research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[aqua­(μ-2,3-di­hydro­thieno[3,4-b][1,4]dioxine-5,7-di­carboxyl­ato-κ2O5:O7)[μ-di(pyridin-4-yl)sulfane-κ2N:N′]zinc] 0.26-hydrate]

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: hubing@fjirsm.ac.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 January 2017; accepted 8 February 2017; online 14 February 2017)

The crystal structure of the title polymer, {[Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O}n, is characterized by a layered arrangement parallel to the ab plane. The zinc cation is five-coordinated in a slightly distorted trigonal–bipyramidal coordination environment defined by two pyridine ligands, two carboxyl­ate groups of two thio­phene di­carboxyl­ate ligands, and by one water mol­ecule. The ethyl­ene bridge in the dioxine ligand is disordered over two sets of sites [occupancy ratio 0.624 (9):0.376 (9)]. Several hydrogen-bonding inter­actions of the types O—H⋯O, C—H⋯O, C—H⋯S and C—H⋯N ensure the cohesion within the crystal structure.

1. Chemical context

Complexes constructed by metal ions and organic ligands are of continuous inter­est due to the vast diversity and feasible tailorability of their structures and functions compared with purely inorganic compounds (Zhang et al., 2015[Zhang, W., Liao, P., Lin, R., Wei, Y., Zeng, M. & Chen, X. (2015). Coord. Chem. Rev. 293-294, 263-278.]).

[Scheme 1]

The incorporation of both carb­oxy­lic and pyridine ligands can lead to a variety of structures (Schoedel et al., 2016[Schoedel, A., Li, M., Li, D., O'Keeffe, M. & Yaghi, O. (2016). Chem. Rev. 116, 12466-12535.]). Complexes based on thio­phene derivatives with carb­oxy­lic acid functionalities are of some inter­est as anti­cancer agents (Chen et al., 1998[Chen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. & Liu, S. X. (1998). Polyhedron, 17, 4237-4247.], 1999[Chen, B. L., Mok, K. F., Ng, S. C. & Drew, M. G. B. (1999). Polyhedron, 18, 1211-1220.]; Guo et al., 2009[Guo, C., Zhuo, X., Li, Y. & Zheng, H. (2009). Inorg. Chim. Acta, 362, 491-501.]). In this context, we report here on synthesis and crystal structure of the title compound, [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O, (1).

2. Structural commentary

In the crystal structure of (1), the zinc ion is coordinated by four organic ligands and one water mol­ecule, giving rise to a slightly distorted trigonal–bipyramidal coordination environment. Two nitro­gen atoms are delivered by two symmetry-related pyridine ligands, two oxygen atoms of two carboxyl groups stem from two symmetry-related thio­phene carboxyl­ate ligands, and one O atom from the aqua ligand (Fig. 1[link]). In the trigonal bipyramid, the axial angle O7—Zn1—N2 is 171.31 (6)°. The ZnII ion is co-planar with the O5—N1—O4 equatorial plane, with the deviation of the Zn atom from this plane being 0.0034 (3) Å. The equatorial Zn1—N1 bond length is 2.1131 (18) Å, while the axial Zn1—N2 bond is longer, 2.2107 (18) Å. Similarly, the two equatorial Zn1—O (O4, O5) bond lengths, ranging from 1.9835 (15) to 2.0285 (15) Å, are shorter than the axial Zn1—O7 bond of 2.1375 (17) Å. These are typical values, numerical details of which are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—O5 1.9835 (15) Zn1—O7 2.1375 (17)
Zn1—O4i 2.0285 (15) Zn1—N2ii 2.2107 (18)
Zn1—N1 2.1131 (18)    
       
O5—Zn1—O4i 117.56 (6) N1—Zn1—O7 85.43 (7)
O5—Zn1—N1 95.66 (7) O5—Zn1—N2ii 95.24 (7)
O4i—Zn1—N1 146.78 (7) O4i—Zn1—N2ii 85.85 (7)
O5—Zn1—O7 93.06 (6) N1—Zn1—N2ii 91.17 (7)
O4i—Zn1—O7 92.61 (6) O7—Zn1—N2ii 171.31 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of (1), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonding is indicated by dashed lines.

3. Supra­molecular features

The bridging coordinating mode of the organic ligands leads to the formation of polymeric layers parallel to the ab plane (Fig. 2[link]).

[Figure 2]
Figure 2
The polymeric layer in the crystal structure of (1), extending along the ab plane (H atoms have been omitted for clarity).

There are several types of hydrogen bonds in the structure. One intra­molecular hydrogen bond is present and extends from a (pyridine)C—H group (C10—H10A) to the coordinating O5 atom of the carboxyl group. Another (pyridine)C—H group (C18—H18A) is hydrogen-bonded to the disordered O8 atom of the lattice water mol­ecule. Three O—H⋯O inter­actions are present between the coordinating water mol­ecule to either the carboxyl group oxygen atoms or the dioxine oxygen atom in the thio­phene derivative with DA distances ranging between 2.733 (2) and 3.123 (2) Å and corresponding O—H⋯O angles of 135 (2) and 159 (2)°. Numerous other C—H⋯O inter­actions are present between the disordered dioxine C—H groups and a carboxyl O atom (O6) or the lattice water atom O8. Other C—H⋯O inter­actions involve pyridyl C—H groups and the carboxyl O3 atom. In addition, one C—H⋯S inter­action and one C—H⋯N inter­action are found between pyridyl C—H groups and the sulfane S1 atom or the pyridyl N1 atom (Fig. 3[link]). It is expected that other extensive hydrogen bonds are formed with the lattice water mol­ecules as the donor group and the coordinating water mol­ecules or carbonyl O atoms from the layers as acceptors (O8⋯O distances in the range 2.87–3.13 Å). However, since the H atoms of the disordered O8 atom were not modelled, a definite statement cannot be made. Numerical details of the hydrogen bonding are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2iii 0.83 (1) 2.48 (2) 3.123 (2) 135 (2)
O7—H7A⋯O4iii 0.83 (1) 2.04 (2) 2.746 (2) 143 (2)
O7—H7B⋯O6iv 0.83 (1) 1.94 (1) 2.733 (2) 159 (2)
C3—H3A⋯O6v 0.97 2.66 3.275 (9) 122
C4—H4A⋯O8iii 0.97 2.27 3.015 (17) 133
C3A—H3D⋯O6v 0.97 2.60 3.473 (19) 150
C4A—H4C⋯O8vi 0.97 1.93 2.566 (16) 121
C10—H10A⋯O5 0.93 2.50 3.079 (3) 121
C14—H14A⋯O3i 0.93 2.51 3.213 (3) 133
C15—H15A⋯S1vii 0.93 3.01 3.768 (2) 140
C15—H15A⋯O3vii 0.93 2.57 3.096 (3) 116
C15—H15A⋯N1viii 0.93 2.67 3.227 (3) 119
C18—H18A⋯O8 0.93 2.58 3.190 (13) 123
Symmetry codes: (i) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+2, -y+1, -z; (v) -x+1, -y+2, -z; (vi) x-1, y+1, z; (vii) -x+1, -y, -z+1; (viii) x, y-1, z.
[Figure 3]
Figure 3
Part of the crystal structure of (1), showing the network formed by inter­molecular C—H⋯O, O—H⋯O, C—H⋯S and C—H⋯N hydrogen bonds (shown as dashed lines).

4. Database survey

Some complexes based on tddc2− (H2ttdc is 2,3-di­hydro­thieno[3,4-b][1,4]dioxine-5,7-di­carb­oxy­lic acid) (Guo et al., 2009[Guo, C., Zhuo, X., Li, Y. & Zheng, H. (2009). Inorg. Chim. Acta, 362, 491-501.]) or di(pyridin-4-yl)sulfane (Liu et al., 2015[Liu, W., Fang, Y., Wei, G. Z., Teat, S. J., Xiong, K., Hu, Z., Lustig, W. P. & Li, J. (2015). J. Am. Chem. Soc. 137, 9400-9408.]; Han et al., 2015[Han, M. L., Bai, L., Tang, P., Wu, X. Q., Wu, Y. P., Zhao, J., Li, D. S. & Wang, Y. Y. (2015). Dalton Trans. 44, 14673-14685.]) have been reported, but a complex incorporating both ligands was not found.

5. Synthesis and crystallization

2,3-Di­hydro­thieno[3,4-b][1,4]dioxine-5,7-di­carb­oxy­lic acid (H2ttdc) was prepared as reported (Zhang et al., 2011[Zhang, H., Qian, C. & Chen, X. Z. (2011). J. Chem. Res. (S), 35, 339-340.]), and di(pyridin-4-yl)sulfane was formed in situ from the reactant 4,4′-di­thiodi­pyridine in the synthesis. A mixture of zinc nitrate (0.06 g, 0.21 mmol), H2ttdc (0.02 g, 0.10 mmol), 4,4′-di­thiodi­pyridine (0.02 g, 0.10 mmol), 5 ml di­methyl­formamide and 3 ml water was mixed and heated at 353 K for 3 days. After cooling, 0.17 g light-yellow crystals were collected in a yield of 32%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H atoms of the coordinating water mol­ecule were located in a difference map and restrained to have comparable bond lengths using DFIX and DANG commands to keep their geometries reasonable; Uiso(H) values were set to 1.5Ueq(O). The hydrogen atoms of the disordered lattice water mol­ecule [occupancy 0.262 (10)] could not be retrieved from difference maps and thus were not part of the model. Two carbon atoms of the dioxine moiety are disordered over two sets of sites and were refined in two parts (C3–C4/C3A–C4A) with a refined occupancy ratio of 0.624 (9)/0.376 (9). Soft restraints (DFIX, SIMU, SADI) were applied on the disordered atoms to keep their geometries and atomic displacement parameters reasonable.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O
Mr 504.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 10.0052 (6), 10.2173 (5), 10.6694 (5)
α, β, γ (°) 87.515 (4), 68.625 (5), 73.988 (5)
V3) 974.27 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.52
Crystal size (mm) 0.32 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku SuperNova, single source at offset, EosS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.784, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10924, 3925, 3549
Rint 0.021
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.01
No. of reflections 3925
No. of parameters 306
No. of restraints 47
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[aqua(µ-2,3-dihydrothieno[3,4-b][1,4]dioxine-5,7-dicarboxylato-κ2O5:O7)[µ-di(pyridin-4-yl)sulfane-κ2N:N']zinc] 0.26-hydrate] top
Crystal data top
[Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2OZ = 2
Mr = 504.57F(000) = 512.7
Triclinic, P1Dx = 1.718 Mg m3
a = 10.0052 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2173 (5) ÅCell parameters from 6096 reflections
c = 10.6694 (5) Åθ = 4.1–27.2°
α = 87.515 (4)°µ = 1.52 mm1
β = 68.625 (5)°T = 295 K
γ = 73.988 (5)°Block, yellow
V = 974.27 (10) Å30.32 × 0.25 × 0.20 mm
Data collection top
Rigaku SuperNova, single source at offset, EosS2
diffractometer
3925 independent reflections
Radiation source: micro-focus sealed X-ray tube3549 reflections with I > 2σ(I)
Detector resolution: 8.0584 pixels mm-1Rint = 0.021
ω scansθmax = 27.9°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1212
Tmin = 0.784, Tmax = 1.000k = 1313
10924 measured reflectionsl = 1413
Refinement top
Refinement on F247 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3925 reflectionsΔρmax = 0.58 e Å3
306 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.87280 (3)0.50627 (3)0.23783 (3)0.02570 (9)
S10.40744 (6)0.53672 (5)0.19475 (5)0.02461 (13)
S20.66583 (9)0.04878 (7)0.67347 (6)0.04739 (19)
O10.46527 (18)0.85023 (18)0.01437 (18)0.0414 (4)
O20.17934 (19)0.80589 (19)0.0274 (2)0.0467 (5)
O30.11429 (19)0.47305 (18)0.27948 (18)0.0425 (4)
O40.03227 (16)0.59934 (17)0.13592 (15)0.0315 (4)
O50.69482 (17)0.54177 (17)0.18673 (16)0.0341 (4)
O60.72194 (17)0.71896 (18)0.05940 (18)0.0417 (4)
O70.98637 (17)0.32423 (18)0.10848 (16)0.0331 (4)
H7A0.949 (2)0.331 (3)0.0497 (19)0.050*
H7B1.0774 (12)0.315 (3)0.075 (2)0.050*
N10.8030 (2)0.37482 (18)0.39130 (18)0.0271 (4)
N20.7799 (2)0.31732 (19)0.38683 (18)0.0293 (4)
C10.5018 (2)0.6525 (2)0.1156 (2)0.0234 (4)
C20.4201 (2)0.7464 (2)0.0563 (2)0.0260 (5)
C30.3432 (9)0.9506 (9)0.0350 (10)0.050 (2)0.624 (9)
H3A0.38231.01150.10180.060*0.624 (9)
H3B0.27981.00460.04870.060*0.624 (9)
C40.2518 (6)0.8826 (6)0.0820 (6)0.0520 (16)0.624 (9)
H4A0.17730.95090.10560.062*0.624 (9)
H4B0.31600.82180.16110.062*0.624 (9)
C3A0.3637 (11)0.9273 (19)0.0762 (13)0.049 (4)0.376 (9)
H3C0.38610.88170.16230.059*0.376 (9)
H3D0.37921.01710.09320.059*0.376 (9)
C4A0.2024 (9)0.9430 (7)0.0105 (12)0.055 (3)0.376 (9)
H4C0.17870.98700.09770.066*0.376 (9)
H4D0.13770.99890.03220.066*0.376 (9)
C60.2801 (2)0.7233 (2)0.0760 (2)0.0275 (5)
C70.2570 (2)0.6134 (2)0.1493 (2)0.0246 (4)
C80.6522 (2)0.6389 (2)0.1185 (2)0.0270 (5)
C90.1274 (2)0.5569 (2)0.1920 (2)0.0271 (5)
C100.6685 (3)0.3545 (3)0.4234 (3)0.0364 (5)
H10A0.60290.40760.38560.044*
C110.6230 (3)0.2585 (3)0.5098 (3)0.0419 (6)
H11A0.52760.24880.53140.050*
C120.7185 (3)0.1776 (2)0.5640 (2)0.0333 (5)
C130.8558 (3)0.1991 (3)0.5352 (3)0.0445 (6)
H13A0.92240.14760.57280.053*
C140.8924 (3)0.2991 (3)0.4487 (3)0.0452 (7)
H14A0.98520.31410.42990.054*
C150.7464 (3)0.3252 (2)0.5191 (2)0.0332 (5)
H15A0.74900.41040.55400.040*
C160.7082 (3)0.2146 (2)0.6076 (2)0.0347 (5)
H16A0.68360.22520.69950.042*
C170.7074 (3)0.0877 (2)0.5566 (2)0.0331 (5)
C180.7401 (3)0.0775 (3)0.4195 (3)0.0446 (7)
H18A0.73830.00650.38200.054*
C190.7751 (3)0.1935 (2)0.3391 (2)0.0404 (6)
H19A0.79660.18520.24720.049*
O80.9744 (16)0.0639 (13)0.2164 (12)0.126 (7)0.262 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02134 (13)0.02812 (15)0.03265 (15)0.01234 (10)0.01248 (10)0.00955 (10)
S10.0224 (3)0.0256 (3)0.0299 (3)0.0091 (2)0.0128 (2)0.0050 (2)
S20.0788 (5)0.0330 (3)0.0288 (3)0.0272 (3)0.0098 (3)0.0049 (3)
O10.0354 (9)0.0444 (10)0.0579 (11)0.0242 (8)0.0256 (8)0.0275 (9)
O20.0373 (10)0.0506 (11)0.0721 (13)0.0245 (9)0.0374 (9)0.0357 (10)
O30.0427 (10)0.0491 (11)0.0498 (11)0.0300 (9)0.0231 (8)0.0265 (9)
O40.0234 (8)0.0453 (10)0.0338 (8)0.0185 (7)0.0139 (7)0.0095 (7)
O50.0248 (8)0.0393 (10)0.0456 (10)0.0101 (7)0.0213 (7)0.0103 (8)
O60.0235 (8)0.0425 (10)0.0624 (12)0.0158 (8)0.0162 (8)0.0160 (9)
O70.0253 (8)0.0427 (10)0.0341 (9)0.0126 (8)0.0118 (7)0.0031 (7)
N10.0269 (9)0.0250 (10)0.0312 (10)0.0107 (8)0.0105 (8)0.0052 (8)
N20.0330 (10)0.0268 (10)0.0317 (10)0.0117 (8)0.0139 (8)0.0063 (8)
C10.0190 (10)0.0273 (11)0.0252 (11)0.0090 (8)0.0079 (8)0.0016 (9)
C20.0242 (10)0.0282 (12)0.0284 (11)0.0122 (9)0.0098 (9)0.0058 (9)
C30.050 (4)0.046 (4)0.073 (5)0.026 (3)0.039 (3)0.035 (4)
C40.051 (3)0.065 (3)0.061 (3)0.032 (3)0.036 (3)0.039 (3)
C3A0.046 (5)0.049 (6)0.061 (7)0.020 (4)0.027 (5)0.034 (5)
C4A0.046 (4)0.047 (5)0.083 (6)0.016 (4)0.038 (4)0.036 (4)
C60.0228 (10)0.0326 (12)0.0329 (12)0.0108 (9)0.0152 (9)0.0084 (9)
C70.0208 (10)0.0295 (12)0.0270 (11)0.0091 (9)0.0112 (8)0.0032 (9)
C80.0198 (10)0.0305 (12)0.0317 (12)0.0075 (9)0.0098 (9)0.0006 (9)
C90.0236 (11)0.0298 (12)0.0308 (12)0.0131 (9)0.0090 (9)0.0024 (9)
C100.0284 (12)0.0387 (14)0.0433 (14)0.0120 (10)0.0137 (10)0.0111 (11)
C110.0338 (13)0.0492 (16)0.0473 (15)0.0228 (12)0.0132 (11)0.0147 (12)
C120.0457 (14)0.0235 (12)0.0271 (12)0.0130 (10)0.0069 (10)0.0013 (9)
C130.0433 (15)0.0397 (15)0.0514 (16)0.0093 (12)0.0215 (12)0.0172 (12)
C140.0315 (13)0.0500 (16)0.0605 (17)0.0187 (12)0.0208 (12)0.0225 (13)
C150.0398 (13)0.0285 (12)0.0360 (13)0.0141 (10)0.0168 (11)0.0114 (10)
C160.0429 (14)0.0339 (13)0.0292 (12)0.0141 (11)0.0136 (10)0.0078 (10)
C170.0396 (13)0.0279 (12)0.0324 (12)0.0116 (10)0.0126 (10)0.0036 (9)
C180.0727 (19)0.0260 (13)0.0367 (14)0.0166 (13)0.0206 (13)0.0100 (10)
C190.0594 (17)0.0330 (14)0.0293 (13)0.0135 (12)0.0169 (12)0.0072 (10)
O80.138 (13)0.101 (10)0.094 (10)0.032 (8)0.007 (8)0.002 (7)
Geometric parameters (Å, º) top
Zn1—O51.9835 (15)C2—C61.424 (3)
Zn1—O4i2.0285 (15)C3—C41.512 (8)
Zn1—N12.1131 (18)C3—H3A0.9700
Zn1—O72.1375 (17)C3—H3B0.9700
Zn1—N2ii2.2107 (18)C4—H4A0.9700
S1—C11.718 (2)C4—H4B0.9700
S1—C71.721 (2)C3A—C4A1.506 (9)
S2—C171.768 (2)C3A—H3C0.9700
S2—C121.781 (2)C3A—H3D0.9700
O1—C21.358 (3)C4A—H4C0.9700
O1—C31.441 (5)C4A—H4D0.9700
O1—C3A1.446 (7)C6—C71.364 (3)
O2—C61.367 (3)C7—C91.477 (3)
O2—C41.456 (4)C10—C111.371 (3)
O2—C4A1.474 (6)C10—H10A0.9300
O3—C91.236 (3)C11—C121.363 (3)
O4—C91.271 (3)C11—H11A0.9300
O4—Zn1iii2.0285 (15)C12—C131.372 (4)
O5—C81.275 (3)C13—C141.382 (4)
O6—C81.226 (3)C13—H13A0.9300
O7—H7A0.827 (9)C14—H14A0.9300
O7—H7B0.828 (9)C15—C161.380 (3)
N1—C141.323 (3)C15—H15A0.9300
N1—C101.336 (3)C16—C171.383 (3)
N2—C151.331 (3)C16—H16A0.9300
N2—C191.339 (3)C17—C181.384 (3)
N2—Zn1iv2.2107 (18)C18—C191.379 (3)
C1—C21.372 (3)C18—H18A0.9300
C1—C81.484 (3)C19—H19A0.9300
O5—Zn1—O4i117.56 (6)H3C—C3A—H3D107.8
O5—Zn1—N195.66 (7)O2—C4A—C3A108.1 (11)
O4i—Zn1—N1146.78 (7)O2—C4A—H4C110.1
O5—Zn1—O793.06 (6)C3A—C4A—H4C110.1
O4i—Zn1—O792.61 (6)O2—C4A—H4D110.1
N1—Zn1—O785.43 (7)C3A—C4A—H4D110.1
O5—Zn1—N2ii95.24 (7)H4C—C4A—H4D108.4
O4i—Zn1—N2ii85.85 (7)C7—C6—O2124.33 (19)
N1—Zn1—N2ii91.17 (7)C7—C6—C2113.23 (19)
O7—Zn1—N2ii171.31 (6)O2—C6—C2122.4 (2)
C1—S1—C792.49 (10)C6—C7—C9129.87 (19)
C17—S2—C12101.52 (11)C6—C7—S1110.81 (15)
C2—O1—C3111.8 (4)C9—C7—S1119.32 (17)
C2—O1—C3A113.7 (7)O6—C8—O5126.4 (2)
C6—O2—C4111.1 (2)O6—C8—C1119.5 (2)
C6—O2—C4A110.1 (3)O5—C8—C1114.1 (2)
C9—O4—Zn1iii101.88 (14)O3—C9—O4122.8 (2)
C8—O5—Zn1126.61 (15)O3—C9—C7120.0 (2)
Zn1—O7—H7A106.5 (19)O4—C9—C7117.1 (2)
Zn1—O7—H7B110.6 (19)N1—C10—C11122.7 (2)
H7A—O7—H7B111.7 (16)N1—C10—H10A118.7
C14—N1—C10117.0 (2)C11—C10—H10A118.7
C14—N1—Zn1122.99 (16)C12—C11—C10119.6 (2)
C10—N1—Zn1119.57 (16)C12—C11—H11A120.2
C15—N2—C19116.8 (2)C10—C11—H11A120.2
C15—N2—Zn1iv125.22 (15)C11—C12—C13118.6 (2)
C19—N2—Zn1iv117.37 (15)C11—C12—S2121.1 (2)
C2—C1—C8129.8 (2)C13—C12—S2120.2 (2)
C2—C1—S1111.10 (15)C12—C13—C14118.2 (2)
C8—C1—S1119.09 (16)C12—C13—H13A120.9
O1—C2—C1124.96 (19)C14—C13—H13A120.9
O1—C2—C6122.68 (19)N1—C14—C13123.7 (2)
C1—C2—C6112.4 (2)N1—C14—H14A118.2
O1—C3—C4110.7 (6)C13—C14—H14A118.2
O1—C3—H3A109.5N2—C15—C16124.0 (2)
C4—C3—H3A109.5N2—C15—H15A118.0
O1—C3—H3B109.5C16—C15—H15A118.0
C4—C3—H3B109.5C15—C16—C17118.6 (2)
H3A—C3—H3B108.1C15—C16—H16A120.7
O2—C4—C3108.1 (6)C17—C16—H16A120.7
O2—C4—H4A110.1C16—C17—C18118.0 (2)
C3—C4—H4A110.1C16—C17—S2116.68 (18)
O2—C4—H4B110.1C18—C17—S2125.28 (19)
C3—C4—H4B110.1C19—C18—C17119.2 (2)
H4A—C4—H4B108.4C19—C18—H18A120.4
O1—C3A—C4A112.5 (8)C17—C18—H18A120.4
O1—C3A—H3C109.1N2—C19—C18123.3 (2)
C4A—C3A—H3C109.1N2—C19—H19A118.4
O1—C3A—H3D109.1C18—C19—H19A118.4
C4A—C3A—H3D109.1
C7—S1—C1—C20.11 (17)Zn1—O5—C8—C1170.36 (13)
C7—S1—C1—C8179.57 (17)C2—C1—C8—O61.2 (3)
C3—O1—C2—C1165.4 (5)S1—C1—C8—O6178.18 (17)
C3A—O1—C2—C1174.9 (8)C2—C1—C8—O5177.9 (2)
C3—O1—C2—C614.9 (5)S1—C1—C8—O52.7 (3)
C3A—O1—C2—C64.7 (8)Zn1iii—O4—C9—O33.9 (3)
C8—C1—C2—O10.2 (4)Zn1iii—O4—C9—C7175.43 (15)
S1—C1—C2—O1179.60 (17)C6—C7—C9—O3166.0 (2)
C8—C1—C2—C6179.5 (2)S1—C7—C9—O313.6 (3)
S1—C1—C2—C60.1 (2)C6—C7—C9—O413.4 (3)
C2—O1—C3—C446.5 (8)S1—C7—C9—O4167.03 (16)
C3A—O1—C3—C453 (3)C14—N1—C10—C111.1 (4)
C6—O2—C4—C350.6 (6)Zn1—N1—C10—C11171.90 (19)
C4A—O2—C4—C346.4 (6)N1—C10—C11—C121.5 (4)
O1—C3—C4—O266.3 (9)C10—C11—C12—C133.1 (4)
C2—O1—C3A—C4A36.5 (17)C10—C11—C12—S2178.43 (19)
C3—O1—C3A—C4A51 (2)C17—S2—C12—C1183.8 (2)
C6—O2—C4A—C3A54.2 (9)C17—S2—C12—C1397.7 (2)
C4—O2—C4A—C3A45.6 (7)C11—C12—C13—C142.1 (4)
O1—C3A—C4A—O262.5 (17)S2—C12—C13—C14179.4 (2)
C4—O2—C6—C7160.5 (4)C10—N1—C14—C132.1 (4)
C4A—O2—C6—C7154.0 (5)Zn1—N1—C14—C13170.6 (2)
C4—O2—C6—C220.7 (4)C12—C13—C14—N10.5 (4)
C4A—O2—C6—C224.9 (6)C19—N2—C15—C160.1 (4)
O1—C2—C6—C7179.7 (2)Zn1iv—N2—C15—C16170.64 (18)
C1—C2—C6—C70.0 (3)N2—C15—C16—C171.5 (4)
O1—C2—C6—O21.4 (3)C15—C16—C17—C182.2 (4)
C1—C2—C6—O2179.0 (2)C15—C16—C17—S2177.25 (19)
O2—C6—C7—C90.6 (4)C12—S2—C17—C16167.2 (2)
C2—C6—C7—C9179.5 (2)C12—S2—C17—C1812.2 (3)
O2—C6—C7—S1179.02 (18)C16—C17—C18—C191.4 (4)
C2—C6—C7—S10.1 (2)S2—C17—C18—C19178.0 (2)
C1—S1—C7—C60.11 (17)C15—N2—C19—C181.0 (4)
C1—S1—C7—C9179.53 (17)Zn1iv—N2—C19—C18170.5 (2)
Zn1—O5—C8—O68.7 (3)C17—C18—C19—N20.2 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2v0.83 (1)2.48 (2)3.123 (2)135 (2)
O7—H7A···O4v0.83 (1)2.04 (2)2.746 (2)143 (2)
O7—H7B···O6vi0.83 (1)1.94 (1)2.733 (2)159 (2)
C3—H3A···O6vii0.972.663.275 (9)122
C4—H4A···O8v0.972.273.015 (17)133
C3A—H3D···O6vii0.972.603.473 (19)150
C4A—H4C···O8viii0.971.932.566 (16)121
C10—H10A···O50.932.503.079 (3)121
C14—H14A···O3i0.932.513.213 (3)133
C15—H15A···S1ix0.933.013.768 (2)140
C15—H15A···O3ix0.932.573.096 (3)116
C15—H15A···N1iv0.932.673.227 (3)119
C18—H18A···O80.932.583.190 (13)123
Symmetry codes: (i) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+2, y+1, z; (vii) x+1, y+2, z; (viii) x1, y+1, z; (ix) x+1, y, z+1.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Fujian Province (award No. 2013J05035).

References

First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, B. L., Mok, K. F., Ng, S. C. & Drew, M. G. B. (1999). Polyhedron, 18, 1211–1220.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. & Liu, S. X. (1998). Polyhedron, 17, 4237–4247.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, C., Zhuo, X., Li, Y. & Zheng, H. (2009). Inorg. Chim. Acta, 362, 491–501.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, M. L., Bai, L., Tang, P., Wu, X. Q., Wu, Y. P., Zhao, J., Li, D. S. & Wang, Y. Y. (2015). Dalton Trans. 44, 14673–14685.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, W., Fang, Y., Wei, G. Z., Teat, S. J., Xiong, K., Hu, Z., Lustig, W. P. & Li, J. (2015). J. Am. Chem. Soc. 137, 9400–9408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchoedel, A., Li, M., Li, D., O'Keeffe, M. & Yaghi, O. (2016). Chem. Rev. 116, 12466–12535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Liao, P., Lin, R., Wei, Y., Zeng, M. & Chen, X. (2015). Coord. Chem. Rev. 293–294, 263–278.  Web of Science CrossRef CAS Google Scholar
First citationZhang, H., Qian, C. & Chen, X. Z. (2011). J. Chem. Res. (S), 35, 339–340.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds