research communications
2,7.013,18]tricosane dihydrate from synchrotron X-ray data
of 9,20-dimethyl-1,8,12,19-tetraazatetracyclo[17.3.1.0aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the title compound, C21H40N4·2H2O, has been determined from synchrotron X-ray radiation data. The comprises one 12-membered macropolycycle and two lattice water molecules. The macropolycycle contains two cyclohexane rings and one 1,3-diazacyclohexane ring, all in chair conformations. The C—N and C—C bond lengths are in the ranges 1.4526 (16)–1.4786 (17) and 1.517 (2)–1.5414 (17) Å, respectively. One intramolecular N—H⋯N hydrogen bond helps to stabilize the molecular conformation while medium-strength intermolecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds involving the lattice water molecules connect the components into a three-dimensional network.
Keywords: crystal structure; macropolycycle; 1,3-diazacyclohexane ring; hydrogen bonds; synchrotron radiation.
CCDC reference: 1532347
1. Chemical context
Macrocyclic ligands and their complexes are involved in diverse application fields such as catalysis, enzyme mimics, chemical sensors, purification of waste water, selective metal-ion recovery and antitumor agents and therapy (Meyer et al., 1998). The family of macrocyclic with fourteen-membered inner rings has received attention due to their anti-HIV activity (Liang & Sadler, 2004; Ronconi & Sadler, 2007; Ross et al., 2012). There has also been considerable interest in C- or N-functionalized macrocyclic compounds and their metal complexes because the structural and chemical properties are often quite different from those of the corresponding non-functionalized compounds (Barefield, 2010; Choi et al., 2010). Structural modifications of the macrocycles based on methylene bridging of adjacent nitrogen atoms have been achieved using various methods (Royal et al., 1998; Tripier et al., 2001; Hubin, 2003; Kang et al., 2008).
The synthesis of the 9,20-dimethyl-1,8,12,19-tetraazatetracyclo[17.3.1.02,7.013,18]tricosane (L2) monohydrated compound, L2·H2O has been described previously (Kang et al., 2008), but we could not obtain a suitable single crystal of this compound for using X-ray diffraction. Formaldehyde has been utilized for the synthesis of such polyaza macrocyclic and macropolycyclic compounds containing five- or six-membered rings. We recently described the preparation, spectroscopic properties and the molecular and of 3,14-dimethyl-2,6,13,17-tetraazapentacyclo(16.4.12,17.16,13.0.07,12)tetracosane containing two 1,3-diazacyclopentane rings, which was the major product from the reaction of 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.01,18.07,12)docosane (L1) with two equivalents of formaldehyde (Moon et al., 2016).
In the present work, we attempted the reaction of L1 with one equivalent of formaldehyde and synthesized the title compound, C21H40N4·2H2O, (I). Interestingly, the title compound, containing a six-membered 1,3-diazacyclohexane ring, was the main product of the synthesis, while the compound containing a five-membered 1,3-diazacyclopentane ring did not crystallize. In order to determine the molecular and of the title compound, single-crystal X-ray structural determination was performed by using synchrotron data.
2. Structural commentary
Fig. 1 shows an ellipsoid plot of the molecular components of compound (I). The comprises a macrocyclic C21H40N4 molecule and two lattice water molecules. The two methyl substituents of the C10 and C20 atoms are on the same side with respect to the macrocyclic plane of the four N atoms (Fig. 1). The cyclohexane rings, together with the 1,3-diazacyclohexane ring and the 1,3- diamino-1-methylpropane moiety, are fused to the 12-membered macrocycle. All six-membered rings exist in a slightly distorted chair conformation. The N1—C1—C6—N2 and N3—C12—C17—N4 torsion angle displays a gauche conformation. The bond lengths are in the ranges 1.4526 (16)–1.4786 (17) Å and 1.517 (2)–1.5414 (17) Å for the C—N and C—C bonds, respectively. The N1—C20 distance is the longest C—N distance, presumably as a consequence of the methyl group on the C20 atom and the N⋯H—O hydrogen bond involving N1. The bond angles within the six-membered 1,3-diazacyclohexane ring, N2—C7—N3, C7—N2—C8, and C7—N3—C10, are 109.89 (10), 109.60 (10), and 108.08 (9)°, respectively. All other C—N, C—C, and C—H bond lengths and corresponding angles are in the normal range for such compounds (Royal et al., 1998; Tripier et al., 2001). The intramolecular hydrogen bond between the amine group N4—H1N4 and the tertiary N3 atom lends some rigidity to the 12-membered macropolycycle L2 ring (Fig. 1).
3. Supramolecular features
In the crystal, the macropolycycle and the two water molecules are held together by N—H⋯O, and O—H⋯O hydrogen bonds (Table 1); O—H⋯O hydrogen bonds between the water molecules are also observed. All intermolecular hydrogen-bonding interactions are of medium strength and lead to the formation of a three-dimensional network between the components. The packing along the b axis is shown in Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, May 2016 with three updates; Groom et al. 2016) gave just one hit for a 9,20-dimethyl-1,8,12,19-tetraazatetracyclo[17.3.1.02,7.013,18]tricosane (L2) unit, viz. the of [Cr(L2)(H2O)](ClO4)2·3H2O (Kang et al., 2008). However, no structure of any other compound with L2 has been deposited.
5. Synthesis and crystallization
Commercially available (Sigma–Aldrich) 1,2-cyclohexanediamine was used as provided. All other chemicals were reagent grade and used without further purification. The starting material, 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.01,18.07,12)docosane (L1) was synthesized according to a literature protocol (Kang & Jeong, 2003). To a solution of L1 (0.5 g, 1.5 mmol) in H2O (40 mL) was rapidly added 37% formaldehyde (0.11 mL, 1.5 mmol) at room temperature. The reaction mixture was refluxed for 3 h. After cooling, the resultant white solid was filtered, washed with water, and dried. The crude product of L2·2H2O, (I), was recrystallized from a hot THF/H2O (1:2 v/v) solution to give colourless crystals suitable for X-ray analysis.
6. Refinement
Crystal data, data collection, and structure . All C-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.98–1.00 Å with Uiso(H) values of 1.5 and 1.2 Ueq of the parent atoms, respectively. N- and O-bound H atoms were assigned based on a difference Fourier map, and were refined with distance restraints of 0.91 (4) and 0.88 (2) Å (using DFIX and DANG commands), respectively, and with Uiso(H) values of 1.2Ueq of the parent atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1532347
https://doi.org/10.1107/S2056989017002444/wm5364sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017002444/wm5364Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017002444/wm5364Isup3.cml
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).C21H40N4·2H2O | Z = 2 |
Mr = 384.60 | F(000) = 428 |
Triclinic, P1 | Dx = 1.128 Mg m−3 |
a = 8.3870 (17) Å | Synchrotron radiation, λ = 0.610 Å |
b = 10.275 (2) Å | Cell parameters from 63772 reflections |
c = 14.115 (3) Å | θ = 0.4–33.6° |
α = 87.20 (3)° | µ = 0.06 mm−1 |
β = 77.83 (3)° | T = 173 K |
γ = 72.31 (3)° | Block, colorless |
V = 1132.8 (5) Å3 | 0.08 × 0.07 × 0.05 mm |
ADSC Q210 CCD area detector diffractometer | 3853 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.045 |
ω scan | θmax = 26.0°, θmin = 1.3° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) | h = −11→11 |
Tmin = 0.878, Tmax = 1.000 | k = −14→14 |
11640 measured reflections | l = −18→18 |
5950 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0685P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
S = 0.92 | Δρmax = 0.37 e Å−3 |
5950 reflections | Δρmin = −0.27 e Å−3 |
265 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.042 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.44588 (14) | 0.16840 (11) | 0.39264 (8) | 0.0138 (2) | |
H1N1 | 0.532 (2) | 0.1462 (15) | 0.4261 (11) | 0.017* | |
N2 | 0.24153 (13) | 0.20083 (10) | 0.24205 (8) | 0.0101 (2) | |
N3 | 0.11157 (13) | 0.43397 (10) | 0.20720 (8) | 0.0094 (2) | |
N4 | 0.19952 (14) | 0.60232 (11) | 0.32752 (8) | 0.0129 (2) | |
H1N4 | 0.138 (2) | 0.5454 (16) | 0.3368 (11) | 0.015* | |
C1 | 0.52453 (16) | 0.12714 (13) | 0.29073 (9) | 0.0118 (3) | |
H1 | 0.5594 | 0.2047 | 0.2563 | 0.014* | |
C2 | 0.68449 (18) | 0.00477 (14) | 0.28851 (11) | 0.0200 (3) | |
H2A | 0.7651 | 0.0318 | 0.3197 | 0.024* | |
H2B | 0.6516 | −0.0698 | 0.3268 | 0.024* | |
C3 | 0.77460 (18) | −0.04848 (15) | 0.18675 (11) | 0.0241 (3) | |
H3A | 0.8724 | −0.1306 | 0.1902 | 0.029* | |
H3B | 0.8199 | 0.0219 | 0.1503 | 0.029* | |
C4 | 0.65341 (19) | −0.08452 (14) | 0.13344 (11) | 0.0222 (3) | |
H4C | 0.6182 | −0.1622 | 0.1654 | 0.027* | |
H4D | 0.7124 | −0.1123 | 0.0658 | 0.027* | |
C5 | 0.49601 (18) | 0.03878 (13) | 0.13402 (10) | 0.0165 (3) | |
H5A | 0.4168 | 0.0139 | 0.1004 | 0.020* | |
H5B | 0.5314 | 0.1139 | 0.0980 | 0.020* | |
C6 | 0.40204 (16) | 0.08885 (12) | 0.23757 (9) | 0.0109 (2) | |
H6 | 0.3714 | 0.0099 | 0.2724 | 0.013* | |
C7 | 0.26051 (15) | 0.31402 (12) | 0.17952 (9) | 0.0097 (2) | |
H7A | 0.2718 | 0.2882 | 0.1112 | 0.012* | |
H7B | 0.3654 | 0.3357 | 0.1852 | 0.012* | |
C8 | 0.09840 (17) | 0.15840 (13) | 0.22515 (10) | 0.0159 (3) | |
H8A | 0.0817 | 0.0839 | 0.2696 | 0.019* | |
H8B | 0.1225 | 0.1242 | 0.1577 | 0.019* | |
C9 | −0.06214 (17) | 0.28106 (14) | 0.24294 (11) | 0.0176 (3) | |
H9A | −0.0941 | 0.3061 | 0.3127 | 0.021* | |
H9B | −0.1574 | 0.2555 | 0.2258 | 0.021* | |
C10 | −0.03765 (16) | 0.40486 (13) | 0.18391 (10) | 0.0132 (3) | |
H10 | −0.0115 | 0.3802 | 0.1135 | 0.016* | |
C11 | −0.19966 (17) | 0.52625 (15) | 0.20482 (11) | 0.0222 (3) | |
H11A | −0.2158 | 0.5617 | 0.2705 | 0.033* | |
H11B | −0.2983 | 0.4969 | 0.1996 | 0.033* | |
H11C | −0.1889 | 0.5981 | 0.1578 | 0.033* | |
C12 | 0.14475 (16) | 0.56142 (12) | 0.16863 (9) | 0.0106 (2) | |
H12 | 0.0332 | 0.6355 | 0.1839 | 0.013* | |
C13 | 0.20962 (19) | 0.56205 (14) | 0.05870 (10) | 0.0177 (3) | |
H13A | 0.3206 | 0.4899 | 0.0406 | 0.021* | |
H13B | 0.1274 | 0.5408 | 0.0255 | 0.021* | |
C14 | 0.2320 (2) | 0.70002 (15) | 0.02457 (11) | 0.0253 (3) | |
H14A | 0.2810 | 0.6949 | −0.0459 | 0.030* | |
H14B | 0.1191 | 0.7708 | 0.0359 | 0.030* | |
C15 | 0.3498 (2) | 0.73944 (16) | 0.07885 (11) | 0.0266 (4) | |
H15A | 0.4663 | 0.6744 | 0.0613 | 0.032* | |
H15B | 0.3565 | 0.8318 | 0.0592 | 0.032* | |
C16 | 0.28572 (19) | 0.73863 (14) | 0.18812 (10) | 0.0178 (3) | |
H16A | 0.1736 | 0.8094 | 0.2063 | 0.021* | |
H16B | 0.3669 | 0.7616 | 0.2212 | 0.021* | |
C17 | 0.26717 (16) | 0.59943 (12) | 0.22211 (9) | 0.0111 (2) | |
H17 | 0.3818 | 0.5290 | 0.2067 | 0.013* | |
C18 | 0.33000 (18) | 0.56602 (13) | 0.38753 (10) | 0.0174 (3) | |
H18A | 0.2716 | 0.5898 | 0.4558 | 0.021* | |
H18B | 0.4065 | 0.6238 | 0.3681 | 0.021* | |
C19 | 0.44121 (17) | 0.41627 (14) | 0.38303 (10) | 0.0158 (3) | |
H19A | 0.5250 | 0.4061 | 0.4250 | 0.019* | |
H19B | 0.5064 | 0.3938 | 0.3157 | 0.019* | |
C20 | 0.34221 (17) | 0.31229 (13) | 0.41426 (9) | 0.0138 (3) | |
H20 | 0.2452 | 0.3333 | 0.3795 | 0.017* | |
C21 | 0.2677 (2) | 0.32446 (16) | 0.52319 (11) | 0.0285 (4) | |
H21A | 0.1971 | 0.2630 | 0.5408 | 0.043* | |
H21B | 0.1973 | 0.4188 | 0.5399 | 0.043* | |
H21C | 0.3611 | 0.2993 | 0.5587 | 0.043* | |
O1W | 0.26626 (14) | −0.02391 (11) | 0.47877 (8) | 0.0248 (3) | |
H1O1 | 0.3177 (19) | 0.0321 (15) | 0.4526 (11) | 0.030* | |
H2O1 | 0.1784 (15) | 0.0183 (16) | 0.5179 (10) | 0.030* | |
O2W | 0.04284 (15) | 0.88477 (11) | 0.39664 (9) | 0.0291 (3) | |
H1O2 | 0.075 (2) | 0.8012 (10) | 0.3828 (13) | 0.035* | |
H2O2 | 0.1220 (18) | 0.9029 (17) | 0.4144 (13) | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0154 (6) | 0.0140 (5) | 0.0119 (6) | −0.0022 (4) | −0.0064 (4) | 0.0016 (4) |
N2 | 0.0090 (5) | 0.0082 (5) | 0.0147 (6) | −0.0034 (4) | −0.0053 (4) | 0.0028 (4) |
N3 | 0.0078 (5) | 0.0066 (5) | 0.0147 (6) | −0.0021 (4) | −0.0045 (4) | 0.0016 (4) |
N4 | 0.0142 (5) | 0.0141 (5) | 0.0116 (6) | −0.0064 (4) | −0.0020 (4) | −0.0014 (4) |
C1 | 0.0113 (6) | 0.0118 (6) | 0.0119 (6) | −0.0028 (5) | −0.0032 (5) | 0.0016 (4) |
C2 | 0.0135 (6) | 0.0198 (7) | 0.0239 (8) | 0.0017 (5) | −0.0082 (5) | 0.0023 (5) |
C3 | 0.0152 (7) | 0.0209 (7) | 0.0294 (9) | 0.0037 (6) | −0.0026 (6) | −0.0031 (6) |
C4 | 0.0217 (7) | 0.0134 (7) | 0.0253 (8) | 0.0028 (6) | −0.0019 (6) | −0.0053 (5) |
C5 | 0.0195 (7) | 0.0122 (6) | 0.0161 (7) | −0.0014 (5) | −0.0041 (5) | −0.0025 (5) |
C6 | 0.0122 (6) | 0.0068 (5) | 0.0131 (6) | −0.0016 (5) | −0.0035 (5) | 0.0014 (4) |
C7 | 0.0095 (6) | 0.0082 (5) | 0.0111 (6) | −0.0016 (4) | −0.0032 (4) | 0.0013 (4) |
C8 | 0.0145 (6) | 0.0126 (6) | 0.0253 (8) | −0.0085 (5) | −0.0082 (5) | 0.0037 (5) |
C9 | 0.0119 (6) | 0.0171 (7) | 0.0273 (8) | −0.0080 (5) | −0.0073 (5) | 0.0045 (5) |
C10 | 0.0105 (6) | 0.0126 (6) | 0.0184 (7) | −0.0034 (5) | −0.0075 (5) | 0.0010 (5) |
C11 | 0.0119 (7) | 0.0200 (7) | 0.0338 (9) | −0.0015 (5) | −0.0084 (6) | 0.0027 (6) |
C12 | 0.0118 (6) | 0.0065 (6) | 0.0133 (6) | −0.0019 (5) | −0.0038 (5) | 0.0009 (4) |
C13 | 0.0286 (8) | 0.0143 (6) | 0.0123 (7) | −0.0080 (6) | −0.0071 (5) | 0.0028 (5) |
C14 | 0.0424 (9) | 0.0170 (7) | 0.0160 (7) | −0.0114 (7) | −0.0022 (6) | 0.0048 (5) |
C15 | 0.0417 (9) | 0.0217 (8) | 0.0187 (8) | −0.0203 (7) | 0.0049 (7) | −0.0003 (6) |
C16 | 0.0246 (7) | 0.0137 (6) | 0.0169 (7) | −0.0113 (6) | 0.0006 (5) | −0.0017 (5) |
C17 | 0.0117 (6) | 0.0099 (6) | 0.0113 (6) | −0.0037 (5) | −0.0004 (5) | −0.0012 (4) |
C18 | 0.0241 (7) | 0.0160 (7) | 0.0154 (7) | −0.0077 (6) | −0.0080 (5) | −0.0029 (5) |
C19 | 0.0167 (7) | 0.0173 (7) | 0.0167 (7) | −0.0072 (5) | −0.0077 (5) | 0.0002 (5) |
C20 | 0.0146 (6) | 0.0150 (6) | 0.0123 (7) | −0.0048 (5) | −0.0032 (5) | −0.0008 (5) |
C21 | 0.0408 (10) | 0.0258 (8) | 0.0164 (8) | −0.0129 (7) | 0.0047 (7) | −0.0028 (6) |
O1W | 0.0230 (6) | 0.0241 (6) | 0.0268 (6) | −0.0091 (5) | −0.0009 (5) | 0.0011 (4) |
O2W | 0.0286 (6) | 0.0219 (6) | 0.0355 (7) | −0.0030 (5) | −0.0075 (5) | −0.0120 (5) |
N1—C1 | 1.4744 (17) | C10—C11 | 1.5253 (19) |
N1—C20 | 1.4786 (17) | C10—H10 | 1.0000 |
N1—H1N1 | 0.914 (15) | C11—H11A | 0.9800 |
N2—C7 | 1.4526 (16) | C11—H11B | 0.9800 |
N2—C8 | 1.4618 (16) | C11—H11C | 0.9800 |
N2—C6 | 1.4731 (16) | C12—C13 | 1.5327 (19) |
N3—C7 | 1.4621 (16) | C12—C17 | 1.5414 (17) |
N3—C10 | 1.4745 (16) | C12—H12 | 1.0000 |
N3—C12 | 1.4754 (16) | C13—C14 | 1.5278 (19) |
N4—C18 | 1.4718 (17) | C13—H13A | 0.9900 |
N4—C17 | 1.4747 (17) | C13—H13B | 0.9900 |
N4—H1N4 | 0.882 (16) | C14—C15 | 1.523 (2) |
C1—C2 | 1.5307 (18) | C14—H14A | 0.9900 |
C1—C6 | 1.5403 (17) | C14—H14B | 0.9900 |
C1—H1 | 1.0000 | C15—C16 | 1.523 (2) |
C2—C3 | 1.517 (2) | C15—H15A | 0.9900 |
C2—H2A | 0.9900 | C15—H15B | 0.9900 |
C2—H2B | 0.9900 | C16—C17 | 1.5287 (18) |
C3—C4 | 1.521 (2) | C16—H16A | 0.9900 |
C3—H3A | 0.9900 | C16—H16B | 0.9900 |
C3—H3B | 0.9900 | C17—H17 | 1.0000 |
C4—C5 | 1.5258 (19) | C18—C19 | 1.5344 (19) |
C4—H4C | 0.9900 | C18—H18A | 0.9900 |
C4—H4D | 0.9900 | C18—H18B | 0.9900 |
C5—C6 | 1.5375 (19) | C19—C20 | 1.5375 (19) |
C5—H5A | 0.9900 | C19—H19A | 0.9900 |
C5—H5B | 0.9900 | C19—H19B | 0.9900 |
C6—H6 | 1.0000 | C20—C21 | 1.5285 (19) |
C7—H7A | 0.9900 | C20—H20 | 1.0000 |
C7—H7B | 0.9900 | C21—H21A | 0.9800 |
C8—C9 | 1.5238 (19) | C21—H21B | 0.9800 |
C8—H8A | 0.9900 | C21—H21C | 0.9800 |
C8—H8B | 0.9900 | O1W—H1O1 | 0.847 (9) |
C9—C10 | 1.5290 (18) | O1W—H2O1 | 0.833 (9) |
C9—H9A | 0.9900 | O2W—H1O2 | 0.837 (9) |
C9—H9B | 0.9900 | O2W—H2O2 | 0.830 (9) |
C1—N1—C20 | 118.35 (10) | C11—C10—H10 | 108.6 |
C1—N1—H1N1 | 106.9 (10) | C9—C10—H10 | 108.6 |
C20—N1—H1N1 | 109.3 (10) | C10—C11—H11A | 109.5 |
C7—N2—C8 | 109.60 (10) | C10—C11—H11B | 109.5 |
C7—N2—C6 | 113.54 (10) | H11A—C11—H11B | 109.5 |
C8—N2—C6 | 114.55 (10) | C10—C11—H11C | 109.5 |
C7—N3—C10 | 108.08 (9) | H11A—C11—H11C | 109.5 |
C7—N3—C12 | 112.33 (10) | H11B—C11—H11C | 109.5 |
C10—N3—C12 | 116.57 (10) | N3—C12—C13 | 115.37 (10) |
C18—N4—C17 | 115.03 (11) | N3—C12—C17 | 110.39 (10) |
C18—N4—H1N4 | 111.0 (9) | C13—C12—C17 | 110.37 (11) |
C17—N4—H1N4 | 105.5 (10) | N3—C12—H12 | 106.7 |
N1—C1—C2 | 108.50 (11) | C13—C12—H12 | 106.7 |
N1—C1—C6 | 112.59 (10) | C17—C12—H12 | 106.7 |
C2—C1—C6 | 109.49 (11) | C14—C13—C12 | 111.80 (11) |
N1—C1—H1 | 108.7 | C14—C13—H13A | 109.3 |
C2—C1—H1 | 108.7 | C12—C13—H13A | 109.3 |
C6—C1—H1 | 108.7 | C14—C13—H13B | 109.3 |
C3—C2—C1 | 113.15 (12) | C12—C13—H13B | 109.3 |
C3—C2—H2A | 108.9 | H13A—C13—H13B | 107.9 |
C1—C2—H2A | 108.9 | C15—C14—C13 | 110.44 (12) |
C3—C2—H2B | 108.9 | C15—C14—H14A | 109.6 |
C1—C2—H2B | 108.9 | C13—C14—H14A | 109.6 |
H2A—C2—H2B | 107.8 | C15—C14—H14B | 109.6 |
C2—C3—C4 | 111.16 (12) | C13—C14—H14B | 109.6 |
C2—C3—H3A | 109.4 | H14A—C14—H14B | 108.1 |
C4—C3—H3A | 109.4 | C16—C15—C14 | 111.33 (12) |
C2—C3—H3B | 109.4 | C16—C15—H15A | 109.4 |
C4—C3—H3B | 109.4 | C14—C15—H15A | 109.4 |
H3A—C3—H3B | 108.0 | C16—C15—H15B | 109.4 |
C3—C4—C5 | 109.76 (12) | C14—C15—H15B | 109.4 |
C3—C4—H4C | 109.7 | H15A—C15—H15B | 108.0 |
C5—C4—H4C | 109.7 | C15—C16—C17 | 111.59 (11) |
C3—C4—H4D | 109.7 | C15—C16—H16A | 109.3 |
C5—C4—H4D | 109.7 | C17—C16—H16A | 109.3 |
H4C—C4—H4D | 108.2 | C15—C16—H16B | 109.3 |
C4—C5—C6 | 111.95 (12) | C17—C16—H16B | 109.3 |
C4—C5—H5A | 109.2 | H16A—C16—H16B | 108.0 |
C6—C5—H5A | 109.2 | N4—C17—C16 | 110.67 (10) |
C4—C5—H5B | 109.2 | N4—C17—C12 | 109.40 (10) |
C6—C5—H5B | 109.2 | C16—C17—C12 | 109.47 (11) |
H5A—C5—H5B | 107.9 | N4—C17—H17 | 109.1 |
N2—C6—C5 | 113.91 (11) | C16—C17—H17 | 109.1 |
N2—C6—C1 | 111.74 (10) | C12—C17—H17 | 109.1 |
C5—C6—C1 | 109.61 (10) | N4—C18—C19 | 116.65 (11) |
N2—C6—H6 | 107.1 | N4—C18—H18A | 108.1 |
C5—C6—H6 | 107.1 | C19—C18—H18A | 108.1 |
C1—C6—H6 | 107.1 | N4—C18—H18B | 108.1 |
N2—C7—N3 | 109.89 (10) | C19—C18—H18B | 108.1 |
N2—C7—H7A | 109.7 | H18A—C18—H18B | 107.3 |
N3—C7—H7A | 109.7 | C18—C19—C20 | 114.94 (11) |
N2—C7—H7B | 109.7 | C18—C19—H19A | 108.5 |
N3—C7—H7B | 109.7 | C20—C19—H19A | 108.5 |
H7A—C7—H7B | 108.2 | C18—C19—H19B | 108.5 |
N2—C8—C9 | 108.58 (10) | C20—C19—H19B | 108.5 |
N2—C8—H8A | 110.0 | H19A—C19—H19B | 107.5 |
C9—C8—H8A | 110.0 | N1—C20—C21 | 107.37 (11) |
N2—C8—H8B | 110.0 | N1—C20—C19 | 114.21 (11) |
C9—C8—H8B | 110.0 | C21—C20—C19 | 110.67 (12) |
H8A—C8—H8B | 108.4 | N1—C20—H20 | 108.1 |
C8—C9—C10 | 112.39 (11) | C21—C20—H20 | 108.1 |
C8—C9—H9A | 109.1 | C19—C20—H20 | 108.1 |
C10—C9—H9A | 109.1 | C20—C21—H21A | 109.5 |
C8—C9—H9B | 109.1 | C20—C21—H21B | 109.5 |
C10—C9—H9B | 109.1 | H21A—C21—H21B | 109.5 |
H9A—C9—H9B | 107.9 | C20—C21—H21C | 109.5 |
N3—C10—C11 | 112.80 (11) | H21A—C21—H21C | 109.5 |
N3—C10—C9 | 107.26 (10) | H21B—C21—H21C | 109.5 |
C11—C10—C9 | 110.94 (12) | H1O1—O1W—H2O1 | 108.9 (15) |
N3—C10—H10 | 108.6 | H1O2—O2W—H2O2 | 107.8 (15) |
C20—N1—C1—C2 | 153.36 (11) | C12—N3—C10—C9 | −171.80 (10) |
C20—N1—C1—C6 | −85.30 (13) | C8—C9—C10—N3 | −55.43 (14) |
N1—C1—C2—C3 | 178.89 (12) | C8—C9—C10—C11 | −179.03 (12) |
C6—C1—C2—C3 | 55.66 (15) | C7—N3—C12—C13 | 54.74 (14) |
C1—C2—C3—C4 | −55.65 (16) | C10—N3—C12—C13 | −70.74 (14) |
C2—C3—C4—C5 | 55.09 (16) | C7—N3—C12—C17 | −71.21 (12) |
C3—C4—C5—C6 | −57.78 (16) | C10—N3—C12—C17 | 163.31 (10) |
C7—N2—C6—C5 | −51.09 (14) | N3—C12—C13—C14 | 177.16 (11) |
C8—N2—C6—C5 | 75.88 (14) | C17—C12—C13—C14 | −56.88 (15) |
C7—N2—C6—C1 | 73.80 (13) | C12—C13—C14—C15 | 55.58 (17) |
C8—N2—C6—C1 | −159.24 (11) | C13—C14—C15—C16 | −55.15 (17) |
C4—C5—C6—N2 | −175.37 (11) | C14—C15—C16—C17 | 57.13 (17) |
C4—C5—C6—C1 | 58.62 (14) | C18—N4—C17—C16 | −89.72 (13) |
N1—C1—C6—N2 | 56.17 (14) | C18—N4—C17—C12 | 149.58 (10) |
C2—C1—C6—N2 | 176.96 (10) | C15—C16—C17—N4 | −178.08 (11) |
N1—C1—C6—C5 | −176.58 (10) | C15—C16—C17—C12 | −57.42 (15) |
C2—C1—C6—C5 | −55.80 (13) | N3—C12—C17—N4 | −53.01 (13) |
C8—N2—C7—N3 | 66.00 (13) | C13—C12—C17—N4 | 178.27 (10) |
C6—N2—C7—N3 | −164.48 (10) | N3—C12—C17—C16 | −174.44 (10) |
C10—N3—C7—N2 | −67.79 (12) | C13—C12—C17—C16 | 56.85 (13) |
C12—N3—C7—N2 | 162.22 (10) | C17—N4—C18—C19 | −69.66 (15) |
C7—N2—C8—C9 | −57.21 (14) | N4—C18—C19—C20 | −59.72 (16) |
C6—N2—C8—C9 | 173.83 (11) | C1—N1—C20—C21 | 176.50 (12) |
N2—C8—C9—C10 | 53.63 (15) | C1—N1—C20—C19 | −60.40 (15) |
C7—N3—C10—C11 | −176.94 (11) | C18—C19—C20—N1 | 169.30 (11) |
C12—N3—C10—C11 | −49.35 (15) | C18—C19—C20—C21 | −69.41 (15) |
C7—N3—C10—C9 | 60.60 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1Wi | 0.914 (15) | 2.395 (15) | 3.2763 (19) | 162.0 (13) |
N4—H1N4···N3 | 0.882 (16) | 2.287 (15) | 2.8304 (16) | 119.8 (12) |
O1W—H1O1···N1 | 0.85 (1) | 2.06 (1) | 2.9077 (18) | 178 (2) |
O1W—H2O1···O2Wii | 0.83 (1) | 1.99 (1) | 2.816 (2) | 175 (2) |
O2W—H1O2···N4 | 0.84 (1) | 2.10 (1) | 2.9190 (18) | 168 (2) |
O2W—H2O2···O1Wiii | 0.83 (1) | 1.98 (1) | 2.7975 (17) | 166 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y+1, z. |
Acknowledgements
This work was supported by a grant from the 2017 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.
References
Barefield, E. K. (2010). Coord. Chem. Rev. 254, 1607–1627. Google Scholar
Choi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612–1616. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hubin, T. J. (2003). Coord. Chem. Rev. 241, 27–46. Web of Science CrossRef CAS Google Scholar
Kang, S.-G. & Jeong, J. H. (2003). Bull. Korean Chem. Soc. 24, 393–396. CAS Google Scholar
Kang, S.-G., Kweon, J. K., Jeong, G. R. & Lee, U. (2008). Bull. Korean Chem. Soc. 29, 1905–1910. CAS Google Scholar
Liang, X. & Sadler, P. (2004). Chem. Soc. Rev. 33, 246–266. Web of Science CrossRef PubMed CAS Google Scholar
Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405. Web of Science CrossRef CAS Google Scholar
Moon, D., Hong, Y. P. & Choi, J.-H. (2016). Acta Cryst. C72, 701–704. CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York. Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648. Web of Science CrossRef CAS Google Scholar
Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. Web of Science CSD CrossRef CAS PubMed Google Scholar
Royal, G., Dahaoui-Gindrey, V., Dahaoui, S., Tabard, A., Guilard, R., Pullumbi, P. & Lecomte, C. (1998). Eur. J. Org. Chem. pp. 1971–1975. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Tripier, R., Lagrange, J.-M., Espinosa, E., Denat, F. & Guilard, R. (2001). Chem. Commun. pp. 2728–2729. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.