—C11119.59 (11)C35—C34—C33119.26 (12)
C9—C10—H10120.2C35—C34—H34120.4
C11—C10—H10120.2C33—C34—H34120.4
C10—C11—C12119.90 (12)C34—C35—C36120.41 (12)
C10—C11—H11120.0C34—C35—H35119.8
C12—C11—H11120.0C36—C35—H35119.8
C11—C12—C7121.87 (11)C35—C36—C31121.67 (11)
C11—C12—H12119.1C35—C36—H36119.2
C7—C12—H12119.1C31—C36—H36119.2
C14—C13—H13A109.5C38—C37—H37A109.5
C14—C13—H13B109.5C38—C37—H37B109.5
H13A—C13—H13B109.5H37A—C37—H37B109.5
C14—C13—H13C109.5C38—C37—H37C109.5
H13A—C13—H13C109.5H37A—C37—H37C109.5
H13B—C13—H13C109.5H37B—C37—H37C109.5
C15—C14—C13110.61 (10)C37—C38—C39109.36 (10)
C15—C14—Si2113.92 (8)C37—C38—Si4115.80 (8)
C13—C14—Si2114.15 (8)C39—C38—Si4114.52 (8)
C15—C14—H14105.8C37—C38—H38105.4
C13—C14—H14105.8C39—C38—H38105.4
Si2—C14—H14105.8Si4—C38—H38105.4
C14—C15—H15A109.5C38—C39—H39A109.5
C14—C15—H15B109.5C38—C39—H39B109.5
H15A—C15—H15B109.5H39A—C39—H39B109.5
C14—C15—H15C109.5C38—C39—H39C109.5
H15A—C15—H15C109.5H39A—C39—H39C109.5
H15B—C15—H15C109.5H39B—C39—H39C109.5
C17—C16—H16A109.5C41—C40—H40A109.5
C17—C16—H16B109.5C41—C40—H40B109.5
H16A—C16—H16B109.5H40A—C40—H40B109.5
C17—C16—H16C109.5C41—C40—H40C109.5
H16A—C16—H16C109.5H40A—C40—H40C109.5
H16B—C16—H16C109.5H40B—C40—H40C109.5
C18—C17—C16109.76 (10)C40—C41—C42109.78 (10)
C18—C17—Si2112.38 (8)C40—C41—Si4114.00 (9)
C16—C17—Si2114.43 (8)C42—C41—Si4112.92 (9)
C18—C17—H17106.6C40—C41—H41106.5
C16—C17—H17106.6C42—C41—H41106.5
Si2—C17—H17106.6Si4—C41—H41106.5
C17—C18—H18A109.5C41—C42—H42A109.5
C17—C18—H18B109.5C41—C42—H42B109.5
H18A—C18—H18B109.5H42A—C42—H42B109.5
C17—C18—H18C109.5C41—C42—H42C109.5
H18A—C18—H18C109.5H42A—C42—H42C109.5
H18B—C18—H18C109.5H42B—C42—H42C109.5
C20—C19—C24116.76 (11)C44—C43—C48116.82 (11)
C20—C19—Si2124.48 (9)C44—C43—Si4123.77 (9)
C24—C19—Si2118.76 (9)C48—C43—Si4119.38 (9)
C21—C20—C19121.49 (13)C45—C44—C43121.81 (12)
C21—C20—H20119.3C45—C44—H44119.1
C19—C20—H20119.3C43—C44—H44119.1
C22—C21—C20120.16 (13)C46—C45—C44119.92 (12)
C22—C21—H21119.9C46—C45—H45120.0
C20—C21—H21119.9C44—C45—H45120.0
C23—C22—C21119.85 (12)C45—C46—C47119.71 (12)
C23—C22—H22120.1C45—C46—H46120.1
C21—C22—H22120.1C47—C46—H46120.1
C22—C23—C24119.69 (12)C46—C47—C48120.13 (12)
C22—C23—H23120.2C46—C47—H47119.9
C24—C23—H23120.2C48—C47—H47119.9
C23—C24—C19122.00 (12)C47—C48—C43121.61 (12)
C23—C24—H24119.0C47—C48—H48119.2
C19—C24—H24119.0C43—C48—H48119.2
C2—Si1—C7—C813.73 (12)C31—Si3—C26—C2755.71 (10)
C5—Si1—C7—C8133.76 (10)C29—Si3—C26—C2763.04 (10)
Si2—Si1—C7—C8109.03 (10)Si4—Si3—C26—C27175.01 (8)
C2—Si1—C7—C12166.95 (9)C31—Si3—C26—C2573.40 (10)
C5—Si1—C7—C1246.92 (11)C29—Si3—C26—C25167.85 (9)
Si2—Si1—C7—C1270.28 (10)Si4—Si3—C26—C2545.90 (10)
C12—C7—C8—C90.23 (18)C26—Si3—C31—C3618.23 (12)
Si1—C7—C8—C9179.10 (10)C29—Si3—C31—C36138.69 (10)
C7—C8—C9—C100.42 (19)Si4—Si3—C31—C36103.00 (10)
C8—C9—C10—C110.2 (2)C26—Si3—C31—C32161.78 (9)
C9—C10—C11—C120.2 (2)C29—Si3—C31—C3241.32 (11)
C10—C11—C12—C70.4 (2)Si4—Si3—C31—C3276.99 (9)
C8—C7—C12—C110.17 (18)C36—C31—C32—C330.53 (18)
Si1—C7—C12—C11179.53 (10)Si3—C31—C32—C33179.48 (10)
C19—Si2—C14—C1566.80 (10)C31—C32—C33—C340.02 (19)
C17—Si2—C14—C15174.84 (8)C32—C33—C34—C350.44 (19)
Si1—Si2—C14—C1555.37 (9)C33—C34—C35—C360.29 (19)
C19—Si2—C14—C1361.59 (10)C34—C35—C36—C310.29 (19)
C17—Si2—C14—C1356.77 (10)C32—C31—C36—C350.69 (17)
Si1—Si2—C14—C13176.24 (8)Si3—C31—C36—C35179.32 (9)
C14—Si2—C19—C2011.15 (13)C38—Si4—C43—C446.11 (12)
C17—Si2—C19—C20132.24 (11)C41—Si4—C43—C44127.00 (10)
Si1—Si2—C19—C20110.39 (11)Si3—Si4—C43—C44117.08 (10)
C14—Si2—C19—C24169.45 (9)C38—Si4—C43—C48175.65 (9)
C17—Si2—C19—C2448.35 (11)C41—Si4—C43—C4854.76 (10)
Si1—Si2—C19—C2469.02 (10)Si3—Si4—C43—C4861.16 (10)
C24—C19—C20—C212.1 (2)C48—C43—C44—C450.07 (18)
Si2—C19—C20—C21177.28 (11)Si4—C43—C44—C45178.34 (10)
C19—C20—C21—C221.0 (2)C43—C44—C45—C460.94 (19)
C20—C21—C22—C231.1 (2)C44—C45—C46—C471.0 (2)
C21—C22—C23—C242.0 (2)C45—C46—C47—C480.2 (2)
C22—C23—C24—C190.8 (2)C46—C47—C48—C430.70 (19)
C20—C19—C24—C231.23 (18)C44—C43—C48—C470.75 (17)
Si2—C19—C24—C23178.22 (10)Si4—C43—C48—C47177.61 (9)
(2) 1,1,2,2-Tetrabromoisopropyl-1,2-diphenyldisilane top
Crystal data top
C24H34Br4Si2F(000) = 1384
Mr = 698.33Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8779 (7) ÅCell parameters from 9033 reflections
b = 10.4042 (8) Åθ = 2.4–28.4°
c = 29.699 (2) ŵ = 5.97 mm1
β = 90.975 (1)°T = 100 K
V = 2742.8 (4) Å3Thick plate, colorless
Z = 40.14 × 0.12 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6875 independent reflections
Radiation source: fine-focus sealed tube5471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.49, Tmax = 0.69k = 1313
47392 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0222P)2 + 2.5797P]
where P = (Fo2 + 2Fc2)/3
6875 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 1.00 e Å3
38 restraintsΔρmin = 1.05 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The bromodimethyl group based on C16 is rotationally disordered over two nearly superimposable sites in an 88:12 ratio. The two components of the disorder were refined subject to restraints that their geometries be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.02503 (3)0.16520 (3)0.33755 (2)0.02338 (7)
Br20.50578 (3)0.15264 (3)0.28016 (2)0.02263 (7)
Br30.01829 (3)0.41338 (3)0.33412 (2)0.02135 (7)
Si10.23670 (7)0.08194 (7)0.34048 (2)0.01256 (14)
Si20.28642 (7)0.27865 (7)0.38516 (2)0.01214 (13)
C10.0249 (3)0.0278 (2)0.34221 (8)0.0167 (5)
C20.0765 (3)0.0699 (3)0.30209 (9)0.0227 (6)
H2A0.17980.04020.30690.034*
H2B0.03840.03250.27420.034*
H2C0.07580.16390.29970.034*
C30.0557 (3)0.0586 (3)0.38559 (9)0.0207 (6)
H3A0.07420.15130.38730.031*
H3B0.00710.03180.41140.031*
H3C0.15200.01260.38610.031*
C40.2913 (3)0.0898 (3)0.27793 (8)0.0171 (5)
C50.2928 (3)0.0419 (3)0.25465 (9)0.0233 (6)
H5A0.18970.07520.25220.035*
H5B0.35510.10170.27240.035*
H5C0.33450.03290.22450.035*
C60.2083 (3)0.1864 (3)0.24738 (9)0.0243 (6)
H6A0.26860.20340.22070.037*
H6B0.19280.26670.26390.037*
H6C0.11050.15070.23800.037*
C70.3517 (3)0.0469 (2)0.37044 (8)0.0144 (5)
C80.4842 (3)0.1028 (2)0.35435 (9)0.0180 (5)
H80.51760.08060.32510.022*
C90.5678 (3)0.1897 (3)0.38002 (9)0.0215 (6)
H90.65680.22610.36810.026*
C100.5231 (3)0.2238 (3)0.42260 (9)0.0219 (6)
H100.58150.28220.44020.026*
C110.3912 (3)0.1715 (3)0.43940 (9)0.0210 (6)
H110.35870.19430.46870.025*
C120.3071 (3)0.0861 (2)0.41333 (8)0.0174 (5)
H120.21600.05290.42500.021*
C130.2337 (3)0.4393 (2)0.35601 (9)0.0180 (5)
C140.3172 (3)0.4782 (3)0.31345 (9)0.0249 (6)
H14A0.25790.54250.29680.037*
H14B0.33170.40240.29440.037*
H14C0.41550.51460.32190.037*
C150.2331 (3)0.5527 (3)0.38851 (10)0.0259 (6)
H15A0.33560.56750.40020.039*
H15B0.16630.53360.41360.039*
H15C0.19720.62970.37270.039*
C160.4955 (3)0.2899 (2)0.40556 (7)0.0183 (5)
Br40.50066 (3)0.39238 (3)0.46210 (2)0.01971 (9)0.8812 (9)
C170.5787 (3)0.1649 (2)0.41677 (13)0.0185 (6)0.8812 (9)
H17A0.51620.11160.43620.028*0.8812 (9)
H17B0.59930.11830.38890.028*0.8812 (9)
H17C0.67400.18490.43240.028*0.8812 (9)
C180.6092 (5)0.3659 (3)0.37416 (12)0.0237 (10)0.8812 (9)
H18A0.56440.44840.36530.036*0.8812 (9)
H18B0.70390.38140.39070.036*0.8812 (9)
H18C0.62930.31480.34720.036*0.8812 (9)
Br4A0.6209 (3)0.4004 (3)0.37171 (11)0.01971 (9)0.1188 (9)
C17A0.464 (2)0.3531 (13)0.4519 (3)0.0185 (6)0.1188 (9)
H17D0.41350.43580.44720.028*0.1188 (9)
H17E0.40000.29640.46960.028*0.1188 (9)
H17F0.55990.36710.46820.028*0.1188 (9)
C18A0.575 (2)0.1610 (11)0.4144 (8)0.0237 (10)0.1188 (9)
H18D0.59600.11900.38560.036*0.1188 (9)
H18E0.66990.17610.43090.036*0.1188 (9)
H18F0.50990.10550.43230.036*0.1188 (9)
C190.1718 (3)0.2614 (2)0.43854 (8)0.0148 (5)
C200.0389 (3)0.3299 (3)0.44706 (9)0.0208 (6)
H200.00020.38690.42480.025*
C210.0368 (3)0.3163 (3)0.48729 (9)0.0257 (6)
H210.12560.36480.49230.031*
C220.0156 (3)0.2331 (3)0.52014 (9)0.0272 (6)
H220.03640.22430.54770.033*
C230.1445 (3)0.1626 (3)0.51256 (9)0.0249 (6)
H230.18050.10370.53470.030*
C240.2215 (3)0.1777 (3)0.47253 (8)0.0182 (5)
H240.31090.12950.46810.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02017 (13)0.01707 (13)0.03266 (15)0.00137 (10)0.00704 (11)0.00487 (11)
Br20.01913 (13)0.02930 (16)0.01961 (13)0.00066 (11)0.00462 (10)0.00286 (11)
Br30.01822 (13)0.02552 (15)0.02019 (13)0.00314 (10)0.00308 (10)0.00377 (11)
Si10.0119 (3)0.0145 (3)0.0112 (3)0.0016 (3)0.0008 (2)0.0004 (3)
Si20.0125 (3)0.0135 (3)0.0105 (3)0.0000 (3)0.0009 (2)0.0001 (3)
C10.0160 (12)0.0139 (12)0.0200 (13)0.0010 (10)0.0032 (10)0.0017 (10)
C20.0164 (13)0.0244 (15)0.0271 (14)0.0039 (11)0.0062 (11)0.0013 (12)
C30.0141 (13)0.0220 (14)0.0260 (14)0.0027 (10)0.0034 (10)0.0012 (11)
C40.0168 (12)0.0235 (14)0.0110 (11)0.0032 (10)0.0003 (9)0.0014 (10)
C50.0259 (14)0.0292 (16)0.0148 (13)0.0045 (12)0.0001 (11)0.0079 (11)
C60.0285 (15)0.0315 (16)0.0129 (12)0.0057 (12)0.0013 (11)0.0030 (11)
C70.0146 (12)0.0121 (12)0.0165 (12)0.0011 (9)0.0027 (9)0.0021 (10)
C80.0187 (13)0.0180 (13)0.0172 (12)0.0001 (10)0.0026 (10)0.0004 (10)
C90.0160 (13)0.0187 (14)0.0297 (15)0.0028 (10)0.0038 (11)0.0021 (11)
C100.0218 (14)0.0159 (13)0.0275 (14)0.0003 (11)0.0109 (11)0.0026 (11)
C110.0266 (14)0.0181 (13)0.0183 (13)0.0035 (11)0.0050 (11)0.0059 (11)
C120.0173 (12)0.0153 (13)0.0195 (13)0.0030 (10)0.0019 (10)0.0015 (10)
C130.0152 (12)0.0178 (13)0.0209 (13)0.0008 (10)0.0035 (10)0.0017 (11)
C140.0257 (15)0.0263 (15)0.0226 (14)0.0025 (12)0.0020 (11)0.0095 (12)
C150.0333 (16)0.0134 (14)0.0309 (16)0.0010 (11)0.0035 (12)0.0013 (12)
C160.0190 (13)0.0205 (14)0.0154 (12)0.0018 (10)0.0007 (10)0.0055 (10)
Br40.02271 (16)0.02007 (17)0.01624 (15)0.00242 (12)0.00282 (11)0.00367 (12)
C170.0059 (12)0.0196 (15)0.0300 (16)0.0003 (11)0.0014 (11)0.0114 (13)
C180.041 (2)0.0069 (19)0.0240 (18)0.0023 (15)0.0040 (14)0.0091 (15)
Br4A0.02271 (16)0.02007 (17)0.01624 (15)0.00242 (12)0.00282 (11)0.00367 (12)
C17A0.0059 (12)0.0196 (15)0.0300 (16)0.0003 (11)0.0014 (11)0.0114 (13)
C18A0.041 (2)0.0069 (19)0.0240 (18)0.0023 (15)0.0040 (14)0.0091 (15)
C190.0163 (12)0.0146 (12)0.0135 (12)0.0020 (10)0.0003 (9)0.0034 (10)
C200.0204 (13)0.0261 (15)0.0159 (12)0.0007 (11)0.0011 (10)0.0015 (11)
C210.0195 (14)0.0328 (17)0.0251 (15)0.0005 (12)0.0077 (11)0.0046 (12)
C220.0269 (15)0.0392 (18)0.0156 (13)0.0085 (13)0.0081 (11)0.0025 (12)
C230.0263 (15)0.0319 (16)0.0166 (13)0.0075 (12)0.0031 (11)0.0041 (12)
C240.0177 (13)0.0186 (13)0.0182 (13)0.0012 (10)0.0020 (10)0.0011 (11)
Geometric parameters (Å, º) top
Br1—C12.013 (3)C13—C151.524 (4)
Br2—C42.014 (3)C13—C141.531 (4)
Br3—C132.027 (2)C14—H14A0.9800
Si1—C71.897 (2)C14—H14B0.9800
Si1—C41.929 (3)C14—H14C0.9800
Si1—C11.965 (3)C15—H15A0.9800
Si1—Si22.4746 (10)C15—H15B0.9800
Si2—C191.907 (3)C15—H15C0.9800
Si2—C131.936 (3)C16—C171.529 (3)
Si2—C161.946 (2)C16—C18A1.536 (6)
C1—C31.518 (4)C16—C17A1.555 (6)
C1—C21.544 (3)C16—C181.596 (3)
C2—H2A0.9800C16—Br4A1.901 (3)
C2—H2B0.9800C16—Br41.989 (2)
C2—H2C0.9800C17—H17A0.9800
C3—H3A0.9800C17—H17B0.9800
C3—H3B0.9800C17—H17C0.9800
C3—H3C0.9800C18—H18A0.9800
C4—C61.534 (3)C18—H18B0.9800
C4—C51.535 (4)C18—H18C0.9800
C5—H5A0.9800C17A—H17D0.9800
C5—H5B0.9800C17A—H17E0.9800
C5—H5C0.9800C17A—H17F0.9800
C6—H6A0.9800C18A—H18D0.9800
C6—H6B0.9800C18A—H18E0.9800
C6—H6C0.9800C18A—H18F0.9800
C7—C121.401 (3)C19—C241.399 (3)
C7—C81.403 (3)C19—C201.405 (4)
C8—C91.389 (3)C20—C211.388 (4)
C8—H80.9500C20—H200.9500
C9—C101.378 (4)C21—C221.380 (4)
C9—H90.9500C21—H210.9500
C10—C111.391 (4)C22—C231.381 (4)
C10—H100.9500C22—H220.9500
C11—C121.388 (3)C23—C241.390 (4)
C11—H110.9500C23—H230.9500
C12—H120.9500C24—H240.9500
C7—Si1—C4109.83 (11)C15—C13—Br3107.03 (18)
C7—Si1—C1107.04 (11)C14—C13—Br3103.77 (16)
C4—Si1—C1107.07 (11)Si2—C13—Br3104.37 (12)
C7—Si1—Si2104.08 (8)C13—C14—H14A109.5
C4—Si1—Si2115.84 (9)C13—C14—H14B109.5
C1—Si1—Si2112.65 (8)H14A—C14—H14B109.5
C19—Si2—C13108.93 (11)C13—C14—H14C109.5
C19—Si2—C16105.45 (10)H14A—C14—H14C109.5
C13—Si2—C16108.03 (10)H14B—C14—H14C109.5
C19—Si2—Si1105.98 (8)C13—C15—H15A109.5
C13—Si2—Si1115.77 (8)C13—C15—H15B109.5
C16—Si2—Si1112.15 (7)H15A—C15—H15B109.5
C3—C1—C2108.5 (2)C13—C15—H15C109.5
C3—C1—Si1115.27 (17)H15A—C15—H15C109.5
C2—C1—Si1116.37 (18)H15B—C15—H15C109.5
C3—C1—Br1105.64 (17)C18A—C16—C17A107.8 (6)
C2—C1—Br1103.36 (16)C17—C16—C18103.9 (2)
Si1—C1—Br1106.40 (12)C18A—C16—Br4A110.3 (4)
C1—C2—H2A109.5C17A—C16—Br4A109.1 (4)
C1—C2—H2B109.5C17—C16—Si2118.14 (18)
H2A—C2—H2B109.5C18A—C16—Si2115.7 (10)
C1—C2—H2C109.5C17A—C16—Si296.8 (8)
H2A—C2—H2C109.5C18—C16—Si2117.2 (2)
H2B—C2—H2C109.5Br4A—C16—Si2115.84 (15)
C1—C3—H3A109.5C17—C16—Br4105.53 (19)
C1—C3—H3B109.5C18—C16—Br4102.80 (18)
H3A—C3—H3B109.5Si2—C16—Br4107.65 (11)
C1—C3—H3C109.5C16—C17—H17A109.5
H3A—C3—H3C109.5C16—C17—H17B109.5
H3B—C3—H3C109.5H17A—C17—H17B109.5
C6—C4—C5109.0 (2)C16—C17—H17C109.5
C6—C4—Si1118.12 (18)H17A—C17—H17C109.5
C5—C4—Si1113.59 (18)H17B—C17—H17C109.5
C6—C4—Br2104.53 (18)C16—C18—H18A109.5
C5—C4—Br2106.82 (17)C16—C18—H18B109.5
Si1—C4—Br2103.59 (11)H18A—C18—H18B109.5
C4—C5—H5A109.5C16—C18—H18C109.5
C4—C5—H5B109.5H18A—C18—H18C109.5
H5A—C5—H5B109.5H18B—C18—H18C109.5
C4—C5—H5C109.5C16—C17A—H17D109.5
H5A—C5—H5C109.5C16—C17A—H17E109.5
H5B—C5—H5C109.5H17D—C17A—H17E109.5
C4—C6—H6A109.5C16—C17A—H17F109.5
C4—C6—H6B109.5H17D—C17A—H17F109.5
H6A—C6—H6B109.5H17E—C17A—H17F109.5
C4—C6—H6C109.5C16—C18A—H18D109.5
H6A—C6—H6C109.5C16—C18A—H18E109.5
H6B—C6—H6C109.5H18D—C18A—H18E109.5
C12—C7—C8116.1 (2)C16—C18A—H18F109.5
C12—C7—Si1118.27 (19)H18D—C18A—H18F109.5
C8—C7—Si1125.50 (19)H18E—C18A—H18F109.5
C9—C8—C7121.7 (2)C24—C19—C20116.2 (2)
C9—C8—H8119.1C24—C19—Si2119.50 (19)
C7—C8—H8119.1C20—C19—Si2124.32 (19)
C10—C9—C8120.7 (3)C21—C20—C19121.6 (3)
C10—C9—H9119.6C21—C20—H20119.2
C8—C9—H9119.6C19—C20—H20119.2
C9—C10—C11119.1 (2)C22—C21—C20120.7 (3)
C9—C10—H10120.5C22—C21—H21119.6
C11—C10—H10120.5C20—C21—H21119.6
C12—C11—C10119.9 (3)C21—C22—C23119.2 (3)
C12—C11—H11120.1C21—C22—H22120.4
C10—C11—H11120.1C23—C22—H22120.4
C11—C12—C7122.4 (2)C22—C23—C24120.0 (3)
C11—C12—H12118.8C22—C23—H23120.0
C7—C12—H12118.8C24—C23—H23120.0
C15—C13—C14109.0 (2)C23—C24—C19122.3 (2)
C15—C13—Si2112.85 (17)C23—C24—H24118.9
C14—C13—Si2118.71 (19)C19—C24—H24118.9
C4—Si1—C7—C12166.77 (18)C10—C11—C12—C71.6 (4)
C1—Si1—C7—C1250.9 (2)C8—C7—C12—C112.3 (4)
Si2—Si1—C7—C1268.61 (19)Si1—C7—C12—C11174.4 (2)
C4—Si1—C7—C816.8 (2)C24—C19—C20—C211.0 (4)
C1—Si1—C7—C8132.7 (2)Si2—C19—C20—C21177.8 (2)
Si2—Si1—C7—C8107.8 (2)C19—C20—C21—C220.9 (4)
C12—C7—C8—C91.4 (4)C20—C21—C22—C230.2 (4)
Si1—C7—C8—C9175.0 (2)C21—C22—C23—C241.2 (4)
C7—C8—C9—C100.2 (4)C22—C23—C24—C191.1 (4)
C8—C9—C10—C111.1 (4)C20—C19—C24—C230.0 (4)
C9—C10—C11—C120.2 (4)Si2—C19—C24—C23178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···Br1i0.982.823.771 (3)166
Symmetry code: (i) x, y+1, z.
(3) 1,2-Di-tert-butyl-1,1,2,2-tetraphenyldisilane top
Crystal data top
C32H38Si2F(000) = 516
Mr = 478.80Dx = 1.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5622 (5) ÅCell parameters from 9973 reflections
b = 10.2107 (6) Åθ = 2.4–29.3°
c = 15.4586 (10) ŵ = 0.15 mm1
β = 95.452 (1)°T = 100 K
V = 1345.37 (14) Å3Block, colorless
Z = 20.17 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3566 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 29.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.98, Tmax = 0.98k = 1314
23513 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.5552P]
where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.38 e Å3
43 restraintsΔρmin = 0.29 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The centrosymmetric molecule is disordered over two orientations about the center in a 96:4 ratio. The two components of the disorder were refined subject to restraints that their geometries be comparable. In addition, the phenyl ring of the minor component overlapping with one from the major component was refined as a rigid hexagon.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.97798 (4)0.05498 (3)0.06638 (2)0.01404 (9)0.9645 (7)
C11.17324 (13)0.10306 (10)0.12738 (7)0.0163 (2)0.9645 (7)
C21.24616 (14)0.03226 (11)0.19771 (7)0.0191 (2)0.9645 (7)
H21.19780.04550.21590.023*0.9645 (7)
C31.38770 (17)0.07272 (13)0.24168 (8)0.0223 (2)0.9645 (7)
H31.43420.02270.28920.027*0.9645 (7)
C41.46102 (14)0.18583 (13)0.21639 (8)0.0219 (3)0.9645 (7)
H41.55670.21430.24680.026*0.9645 (7)
C51.39259 (15)0.25668 (13)0.14615 (8)0.0227 (3)0.9645 (7)
H51.44260.33340.12760.027*0.9645 (7)
C61.25096 (14)0.21603 (11)0.10265 (7)0.0195 (2)0.9645 (7)
H61.20570.26620.05490.023*0.9645 (7)
C70.86874 (13)0.21393 (10)0.04130 (7)0.0164 (2)0.9645 (7)
C80.89979 (14)0.32572 (11)0.09251 (7)0.0204 (2)0.9645 (7)
H80.97850.32200.14010.024*0.9645 (7)
C90.81825 (15)0.44211 (11)0.07537 (8)0.0239 (3)0.9645 (7)
H90.84280.51700.11050.029*0.9645 (7)
C100.70130 (16)0.44902 (12)0.00709 (8)0.0242 (3)0.9645 (7)
H100.64630.52870.00510.029*0.9645 (7)
C110.66515 (16)0.33862 (12)0.04334 (8)0.0255 (3)0.9645 (7)
H110.58350.34210.08940.031*0.9645 (7)
C120.74836 (14)0.22282 (12)0.02654 (8)0.0215 (2)0.9645 (7)
H120.72300.14820.06180.026*0.9645 (7)
C130.85261 (14)0.04591 (11)0.13883 (7)0.0173 (2)0.9645 (7)
C140.85115 (15)0.02324 (12)0.22736 (8)0.0210 (2)0.9645 (7)
H14A0.78040.02340.26300.032*0.9645 (7)
H14B0.81470.11360.21830.032*0.9645 (7)
H14C0.95740.02350.25720.032*0.9645 (7)
C150.91134 (15)0.18758 (12)0.15272 (8)0.0218 (3)0.9645 (7)
H15A1.01990.18660.17940.033*0.9645 (7)
H15B0.90680.23270.09660.033*0.9645 (7)
H15C0.84480.23360.19100.033*0.9645 (7)
C160.68191 (15)0.05123 (12)0.09687 (8)0.0219 (2)0.9645 (7)
H16A0.61840.10410.13320.033*0.9645 (7)
H16B0.67970.09080.03900.033*0.9645 (7)
H16C0.63910.03770.09170.033*0.9645 (7)
Si1A0.8638 (8)0.0135 (6)0.0097 (4)0.01404 (9)0.0355 (7)
C1A0.7401 (14)0.0682 (9)0.0846 (6)0.0163 (2)0.0355 (7)
C2A0.712 (2)0.0099 (12)0.1659 (6)0.0191 (2)0.0355 (7)
H2A0.75280.07490.17570.023*0.0355 (7)
C3A0.625 (3)0.0757 (16)0.2329 (8)0.0223 (2)0.0355 (7)
H3A0.60630.03590.28840.027*0.0355 (7)
C4A0.566 (3)0.1998 (17)0.2186 (12)0.0219 (3)0.0355 (7)
H4A0.50650.24480.26430.026*0.0355 (7)
C5A0.594 (2)0.2580 (13)0.1373 (12)0.0227 (3)0.0355 (7)
H5A0.55320.34280.12750.027*0.0355 (7)
C6A0.681 (2)0.1922 (9)0.0703 (9)0.0195 (2)0.0355 (7)
H6A0.69970.23200.01480.023*0.0355 (7)
C7A0.8171 (13)0.1959 (7)0.0073 (6)0.0164 (2)0.0355 (7)
C8A0.9272 (17)0.2764 (8)0.0526 (9)0.0204 (2)0.0355 (7)
H8A1.02520.24140.07580.024*0.0355 (7)
C9A0.894 (2)0.4082 (8)0.0640 (11)0.0239 (3)0.0355 (7)
H9A0.96940.46330.09500.029*0.0355 (7)
C10A0.751 (2)0.4595 (8)0.0300 (12)0.0242 (3)0.0355 (7)
H10A0.72820.54950.03780.029*0.0355 (7)
C11A0.641 (2)0.3789 (10)0.0153 (13)0.0255 (3)0.0355 (7)
H11A0.54270.41390.03850.031*0.0355 (7)
C12A0.6738 (15)0.2471 (9)0.0267 (9)0.0215 (2)0.0355 (7)
H12A0.59850.19200.05770.026*0.0355 (7)
C13A0.8088 (19)0.0519 (11)0.1193 (6)0.0173 (2)0.0355 (7)
C14A0.871 (3)0.043 (2)0.1921 (7)0.0210 (2)0.0355 (7)
H14D0.98550.04850.19400.032*0.0355 (7)
H14E0.82530.12990.18070.032*0.0355 (7)
H14F0.84170.01050.24810.032*0.0355 (7)
C15A0.874 (4)0.1902 (16)0.1401 (13)0.0218 (3)0.0355 (7)
H15D0.83500.25080.09400.033*0.0355 (7)
H15E0.98920.18780.14400.033*0.0355 (7)
H15F0.84040.21980.19570.033*0.0355 (7)
C16A0.6288 (19)0.058 (3)0.1189 (13)0.0219 (2)0.0355 (7)
H16D0.58590.11740.07300.033*0.0355 (7)
H16E0.60130.08920.17530.033*0.0355 (7)
H16F0.58490.03010.10800.033*0.0355 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01699 (16)0.01075 (15)0.01390 (15)0.00070 (11)0.00100 (11)0.00031 (10)
C10.0185 (5)0.0142 (5)0.0159 (5)0.0017 (4)0.0001 (4)0.0030 (4)
C20.0224 (6)0.0151 (5)0.0194 (5)0.0022 (4)0.0006 (4)0.0014 (4)
C30.0226 (6)0.0213 (5)0.0217 (6)0.0056 (5)0.0054 (4)0.0002 (4)
C40.0167 (6)0.0249 (6)0.0234 (6)0.0016 (5)0.0022 (4)0.0065 (4)
C50.0244 (6)0.0212 (6)0.0221 (6)0.0045 (5)0.0007 (5)0.0025 (4)
C60.0230 (6)0.0175 (5)0.0175 (5)0.0011 (4)0.0007 (4)0.0010 (4)
C70.0197 (5)0.0135 (5)0.0159 (5)0.0014 (4)0.0005 (4)0.0004 (4)
C80.0249 (6)0.0146 (5)0.0207 (5)0.0026 (4)0.0024 (4)0.0017 (4)
C90.0287 (7)0.0134 (5)0.0286 (6)0.0027 (5)0.0016 (5)0.0014 (4)
C100.0282 (7)0.0168 (5)0.0271 (6)0.0073 (5)0.0008 (5)0.0043 (4)
C110.0291 (7)0.0257 (6)0.0204 (6)0.0080 (5)0.0053 (5)0.0011 (5)
C120.0243 (6)0.0201 (6)0.0193 (5)0.0046 (5)0.0028 (5)0.0030 (4)
C130.0195 (6)0.0155 (5)0.0168 (5)0.0004 (4)0.0009 (4)0.0001 (4)
C140.0241 (6)0.0222 (6)0.0171 (5)0.0005 (5)0.0033 (4)0.0007 (4)
C150.0270 (7)0.0151 (5)0.0234 (6)0.0016 (5)0.0028 (5)0.0024 (4)
C160.0201 (6)0.0235 (6)0.0223 (6)0.0027 (5)0.0025 (4)0.0019 (5)
Si1A0.01699 (16)0.01075 (15)0.01390 (15)0.00070 (11)0.00100 (11)0.00031 (10)
C1A0.0185 (5)0.0142 (5)0.0159 (5)0.0017 (4)0.0001 (4)0.0030 (4)
C2A0.0224 (6)0.0151 (5)0.0194 (5)0.0022 (4)0.0006 (4)0.0014 (4)
C3A0.0226 (6)0.0213 (5)0.0217 (6)0.0056 (5)0.0054 (4)0.0002 (4)
C4A0.0167 (6)0.0249 (6)0.0234 (6)0.0016 (5)0.0022 (4)0.0065 (4)
C5A0.0244 (6)0.0212 (6)0.0221 (6)0.0045 (5)0.0007 (5)0.0025 (4)
C6A0.0230 (6)0.0175 (5)0.0175 (5)0.0011 (4)0.0007 (4)0.0010 (4)
C7A0.0197 (5)0.0135 (5)0.0159 (5)0.0014 (4)0.0005 (4)0.0004 (4)
C8A0.0249 (6)0.0146 (5)0.0207 (5)0.0026 (4)0.0024 (4)0.0017 (4)
C9A0.0287 (7)0.0134 (5)0.0286 (6)0.0027 (5)0.0016 (5)0.0014 (4)
C10A0.0282 (7)0.0168 (5)0.0271 (6)0.0073 (5)0.0008 (5)0.0043 (4)
C11A0.0291 (7)0.0257 (6)0.0204 (6)0.0080 (5)0.0053 (5)0.0011 (5)
C12A0.0243 (6)0.0201 (6)0.0193 (5)0.0046 (5)0.0028 (5)0.0030 (4)
C13A0.0195 (6)0.0155 (5)0.0168 (5)0.0004 (4)0.0009 (4)0.0001 (4)
C14A0.0241 (6)0.0222 (6)0.0171 (5)0.0005 (5)0.0033 (4)0.0007 (4)
C15A0.0270 (7)0.0151 (5)0.0234 (6)0.0016 (5)0.0028 (5)0.0024 (4)
C16A0.0201 (6)0.0235 (6)0.0223 (6)0.0027 (5)0.0025 (4)0.0019 (5)
Geometric parameters (Å, º) top
Si1—C71.8949 (11)Si1A—C7A1.904 (3)
Si1—C11.9041 (11)Si1A—C1A1.911 (3)
Si1—C131.9226 (12)Si1A—C13A1.921 (4)
Si1—Si1i2.4002 (6)Si1A—Si1Ai2.396 (14)
C1—C21.4020 (14)C1A—C2A1.3900
C1—C61.4028 (15)C1A—C6A1.3900
C2—C31.3946 (16)C2A—C3A1.3900
C2—H20.9500C2A—H2A0.9500
C3—C41.3884 (16)C3A—C4A1.3900
C3—H30.9500C3A—H3A0.9500
C4—C51.3873 (16)C4A—C5A1.3900
C4—H40.9500C4A—H4A0.9500
C5—C61.3929 (15)C5A—C6A1.3900
C5—H50.9500C5A—H5A0.9500
C6—H60.9500C6A—H6A0.9500
C7—C81.4000 (14)C7A—C8A1.3900
C7—C121.4018 (14)C7A—C12A1.3900
C8—C91.3910 (15)C8A—C9A1.3900
C8—H80.9500C8A—H8A0.9500
C9—C101.3860 (16)C9A—C10A1.3900
C9—H90.9500C9A—H9A0.9500
C10—C111.3887 (16)C10A—C11A1.3900
C10—H100.9500C10A—H10A0.9500
C11—C121.3922 (15)C11A—C12A1.3900
C11—H110.9500C11A—H11A0.9500
C12—H120.9500C12A—H12A0.9500
C13—C151.5398 (16)C13A—C14A1.540 (4)
C13—C141.5411 (16)C13A—C16A1.542 (4)
C13—C161.5427 (17)C13A—C15A1.542 (4)
C14—H14A0.9800C14A—H14D0.9800
C14—H14B0.9800C14A—H14E0.9800
C14—H14C0.9800C14A—H14F0.9800
C15—H15A0.9800C15A—H15D0.9800
C15—H15B0.9800C15A—H15E0.9800
C15—H15C0.9800C15A—H15F0.9800
C16—H16A0.9800C16A—H16D0.9800
C16—H16B0.9800C16A—H16E0.9800
C16—H16C0.9800C16A—H16F0.9800
C7—Si1—C1105.87 (5)C7A—Si1A—C1A108.15 (19)
C7—Si1—C13106.62 (5)C7A—Si1A—C13A106.8 (4)
C1—Si1—C13111.24 (5)C1A—Si1A—C13A110.9 (4)
C7—Si1—Si1i109.90 (4)C7A—Si1A—Si1Ai108.4 (5)
C1—Si1—Si1i110.01 (4)C1A—Si1A—Si1Ai109.3 (5)
C13—Si1—Si1i112.91 (4)C13A—Si1A—Si1Ai113.2 (6)
C2—C1—C6116.58 (10)C2A—C1A—C6A120.0
C2—C1—Si1123.81 (8)C2A—C1A—Si1A122.5 (3)
C6—C1—Si1119.61 (8)C6A—C1A—Si1A117.4 (3)
C3—C2—C1121.85 (11)C3A—C2A—C1A120.0
C3—C2—H2119.1C3A—C2A—H2A120.0
C1—C2—H2119.1C1A—C2A—H2A120.0
C4—C3—C2120.29 (11)C2A—C3A—C4A120.0
C4—C3—H3119.9C2A—C3A—H3A120.0
C2—C3—H3119.9C4A—C3A—H3A120.0
C5—C4—C3119.05 (11)C3A—C4A—C5A120.0
C5—C4—H4120.5C3A—C4A—H4A120.0
C3—C4—H4120.5C5A—C4A—H4A120.0
C4—C5—C6120.40 (11)C6A—C5A—C4A120.0
C4—C5—H5119.8C6A—C5A—H5A120.0
C6—C5—H5119.8C4A—C5A—H5A120.0
C5—C6—C1121.82 (11)C5A—C6A—C1A120.0
C5—C6—H6119.1C5A—C6A—H6A120.0
C1—C6—H6119.1C1A—C6A—H6A120.0
C8—C7—C12117.19 (10)C8A—C7A—C12A120.0
C8—C7—Si1121.28 (8)C8A—C7A—Si1A115.94 (17)
C12—C7—Si1121.47 (8)C12A—C7A—Si1A123.5 (2)
C9—C8—C7121.60 (10)C9A—C8A—C7A120.0
C9—C8—H8119.2C9A—C8A—H8A120.0
C7—C8—H8119.2C7A—C8A—H8A120.0
C10—C9—C8120.12 (11)C8A—C9A—C10A120.0
C10—C9—H9119.9C8A—C9A—H9A120.0
C8—C9—H9119.9C10A—C9A—H9A120.0
C9—C10—C11119.51 (11)C11A—C10A—C9A120.0
C9—C10—H10120.2C11A—C10A—H10A120.0
C11—C10—H10120.2C9A—C10A—H10A120.0
C10—C11—C12120.12 (11)C12A—C11A—C10A120.0
C10—C11—H11119.9C12A—C11A—H11A120.0
C12—C11—H11119.9C10A—C11A—H11A120.0
C11—C12—C7121.43 (11)C11A—C12A—C7A120.0
C11—C12—H12119.3C11A—C12A—H12A120.0
C7—C12—H12119.3C7A—C12A—H12A120.0
C15—C13—C14109.68 (9)C14A—C13A—C16A107.7 (5)
C15—C13—C16108.02 (9)C14A—C13A—C15A109.2 (5)
C14—C13—C16107.60 (9)C16A—C13A—C15A108.0 (5)
C15—C13—Si1113.05 (8)C14A—C13A—Si1A109.2 (5)
C14—C13—Si1108.90 (8)C16A—C13A—Si1A109.7 (5)
C16—C13—Si1109.45 (8)C15A—C13A—Si1A112.8 (5)
C13—C14—H14A109.5C13A—C14A—H14D109.5
C13—C14—H14B109.5C13A—C14A—H14E109.5
H14A—C14—H14B109.5H14D—C14A—H14E109.5
C13—C14—H14C109.5C13A—C14A—H14F109.5
H14A—C14—H14C109.5H14D—C14A—H14F109.5
H14B—C14—H14C109.5H14E—C14A—H14F109.5
C13—C15—H15A109.5C13A—C15A—H15D109.5
C13—C15—H15B109.5C13A—C15A—H15E109.5
H15A—C15—H15B109.5H15D—C15A—H15E109.5
C13—C15—H15C109.5C13A—C15A—H15F109.5
H15A—C15—H15C109.5H15D—C15A—H15F109.5
H15B—C15—H15C109.5H15E—C15A—H15F109.5
C13—C16—H16A109.5C13A—C16A—H16D109.5
C13—C16—H16B109.5C13A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C13—C16—H16C109.5C13A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5
C6—C1—C2—C30.80 (18)C10—C11—C12—C70.5 (2)
Si1—C1—C2—C3178.60 (10)C8—C7—C12—C111.18 (18)
C1—C2—C3—C40.1 (2)Si1—C7—C12—C11178.14 (10)
C2—C3—C4—C50.9 (2)C6A—C1A—C2A—C3A0.0
C3—C4—C5—C61.11 (19)Si1A—C1A—C2A—C3A178.1 (4)
C4—C5—C6—C10.36 (19)C1A—C2A—C3A—C4A0.0
C2—C1—C6—C50.59 (18)C2A—C3A—C4A—C5A0.0
Si1—C1—C6—C5178.83 (10)C3A—C4A—C5A—C6A0.0
C1—Si1—C7—C825.36 (11)C4A—C5A—C6A—C1A0.0
C13—Si1—C7—C893.19 (10)C2A—C1A—C6A—C5A0.0
Si1i—Si1—C7—C8144.13 (9)Si1A—C1A—C6A—C5A178.2 (4)
C1—Si1—C7—C12157.80 (10)C12A—C7A—C8A—C9A0.0
C13—Si1—C7—C1283.65 (11)Si1A—C7A—C8A—C9A171.7 (4)
Si1i—Si1—C7—C1239.03 (11)C7A—C8A—C9A—C10A0.0
C12—C7—C8—C91.94 (18)C8A—C9A—C10A—C11A0.0
Si1—C7—C8—C9178.91 (10)C9A—C10A—C11A—C12A0.0
C7—C8—C9—C101.0 (2)C10A—C11A—C12A—C7A0.0
C8—C9—C10—C110.7 (2)C8A—C7A—C12A—C11A0.0
C9—C10—C11—C121.5 (2)Si1A—C7A—C12A—C11A171.0 (4)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 the ring.
D—H···AD—HH···AD···AD—H···A
C15—H15C···Cg1ii0.982.933.8955 (14)171
Symmetry code: (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

The financial support of NSF Grant CHE-0445637 (to MJF) and Tulane University for the Tulane X-ray Crystallography Laboratory is gratefully acknowledged.

References

First citationAndo, W., Shiba, T., Hidaka, T., Morihashi, K. & Kikuchi, O. (1997). J. Am. Chem. Soc. 119, 3629–3630.  CrossRef CAS Google Scholar
First citationBeagley, B. A., Monaghan, J. J. & Hewitt, T. G. (1971). J. Mol. Struct. 8, 401–411.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationGoetze, B., Herrschaft, B. & Auner, N. (1997). Chem. Eur. J. 3, 948–957.  CrossRef CAS Google Scholar
First citationGottschling, S. E., Milnes, K. K., Jennings, M. C. & Baines, K. M. (2005). Organometallics, 24, 3811–3814.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKabe, Y., Ohkubo, Z., Ishikawa, H. & Ando, W. (2000). J. Am. Chem. Soc. 122, 3775–3776.  CrossRef CAS Google Scholar
First citationKleiner, N. & Dräger, M. (1984). J. Organomet. Chem. 270, 151–170.  CrossRef CAS Google Scholar
First citationKyushin, S., Ikarugi, M., Takatsuna, K., Goto, M. & Matsumoto, H. (1996). J. Organomet. Chem. 510, 121–133.  CrossRef CAS Google Scholar
First citationLambert, J. B. & Urdaneta-Perez, M. (1978). J. Am. Chem. Soc. 100, 157–162.  CrossRef CAS Google Scholar
First citationLerner, H. W., Scholz, S. & Bolte, M. (2001). Z. Anorg. Allg. Chem. 627, 1638–1642.  CrossRef CAS Google Scholar
First citationLerner, H. W., Scholz, S. & Bolte, M. (2002). Organometallics, 21, 3827–3830.  CrossRef CAS Google Scholar
First citationMeyer-Wegner, F., Scholz, S., Sänger, I., Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Organometallics, 28, 6835–6837.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonakhov, K. Yu., Zessin, T. & Linti, G. (2010). Eur. J. Inorg. Chem. pp. 322–332.  CrossRef Google Scholar
First citationPeters, K., Peters, E.-M., Kirmaier, L. & Weidenbruch, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 747–748.  CAS Google Scholar
First citationPichaandi, K. R., Mague, J. T. & Fink, M. J. (2011). J. Organomet. Chem. 696, 1957–1963.  CrossRef CAS Google Scholar
First citationScholz, S., Lerner, H.-W. & Bats, J. W. (2014). Acta Cryst. C70, 697–701.  CrossRef IUCr Journals Google Scholar
First citationScholz, S., Lerner, H.-W. & Bolte, M. (2012). CCDC Private Communication. CSD refcode DIVKIC03. CCDC, Cambridge, UK.  Google Scholar
First citationSheldrick, W. S. (1989). Vol. 1. The Chemistry of Organic Silicon Compounds, edited by S. Patai & Z. Rappaport, p. 245. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWei, Y.-L., Yang, K.-F., Li, F., Zheng, Z.-J., Xu, Z. & Xu, L.-W. (2014). RSC Adv. 4, 37859–37867.  CrossRef CAS Google Scholar
First citationWest, R. & Pham, E. K. (1991). J. Organomet. Chem. 403, 43–48.  CrossRef CAS Google Scholar
First citationWiberg, N., Finger, C. M. M. & Polborn, K. (1993). Angew. Chem. Int. Ed. Engl. 32, 1054–1056.  CrossRef Google Scholar
First citationWiberg, N., Hochmuth, W., Nöth, H., Appel, A. & Schmidt-Amelunxen, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 1333–1334.  CrossRef CAS Google Scholar
First citationWiberg, N., Lerner, H.-W., Nöth, H. & Ponikwar, W. (1999). Angew. Chem. Int. Ed. 38, 1103–1105.  CrossRef CAS Google Scholar
First citationWiberg, N. & Niedermayer, W. (2000). Z. Naturforsch. Teil B, 55, 398–405.  Google Scholar
First citationWiberg, N., Schuster, H., Simon, A. & Peters, K. (1986). Angew. Chem. 98, 100–101.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds