research communications
3Ga(BO3)2
of LiaDepartment of Chemistry, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, USA, and bDepartment of Chemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
*Correspondence e-mail: robertsmith@unomaha.edu
The 3Ga(BO3)2, is isotypic with Li3Al(BO3)2 in a triclinic cell in space-group type P-1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetrahedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO3)4]6− extend along the a axis. The Li atoms interleave these chains in tetrahedral interstices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972). Zh. Strukt. Khim. 13, 943–946.]
of trilithium gallium bis(orthoborate), LiKeywords: crystal structure; crystal diffraction; gallium; borate.
CCDC reference: 1534100
1. Chemical context
We are examining the alkali metal/gallium/borate phase diagrams, investigations of which have revealed to date, among others, the homologous series A2Ga2O(BO3)2, in which A = Na, K, Rb, and Cs (Corbel & Leblanc, 2000; Smith, 1995; Smith et al., 1997,2008, respectively) and the homologous series A3Ga(BO3)2, in which A = Li, Na, K, Rb, and Cs. We report herein the of the lithium analog (Fig. 1) of the latter series, which is the only one which melts congruently, which has a unique structure among the series, and which is isotypic with Li3Al(BO3)2 (He et al., 2002); the other analogs have yet to be crystallized in the form of single crystals, but are structurally distinct from the lithium analog and isotypic with each other based on their powder X-ray diffraction patterns.
A ) in the same triclinic space-group type P, and with the same gallium-borate polyhedral pattern but with important differences with the structure reported herein, to wit: slightly different cell parameters and a different a significantly smaller cell volume (i.e., 3% smaller), less regular bond-valence sums (BVS), greater deviations from expected interatomic distances, and irregular, five- and six-coordinate lithium-centered polyhedra. Table 1 compares interatomic distances from the structure reported by Addullaev & Mamedov (1972) and this report, with expected distances using Shannon's radii (Shannon, 1976); it also lists bond-valence sums for each structure. We have considered as bonds all Li—O distances under 3 Å from the 1972 report because doing so produces more reasonable BVS values, thus rendering some of the lithium atoms as being five- or six-coordinate in the previous structure report. It should be noted that the authors, however, reported all lithium atoms as tetrahedrally coordinated. The present structure model clearly differs from the 1972 structure model and hence indicates a second possible modification for this composition. Whether a polymorphic relation exists between the two phases remains unknown and needs additional proof by using complementary methods such as thermal analysis.
for this compound was previously reported by Abdullaev & Mamedov (19722. Structural commentary
The 4 tetrahedron is linked to four BO3 triangles and six LiO4 tetrahedra. The gallium-centered tetrahedra and boron-centered triangles adjoin through shared vertices to form infinite chains of composition [Ga2(BO3)4]6−, with the chains extending parallel to the a axis; lithium cations interleave the chains in tetrahedral interstices. Fig. 2 shows a comparison of the gallium-borate chains in both the previously reported structure (Abdullaev & Mamedov, 1972) and the structure presented here. The two exhibit the same connectivity but have sizeable differences in bond lengths, bond angles and bond-valence-sum values (see Table 1). Averaged interatomic distances for the title structure are consistent with those determined from the ionic radii reported by Shannon (1976), viz. 1.97 (5), 1.85 (2), and 1.39 (4) Å for the experimentally determined Li—O, Ga—O, and B—O distances, respectively. We also calculated the bond-valence-um values for each element using the values provided by Brese & O'Keeffe (1991). The results (Table 1) are in good agreement with the expected values of 1, 3, 3 and 2 for Li, Ga, B and O atoms, respectively.
of the title compound consists of lithium- and gallium-centered tetrahedra and boron-centered triangles, all of which share oxygen vertices (Fig.1). Each GaOLastly, Fig. 3 displays the anisotropic displacement parameters of the atoms within the of the title structure.
3. Synthesis and crystallization
Powder samples were made by solid-state reactions starting with stoichiometric proportions of lithium nitrate, gallium(III) nitrate, and boric acid. We first ground the starting materials and fired them in an alumina crucible at 573 K for two h to decompose them to finely divided oxides, after which we progressively heated the samples to 973 K at 50 to 100 K and 24-hour increments, grinding the samples between each successive heat treatment. Samples were single-phase as revealed by powder X-ray diffraction.
Single crystals were grown from the melt. About 500 mg of sample were placed in a platinum dish, heated to 1033 K in a box oven, slow-cooled at 10 K h−1 to about 470 K, and then air-quenched. Several small, clear, colorless crystals were physically removed from the platinum crucible and mounted on a goniometer for a preliminary scan in order to find one of suitable quality.
4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Supporting information
CCDC reference: 1534100
https://doi.org/10.1107/S205698901700295X/wm5356sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901700295X/wm5356Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901700295X/wm5356Isup3.cml
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Li3Ga(BO3)2 | Z = 2 |
Mr = 208.16 | F(000) = 196 |
Triclinic, P1 | Dx = 2.960 Mg m−3 |
a = 4.8731 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.2429 (4) Å | Cell parameters from 1687 reflections |
c = 8.0130 (5) Å | θ = 2.7–32.5° |
α = 73.346 (6)° | µ = 5.84 mm−1 |
β = 89.701 (5)° | T = 293 K |
γ = 89.698 (5)° | Plate, clear light colourless |
V = 233.54 (3) Å3 | 0.09 × 0.03 × 0.01 mm |
Rigaku SCX mini diffractometer | 1397 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1265 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 30.5°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | h = −6→6 |
Tmin = 0.785, Tmax = 1.000 | k = −8→8 |
2936 measured reflections | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0282P)2 + 0.1042P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 1.04 e Å−3 |
1397 reflections | Δρmin = −0.76 e Å−3 |
109 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Crystals of Li3Ga(BO3)2 were mounted on MiTeGen Microloop with non-drying immersion oil. The crystal was then optically aligned on the Rigaku SCX-Mini diffractometer using a digital camera. Initial matrix images were collected to determine the unit cell, validity and proper exposure time. Three hemispheres (where φ= 0.0, 120.0 and 240.0) of data were collected with each consisting 180 images each with 1.00° widths and a 1.00° step. The structure of Li3Ga(BO3)2 was refined using SHELXT (Sheldrick, 2015) Intrinsic Phasing and SHELXL (Sheldrick, 2015). Olex2 (Dolomanov et al., 2009) was used as a graphical interface. Images of the above compound were made using CrystalMaker for Windows, version 9.2.8. The refinement proceeded without any incidents and without any need for modelling disorder or twinning or any constraints or restraints. Refinement of the structure was based on F2 against all reflections. The R-factor R is based on F2>2?(F2), but is not relevant to the choice of reflections for refinement; whereas the weighted R-factor wR and goodness of fit S are based on F2. The maximum electron denisty is 1.035 and is located 1.629 Å from Li(2), 1.960 Å from Li(1) and 2.169 Å from a different Li(1), which leads to nothing reasonable. All other maximum peaks are under 0.600. |
x | y | z | Uiso*/Ueq | ||
Ga1 | 0.65937 (6) | 0.22951 (4) | 0.60906 (4) | 0.00968 (10) | |
B1 | 0.1691 (6) | 0.0135 (5) | 0.7454 (4) | 0.0088 (5) | |
B2 | 0.6631 (6) | 0.5014 (5) | 0.2489 (4) | 0.0094 (5) | |
O1 | 0.3037 (4) | 0.1391 (3) | 0.5958 (2) | 0.0116 (4) | |
O2 | −0.1202 (4) | −0.0028 (3) | 0.7317 (2) | 0.0101 (4) | |
O3 | 0.2978 (4) | −0.0830 (3) | 0.8955 (2) | 0.0109 (4) | |
O4 | 0.7953 (4) | 0.3547 (3) | 0.3900 (2) | 0.0117 (4) | |
O5 | 0.3833 (4) | 0.5529 (3) | 0.2727 (2) | 0.0100 (4) | |
O6 | 0.7921 (4) | 0.5853 (3) | 0.0967 (2) | 0.0120 (4) | |
Li1 | 0.1828 (10) | −0.3717 (8) | 1.0414 (6) | 0.0154 (10) | |
Li2 | 1.1645 (10) | 0.2738 (8) | 0.3670 (6) | 0.0143 (9) | |
Li3 | 0.6839 (10) | 0.8785 (8) | −0.0399 (6) | 0.0159 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ga1 | 0.00877 (15) | 0.01034 (15) | 0.00789 (15) | −0.00023 (10) | 0.00130 (10) | 0.00064 (10) |
B1 | 0.0103 (13) | 0.0052 (11) | 0.0106 (12) | 0.0008 (9) | 0.0021 (10) | −0.0018 (10) |
B2 | 0.0091 (13) | 0.0088 (12) | 0.0095 (12) | −0.0013 (10) | 0.0002 (10) | −0.0013 (10) |
O1 | 0.0098 (9) | 0.0134 (9) | 0.0090 (8) | −0.0028 (7) | 0.0011 (7) | 0.0012 (7) |
O2 | 0.0068 (8) | 0.0105 (8) | 0.0098 (8) | 0.0013 (6) | 0.0002 (7) | 0.0020 (7) |
O3 | 0.0107 (9) | 0.0104 (8) | 0.0094 (8) | −0.0007 (7) | −0.0018 (7) | 0.0008 (7) |
O4 | 0.0110 (9) | 0.0138 (9) | 0.0066 (8) | 0.0017 (7) | 0.0012 (7) | 0.0030 (7) |
O5 | 0.0088 (9) | 0.0102 (8) | 0.0104 (8) | 0.0008 (7) | 0.0013 (7) | −0.0017 (7) |
O6 | 0.0136 (9) | 0.0114 (9) | 0.0088 (8) | −0.0001 (7) | 0.0029 (7) | 0.0005 (7) |
Li1 | 0.019 (2) | 0.013 (2) | 0.013 (2) | −0.0038 (18) | 0.0013 (18) | −0.0023 (18) |
Li2 | 0.012 (2) | 0.014 (2) | 0.013 (2) | −0.0009 (17) | 0.0008 (17) | 0.0009 (17) |
Li3 | 0.013 (2) | 0.017 (2) | 0.015 (2) | −0.0014 (18) | 0.0000 (18) | −0.0016 (18) |
Ga1—O1 | 1.8385 (18) | B1—O2 | 1.421 (3) |
Ga1—O2i | 1.8440 (18) | B1—O3 | 1.339 (3) |
Ga1—O4 | 1.8272 (18) | B2—O4 | 1.393 (3) |
Ga1—O5ii | 1.8759 (18) | B2—O5 | 1.423 (3) |
B1—O1 | 1.393 (3) | B2—O6 | 1.336 (3) |
O1—Ga1—O2i | 111.84 (8) | Li1xii—Li1—Li3vii | 149.2 (3) |
O1—Ga1—O5ii | 102.08 (8) | Li1xii—Li1—Li3ix | 72.2 (2) |
O1—Ga1—Li1iii | 116.15 (10) | Li2ix—Li1—Ga1iii | 63.94 (14) |
O1—Ga1—Li2iv | 124.51 (10) | Li2ix—Li1—Li3viii | 60.89 (16) |
O1—Ga1—Li2v | 35.98 (10) | Li2ix—Li1—Li3ii | 120.2 (2) |
O1—Ga1—Li2vi | 86.55 (10) | Li3ii—Li1—Ga1iii | 56.40 (12) |
O1—Ga1—Li2 | 133.42 (11) | Li3vii—Li1—Ga1iii | 74.07 (15) |
O1—Ga1—Li3vii | 86.54 (11) | Li3viii—Li1—Ga1iii | 117.59 (17) |
O2i—Ga1—O5ii | 111.37 (8) | Li3ix—Li1—Ga1iii | 97.77 (17) |
O2i—Ga1—Li1iii | 76.62 (10) | Li3vii—Li1—Li2ix | 117.0 (2) |
O2i—Ga1—Li2iv | 115.22 (10) | Li3ix—Li1—Li2ix | 114.0 (2) |
O2i—Ga1—Li2v | 135.30 (11) | Li3ii—Li1—Li3viii | 156.5 (2) |
O2i—Ga1—Li2vi | 37.59 (10) | Li3vii—Li1—Li3viii | 107.55 (19) |
O2i—Ga1—Li2 | 77.78 (10) | Li3ix—Li1—Li3viii | 129.60 (18) |
O2i—Ga1—Li3vii | 39.95 (11) | Li3vii—Li1—Li3ii | 49.58 (19) |
O4—Ga1—O1 | 109.76 (8) | Li3ix—Li1—Li3ii | 73.05 (19) |
O4—Ga1—O2i | 110.94 (8) | Li3ix—Li1—Li3vii | 116.4 (2) |
O4—Ga1—O5ii | 110.54 (8) | Ga1—Li2—Ga1vi | 105.15 (13) |
O4—Ga1—Li1iii | 126.18 (10) | Ga1i—Li2—Ga1iv | 70.59 (10) |
O4—Ga1—Li2 | 34.37 (10) | Ga1—Li2—Ga1iv | 95.24 (13) |
O4—Ga1—Li2vi | 96.01 (11) | Ga1i—Li2—Ga1 | 104.73 (14) |
O4—Ga1—Li2v | 74.92 (11) | Ga1i—Li2—Ga1vi | 81.11 (11) |
O4—Ga1—Li2iv | 78.99 (10) | Ga1vi—Li2—Ga1iv | 148.57 (16) |
O4—Ga1—Li3vii | 150.82 (11) | Ga1—Li2—Li3xiii | 135.80 (19) |
O5ii—Ga1—Li1iii | 34.75 (10) | Ga1i—Li2—Li3xiii | 110.84 (17) |
O5ii—Ga1—Li2iv | 33.37 (10) | B1viii—Li2—Ga1i | 136.51 (18) |
O5ii—Ga1—Li2v | 106.86 (11) | B1viii—Li2—Ga1vi | 57.25 (11) |
O5ii—Ga1—Li2vi | 146.78 (10) | B1viii—Li2—Ga1iv | 152.84 (18) |
O5ii—Ga1—Li2 | 116.90 (11) | B1viii—Li2—Ga1 | 77.51 (13) |
O5ii—Ga1—Li3vii | 88.33 (11) | B1viii—Li2—B2i | 135.2 (2) |
Li1iii—Ga1—Li2iv | 52.55 (11) | B1viii—Li2—Li1xi | 97.11 (18) |
Li2v—Ga1—Li1iii | 137.36 (13) | B1viii—Li2—Li3xiii | 58.70 (14) |
Li2—Ga1—Li1iii | 110.42 (13) | B2i—Li2—Ga1 | 146.69 (19) |
Li2vi—Ga1—Li1iii | 112.82 (12) | B2i—Li2—Ga1vi | 100.55 (15) |
Li2v—Ga1—Li2 | 104.73 (14) | B2i—Li2—Ga1i | 58.67 (11) |
Li2—Ga1—Li2vi | 74.85 (13) | B2i—Li2—Ga1iv | 53.11 (10) |
Li2vi—Ga1—Li2iv | 148.57 (16) | B2i—Li2—Li1xi | 59.61 (14) |
Li2v—Ga1—Li2iv | 109.41 (10) | B2i—Li2—Li3xiii | 76.46 (16) |
Li2v—Ga1—Li2vi | 98.89 (11) | O1i—Li2—Ga1vi | 72.19 (15) |
Li2—Ga1—Li2iv | 84.76 (13) | O1i—Li2—Ga1 | 75.30 (16) |
Li3vii—Ga1—Li1iii | 59.79 (12) | O1i—Li2—Ga1iv | 90.70 (18) |
Li3vii—Ga1—Li2vi | 59.91 (13) | O1i—Li2—Ga1i | 34.43 (10) |
Li3vii—Ga1—Li2v | 121.95 (13) | O1i—Li2—B1viii | 112.1 (2) |
Li3vii—Ga1—Li2 | 117.45 (13) | O1i—Li2—B2i | 93.10 (19) |
Li3vii—Ga1—Li2iv | 112.26 (13) | O1i—Li2—O2viii | 102.8 (2) |
O1—B1—O2 | 115.8 (2) | O1i—Li2—O5i | 105.5 (2) |
O1—B1—Li2viii | 104.8 (2) | O1i—Li2—Li1xi | 149.9 (3) |
O1—B1—Li3ii | 113.6 (2) | O1i—Li2—Li3xiii | 124.6 (2) |
O2—B1—Li2viii | 47.04 (15) | O2viii—Li2—Ga1vi | 32.82 (9) |
O2—B1—Li3ii | 111.9 (2) | O2viii—Li2—Ga1 | 102.44 (18) |
O3—B1—O1 | 123.3 (2) | O2viii—Li2—Ga1iv | 159.9 (2) |
O3—B1—O2 | 120.9 (2) | O2viii—Li2—Ga1i | 113.13 (19) |
O3—B1—Li2viii | 113.91 (19) | O2viii—Li2—B1viii | 30.07 (10) |
O3—B1—Li3ii | 42.00 (16) | O2viii—Li2—B2i | 110.6 (2) |
Li3ii—B1—Li2viii | 141.61 (18) | O2viii—Li2—Li1xi | 99.0 (2) |
O4—B2—O5 | 117.1 (2) | O2viii—Li2—Li3xiii | 39.36 (13) |
O4—B2—Li1viii | 106.0 (2) | O4—Li2—Ga1 | 33.11 (10) |
O4—B2—Li2v | 88.65 (18) | O4—Li2—Ga1vi | 121.9 (2) |
O4—B2—Li3 | 149.2 (2) | O4—Li2—Ga1i | 131.9 (2) |
O5—B2—Li1viii | 119.8 (2) | O4—Li2—Ga1iv | 87.97 (18) |
O5—B2—Li2v | 41.16 (15) | O4—Li2—B1viii | 71.58 (17) |
O5—B2—Li3 | 88.65 (18) | O4—Li2—B2i | 136.5 (2) |
O6—B2—O4 | 121.2 (2) | O4—Li2—O1i | 107.7 (2) |
O6—B2—O5 | 121.6 (2) | O4—Li2—O2viii | 101.6 (2) |
O6—B2—Li1viii | 40.79 (15) | O4—Li2—O5i | 108.5 (2) |
O6—B2—Li2v | 137.1 (2) | O4—Li2—Li1xi | 87.7 (2) |
O6—B2—Li3 | 37.74 (15) | O4—Li2—Li3xiii | 117.1 (2) |
Li1viii—B2—Li2v | 105.56 (17) | O5i—Li2—Ga1iv | 31.06 (10) |
Li1viii—B2—Li3 | 70.99 (16) | O5i—Li2—Ga1i | 74.16 (15) |
Li3—B2—Li2v | 122.03 (17) | O5i—Li2—Ga1vi | 127.9 (2) |
Ga1—O1—Li2v | 109.59 (17) | O5i—Li2—Ga1 | 125.0 (2) |
B1—O1—Ga1 | 120.01 (17) | O5i—Li2—B1viii | 140.4 (2) |
B1—O1—Li2v | 129.9 (2) | O5i—Li2—B2i | 27.93 (10) |
Ga1v—O2—Li2viii | 109.59 (15) | O5i—Li2—O2viii | 129.2 (3) |
Ga1v—O2—Li3ix | 103.87 (16) | O5i—Li2—Li1xi | 44.44 (15) |
B1—O2—Ga1v | 123.74 (16) | O5i—Li2—Li3xiii | 90.06 (19) |
B1—O2—Li2viii | 102.9 (2) | Li1xi—Li2—Ga1vi | 121.89 (19) |
B1—O2—Li3ix | 114.5 (2) | Li1xi—Li2—Ga1i | 116.94 (18) |
Li3ix—O2—Li2viii | 99.6 (2) | Li1xi—Li2—Ga1 | 119.78 (18) |
B1—O3—Li1 | 120.6 (2) | Li1xi—Li2—Ga1iv | 63.51 (13) |
B1—O3—Li3vii | 133.1 (2) | Li1xi—Li2—Li3xiii | 64.81 (16) |
B1—O3—Li3ii | 110.7 (2) | Li3xiii—Li2—Ga1iv | 120.57 (17) |
Li1—O3—Li3ii | 108.2 (2) | Li3xiii—Li2—Ga1vi | 57.29 (12) |
Li1—O3—Li3vii | 95.7 (2) | Ga1x—Li3—Li1ii | 63.82 (13) |
Li3vii—O3—Li3ii | 81.0 (2) | Ga1x—Li3—Li2xiii | 62.79 (13) |
Ga1—O4—Li2 | 112.52 (17) | B1ii—Li3—Ga1x | 121.35 (18) |
B2—O4—Ga1 | 127.86 (17) | B1ii—Li3—B2 | 69.64 (14) |
B2—O4—Li2 | 119.6 (2) | B1ii—Li3—Li1ii | 57.56 (14) |
Ga1ii—O5—Li1x | 113.47 (16) | B1ii—Li3—Li1x | 106.5 (2) |
Ga1ii—O5—Li2v | 115.56 (17) | B1ii—Li3—Li1xi | 80.20 (17) |
B2—O5—Ga1ii | 113.05 (16) | B1ii—Li3—Li2xiii | 150.9 (2) |
B2—O5—Li1x | 110.1 (2) | B2—Li3—Ga1x | 168.9 (2) |
B2—O5—Li2v | 110.9 (2) | B2—Li3—Li1x | 60.43 (15) |
Li2v—O5—Li1x | 92.0 (2) | B2—Li3—Li1ii | 127.1 (2) |
B2—O6—Li1viii | 112.8 (2) | B2—Li3—Li1xi | 64.26 (15) |
B2—O6—Li1xi | 130.9 (2) | B2—Li3—Li2xiii | 108.51 (19) |
B2—O6—Li3 | 117.0 (2) | O2xi—Li3—Ga1x | 36.18 (10) |
Li1xi—O6—Li1viii | 83.6 (2) | O2xi—Li3—B1ii | 122.9 (2) |
Li3—O6—Li1xi | 95.2 (2) | O2xi—Li3—B2 | 141.0 (2) |
Li3—O6—Li1viii | 112.6 (2) | O2xi—Li3—Li1ii | 77.94 (18) |
B2viii—Li1—Ga1iii | 150.65 (19) | O2xi—Li3—Li1x | 130.1 (2) |
B2viii—Li1—Li2ix | 115.6 (2) | O2xi—Li3—Li1xi | 80.86 (19) |
B2viii—Li1—Li3ix | 107.8 (2) | O2xi—Li3—Li2xiii | 41.01 (14) |
B2viii—Li1—Li3ii | 117.46 (19) | O2xi—Li3—Li3xiv | 118.1 (3) |
B2viii—Li1—Li3vii | 81.65 (18) | O3ii—Li3—Ga1x | 97.47 (18) |
B2viii—Li1—Li3viii | 54.76 (14) | O3x—Li3—Ga1x | 73.34 (15) |
O3—Li1—Ga1iii | 90.74 (18) | O3x—Li3—B1ii | 116.5 (2) |
O3—Li1—B2viii | 81.99 (18) | O3ii—Li3—B1ii | 27.27 (10) |
O3—Li1—O5vii | 110.1 (2) | O3x—Li3—B2 | 101.3 (2) |
O3—Li1—O6viii | 108.0 (2) | O3ii—Li3—B2 | 92.9 (2) |
O3—Li1—O6ix | 117.7 (3) | O3x—Li3—O2xi | 103.3 (2) |
O3—Li1—Li1xii | 125.5 (3) | O3ii—Li3—O2xi | 112.5 (2) |
O3—Li1—Li2ix | 153.3 (3) | O3x—Li3—O3ii | 99.0 (2) |
O3—Li1—Li3vii | 42.42 (15) | O3ii—Li3—Li1x | 108.3 (2) |
O3—Li1—Li3ii | 36.20 (14) | O3ii—Li3—Li1xi | 103.2 (2) |
O3—Li1—Li3viii | 133.3 (2) | O3x—Li3—Li1x | 41.91 (14) |
O3—Li1—Li3ix | 75.85 (19) | O3ii—Li3—Li1ii | 35.65 (13) |
O5vii—Li1—Ga1iii | 31.78 (9) | O3x—Li3—Li1ii | 99.1 (2) |
O5vii—Li1—B2viii | 126.2 (2) | O3x—Li3—Li1xi | 153.9 (3) |
O5vii—Li1—Li1xii | 124.5 (3) | O3ii—Li3—Li2xiii | 153.3 (2) |
O5vii—Li1—Li2ix | 43.60 (14) | O3x—Li3—Li2xiii | 92.5 (2) |
O5vii—Li1—Li3viii | 86.42 (18) | O3ii—Li3—Li3xiv | 49.37 (18) |
O5vii—Li1—Li3ix | 126.0 (2) | O3x—Li3—Li3xiv | 49.60 (17) |
O5vii—Li1—Li3ii | 82.63 (18) | O6—Li3—Ga1x | 149.2 (2) |
O5vii—Li1—Li3vii | 76.30 (19) | O6—Li3—B1ii | 82.26 (18) |
O6ix—Li1—Ga1iii | 95.39 (18) | O6—Li3—B2 | 25.26 (10) |
O6viii—Li1—Ga1iii | 149.8 (2) | O6—Li3—O2xi | 115.8 (3) |
O6viii—Li1—B2viii | 26.37 (10) | O6—Li3—O3ii | 109.1 (2) |
O6ix—Li1—B2viii | 113.2 (2) | O6—Li3—O3x | 116.1 (3) |
O6viii—Li1—O5vii | 118.0 (2) | O6—Li3—Li1x | 74.64 (19) |
O6ix—Li1—O5vii | 106.5 (2) | O6—Li3—Li1xi | 42.94 (15) |
O6ix—Li1—O6viii | 96.4 (2) | O6—Li3—Li1ii | 135.9 (2) |
O6viii—Li1—Li1xii | 48.01 (17) | O6—Li3—Li2xiii | 86.9 (2) |
O6ix—Li1—Li1xii | 48.35 (17) | O6—Li3—Li3xiv | 126.2 (3) |
O6viii—Li1—Li2ix | 92.4 (2) | Li1x—Li3—Ga1x | 112.15 (18) |
O6ix—Li1—Li2ix | 75.35 (18) | Li1xi—Li3—Ga1x | 116.62 (19) |
O6viii—Li1—Li3vii | 103.7 (2) | Li1x—Li3—Li1ii | 130.42 (19) |
O6ix—Li1—Li3ii | 106.1 (2) | Li1xi—Li3—Li1x | 116.4 (2) |
O6viii—Li1—Li3ii | 143.8 (2) | Li1xi—Li3—Li1ii | 106.95 (18) |
O6ix—Li1—Li3vii | 155.5 (3) | Li1x—Li3—Li2xiii | 96.3 (2) |
O6viii—Li1—Li3ix | 109.5 (2) | Li1xi—Li3—Li2xiii | 73.57 (18) |
O6ix—Li1—Li3ix | 41.90 (15) | Li2xiii—Li3—Li1ii | 118.79 (19) |
O6ix—Li1—Li3viii | 96.9 (2) | Li3xiv—Li3—Ga1x | 83.1 (2) |
O6viii—Li1—Li3viii | 33.21 (13) | Li3xiv—Li3—B1ii | 70.0 (2) |
Li1xii—Li1—Ga1iii | 136.1 (3) | Li3xiv—Li3—B2 | 100.9 (3) |
Li1xii—Li1—B2viii | 67.7 (2) | Li3xiv—Li3—Li1xi | 150.0 (3) |
Li1xii—Li1—Li2ix | 81.0 (2) | Li3xiv—Li3—Li1ii | 59.6 (2) |
Li1xii—Li1—Li3viii | 57.4 (2) | Li3xiv—Li3—Li1x | 70.8 (2) |
Li1xii—Li1—Li3ii | 144.5 (3) | Li3xiv—Li3—Li2xiii | 136.2 (3) |
Ga1—O4—Li2—Ga1iv | −102.80 (13) | O6—B2—O4—Li2 | 0.4 (4) |
Ga1—O4—Li2—Ga1vi | 66.9 (3) | O6—B2—O5—Ga1ii | −101.3 (3) |
Ga1—O4—Li2—Ga1i | −41.4 (3) | O6—B2—O5—Li1x | 26.8 (3) |
Ga1—O4—Li2—B1viii | 95.37 (14) | O6—B2—O5—Li2v | 127.1 (3) |
Ga1—O4—Li2—B2i | −127.4 (3) | Li1iii—Ga1—O1—B1 | −37.0 (2) |
Ga1—O4—Li2—O1i | −12.7 (3) | Li1iii—Ga1—O1—Li2v | 135.94 (19) |
Ga1—O4—Li2—O2viii | 95.0 (2) | Li1iii—Ga1—O4—B2 | −105.3 (2) |
Ga1—O4—Li2—O5i | −126.46 (19) | Li1iii—Ga1—O4—Li2 | 72.3 (2) |
Ga1—O4—Li2—Li1xi | −166.36 (14) | Li1viii—B2—O4—Ga1 | −140.43 (17) |
Ga1—O4—Li2—Li3xiii | 133.58 (18) | Li1viii—B2—O4—Li2 | 42.1 (3) |
B2—O4—Li2—Ga1iv | 75.0 (2) | Li1viii—B2—O5—Ga1ii | −149.04 (15) |
B2—O4—Li2—Ga1vi | −115.2 (2) | Li1viii—B2—O5—Li1x | −21.0 (3) |
B2—O4—Li2—Ga1i | 136.4 (2) | Li1viii—B2—O5—Li2v | 79.3 (3) |
B2—O4—Li2—Ga1 | 177.8 (3) | Li1viii—B2—O6—Li1xi | −101.9 (3) |
B2—O4—Li2—B1viii | −86.8 (2) | Li1viii—B2—O6—Li3 | 133.1 (3) |
B2—O4—Li2—B2i | 50.5 (4) | Li2vi—Ga1—O1—B1 | 76.7 (2) |
B2—O4—Li2—O1i | 165.1 (2) | Li2v—Ga1—O1—B1 | −173.0 (3) |
B2—O4—Li2—O2viii | −87.2 (3) | Li2iv—Ga1—O1—B1 | −98.1 (2) |
B2—O4—Li2—O5i | 51.4 (3) | Li2—Ga1—O1—B1 | 142.1 (2) |
B2—O4—Li2—Li1xi | 11.5 (3) | Li2—Ga1—O1—Li2v | −44.96 (17) |
B2—O4—Li2—Li3xiii | −48.6 (3) | Li2vi—Ga1—O1—Li2v | −110.28 (16) |
O1—Ga1—O4—B2 | 42.2 (2) | Li2iv—Ga1—O1—Li2v | 74.9 (2) |
O1—Ga1—O4—Li2 | −140.21 (19) | Li2—Ga1—O4—B2 | −177.6 (3) |
O1—B1—O2—Ga1v | −38.0 (3) | Li2iv—Ga1—O4—B2 | −80.7 (2) |
O1—B1—O2—Li2viii | 86.5 (3) | Li2vi—Ga1—O4—B2 | 130.6 (2) |
O1—B1—O2—Li3ix | −166.5 (2) | Li2v—Ga1—O4—B2 | 33.0 (2) |
O1—B1—O3—Li1 | −143.3 (3) | Li2iv—Ga1—O4—Li2 | 96.9 (2) |
O1—B1—O3—Li3ii | 89.1 (3) | Li2vi—Ga1—O4—Li2 | −51.7 (2) |
O1—B1—O3—Li3vii | −8.1 (5) | Li2v—Ga1—O4—Li2 | −149.4 (3) |
O2i—Ga1—O1—B1 | 48.3 (2) | Li2viii—B1—O1—Ga1 | −145.49 (15) |
O2i—Ga1—O1—Li2v | −138.71 (18) | Li2viii—B1—O1—Li2v | 43.1 (4) |
O2i—Ga1—O4—B2 | 166.3 (2) | Li2viii—B1—O2—Ga1v | −124.5 (2) |
O2i—Ga1—O4—Li2 | −16.1 (2) | Li2viii—B1—O2—Li3ix | 107.0 (2) |
O2—B1—O1—Ga1 | 165.44 (16) | Li2viii—B1—O3—Li1 | −14.5 (3) |
O2—B1—O1—Li2v | −5.9 (4) | Li2viii—B1—O3—Li3vii | 120.7 (3) |
O2—B1—O3—Li1 | 38.4 (4) | Li2viii—B1—O3—Li3ii | −142.1 (2) |
O2—B1—O3—Li3ii | −89.2 (3) | Li2v—B2—O4—Ga1 | −34.6 (2) |
O2—B1—O3—Li3vii | 173.6 (3) | Li2v—B2—O4—Li2 | 147.9 (3) |
O3—B1—O1—Ga1 | −13.0 (3) | Li2v—B2—O5—Ga1ii | 131.7 (2) |
O3—B1—O1—Li2v | 175.7 (3) | Li2v—B2—O5—Li1x | −100.3 (3) |
O3—B1—O2—Ga1v | 140.4 (2) | Li2v—B2—O6—Li1xi | −151.7 (3) |
O3—B1—O2—Li2viii | −95.1 (3) | Li2v—B2—O6—Li1viii | −49.8 (4) |
O3—B1—O2—Li3ix | 12.0 (3) | Li2v—B2—O6—Li3 | 83.2 (4) |
O4—Ga1—O1—B1 | 171.88 (18) | Li3vii—Ga1—O1—B1 | 16.7 (2) |
O4—Ga1—O1—Li2v | −15.1 (2) | Li3vii—Ga1—O1—Li2v | −170.3 (2) |
O4—B2—O5—Ga1ii | 80.4 (2) | Li3vii—Ga1—O4—B2 | 162.9 (3) |
O4—B2—O5—Li1x | −151.6 (2) | Li3vii—Ga1—O4—Li2 | −19.4 (3) |
O4—B2—O5—Li2v | −51.3 (3) | Li3ii—B1—O1—Ga1 | 33.9 (2) |
O4—B2—O6—Li1viii | 78.0 (3) | Li3ii—B1—O1—Li2v | −137.4 (3) |
O4—B2—O6—Li1xi | −23.9 (4) | Li3ii—B1—O2—Ga1v | 94.3 (2) |
O4—B2—O6—Li3 | −149.0 (3) | Li3ii—B1—O2—Li2viii | −141.2 (2) |
O5ii—Ga1—O1—B1 | −70.85 (19) | Li3ii—B1—O2—Li3ix | −34.2 (3) |
O5ii—Ga1—O1—Li2v | 102.13 (18) | Li3ii—B1—O3—Li1 | 127.6 (3) |
O5ii—Ga1—O4—B2 | −69.7 (2) | Li3ii—B1—O3—Li3vii | −97.2 (3) |
O5ii—Ga1—O4—Li2 | 107.94 (19) | Li3—B2—O4—Ga1 | 139.9 (3) |
O5—B2—O4—Ga1 | −3.7 (3) | Li3—B2—O4—Li2 | −37.5 (5) |
O5—B2—O4—Li2 | 178.8 (2) | Li3—B2—O5—Ga1ii | −81.93 (16) |
O5—B2—O6—Li1viii | −100.3 (3) | Li3—B2—O5—Li1x | 46.1 (2) |
O5—B2—O6—Li1xi | 157.8 (3) | Li3—B2—O5—Li2v | 146.4 (2) |
O5—B2—O6—Li3 | 32.7 (4) | Li3—B2—O6—Li1viii | −133.1 (3) |
O6—B2—O4—Ga1 | 177.91 (18) | Li3—B2—O6—Li1xi | 125.1 (4) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+1; (v) x−1, y, z; (vi) −x+2, −y, −z+1; (vii) x, y−1, z+1; (viii) −x+1, −y, −z+1; (ix) x−1, y−1, z+1; (x) x, y+1, z−1; (xi) x+1, y+1, z−1; (xii) −x, −y−1, −z+2; (xiii) −x+2, −y+1, −z; (xiv) −x+1, −y+2, −z. |
Structure model | Abdullaev & Mamedov (1972) | Current work | |
Reduced cell (Å, °) | 4.90 (2) 6.23 (3) 7.78 (5) 72.9 (5) 90.0 (5) 90.0 (5) | 4.8731 (3) 6.2429 (4) 8.0130 (5) 73.346 (6) 89.701 (5) 89.698 (5) | |
Range of interatomic distances (Å) | Shannon (1976) | ||
Li—O | 2.28±0.41 | 1.965±0.054 | 1.97 |
Ga—O | 2.07±0.43 | 1.847±0.021 | 1.85 |
B—O | 1.31±0.13 | 1.384±0.038 | 1.39 |
Bond-valence-sum values and coordination numbers (in brackets) | |||
Li (1, 2 & 3) | 1.14 [4+1], 1.01 [4], 1.00 [6] | 1.07 [4], 1.03 [4], 1.05 [4] | |
Ga (1) | 2.38 [4] | 2.92 [4] | |
B (1 & 2) | 3.17 [3], 3.06 [3] | 2.91 [3], 2.91 [3] |
Acknowledgements
EMV would like to acknowledge Creighton University for financial support.
References
Abdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943–946. CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Corbel, G. & Leblanc, M. (2000). J. Solid State Chem. 154, 344–349. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
He, M., Chen, X. L., Gramlich, V., Baerlocher, Ch., Zhou, T. & Hu, B. Q. (2002). J. Solid State Chem. 163, 369–376. CrossRef CAS Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, R. W. (1995). Acta Cryst. C51, 547–549. CrossRef CAS Web of Science IUCr Journals Google Scholar
Smith, R. W., Hu, C. & DeSpain, C. D. (2008). Acta Cryst. E64, i23. CrossRef IUCr Journals Google Scholar
Smith, R. W., Kennard, M. A. & Dudik, M. J. (1997). Mater. Res. Bull. 32, 649–656. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.