research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 9,20-di­methyl-1,8,12,19-tetra­aza­tetra­cyclo­[17.3.1.02,7.013,18]tri­cosane dihydrate from synchrotron X-ray data

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 January 2017; accepted 13 February 2017; online 17 February 2017)

The structure of the title compound, C21H40N4·2H2O, has been determined from synchrotron X-ray radiation data. The asymmetric unit comprises one 12-membered macropolycycle and two lattice water mol­ecules. The macropolycycle contains two cyclo­hexane rings and one 1,3-di­aza­cyclo­hexane ring, all in chair conformations. The C—N and C—C bond lengths are in the ranges 1.4526 (16)–1.4786 (17) and 1.517 (2)–1.5414 (17) Å, respectively. One intra­molecular N—H⋯N hydrogen bond helps to stabilize the mol­ecular conformation while medium-strength inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds involving the lattice water mol­ecules connect the components into a three-dimensional network.

1. Chemical context

Macrocyclic ligands and their complexes are involved in diverse application fields such as catalysis, enzyme mimics, chemical sensors, purification of waste water, selective metal-ion recovery and anti­tumor agents and therapy (Meyer et al., 1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.]). The family of macrocyclic amines with fourteen-membered inner rings has received attention due to their anti-HIV activity (Liang & Sadler, 2004[Liang, X. & Sadler, P. (2004). Chem. Soc. Rev. 33, 246-266.]; Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). There has also been considerable inter­est in C- or N-functionalized macrocyclic compounds and their metal complexes because the structural and chemical properties are often quite different from those of the corres­ponding non-functionalized compounds (Barefield, 2010[Barefield, E. K. (2010). Coord. Chem. Rev. 254, 1607-1627.]; Choi et al., 2010[Choi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612-1616.]). Structural modifications of the macrocycles based on methyl­ene bridging of adjacent nitro­gen atoms have been achieved using various methods (Royal et al., 1998[Royal, G., Dahaoui-Gindrey, V., Dahaoui, S., Tabard, A., Guilard, R., Pullumbi, P. & Lecomte, C. (1998). Eur. J. Org. Chem. pp. 1971-1975.]; Tripier et al., 2001[Tripier, R., Lagrange, J.-M., Espinosa, E., Denat, F. & Guilard, R. (2001). Chem. Commun. pp. 2728-2729.]; Hubin, 2003[Hubin, T. J. (2003). Coord. Chem. Rev. 241, 27-46.]; Kang et al., 2008[Kang, S.-G., Kweon, J. K., Jeong, G. R. & Lee, U. (2008). Bull. Korean Chem. Soc. 29, 1905-1910.]).

[Scheme 1]

The synthesis of the 9,20-dimethyl-1,8,12,19-tetra­aza­tetra­cyclo­[17.3.1.02,7.013,18]tricosane (L2) monohydrated com­pound, L2·H2O has been described previously (Kang et al., 2008[Kang, S.-G., Kweon, J. K., Jeong, G. R. & Lee, U. (2008). Bull. Korean Chem. Soc. 29, 1905-1910.]), but we could not obtain a suitable single crystal of this compound for structure determination using X-ray diffraction. Formaldehyde has been utilized for the synthesis of such polyaza macrocyclic and macropolycyclic compounds containing five- or six-membered rings. We recently described the preparation, spectroscopic properties and the mol­ecular and crystal structure of 3,14-dimethyl-2,6,13,17-tetra­aza­penta­cyclo­(16.4.12,17.16,13.0.07,12)tetra­cosane containing two 1,3-di­aza­cyclo­pentane rings, which was the major product from the reaction of 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.01,18.07,12)docosane (L1) with two equivalents of formaldehyde (Moon et al., 2016[Moon, D., Hong, Y. P. & Choi, J.-H. (2016). Acta Cryst. C72, 701-704.]).

In the present work, we attempted the reaction of L1 with one equivalent of formaldehyde and synthesized the title compound, C21H40N4·2H2O, (I)[link]. Inter­estingly, the title compound, containing a six-membered 1,3-di­aza­cyclo­hexane ring, was the main product of the synthesis, while the compound containing a five-membered 1,3-di­aza­cyclo­pentane ring did not crystallize. In order to determine the mol­ecular and crystal structure of the title compound, single-crystal X-ray structural determination was performed by using synchrotron data.

2. Structural commentary

Fig. 1[link] shows an ellipsoid plot of the mol­ecular components of compound (I)[link]. The asymmetric unit comprises a macrocyclic C21H40N4 mol­ecule and two lattice water mol­ecules. The two methyl substituents of the C10 and C20 atoms are on the same side with respect to the macrocyclic plane of the four N atoms (Fig. 1[link]). The cyclo­hexane rings, together with the 1,3-di­aza­cyclo­hexane ring and the 1,3- di­amino-1-methyl­propane moiety, are fused to the 12-membered macrocycle. All six-membered rings exist in a slightly distorted chair conformation. The N1—C1—C6—N2 and N3—C12—C17—N4 torsion angle displays a gauche conformation. The bond lengths are in the ranges 1.4526 (16)–1.4786 (17) Å and 1.517 (2)–1.5414 (17) Å for the C—N and C—C bonds, respectively. The N1—C20 distance is the longest C—N distance, presumably as a consequence of the methyl group on the C20 atom and the N⋯H—O hydrogen bond involving N1. The bond angles within the six-membered 1,3-di­aza­cyclo­hexane ring, N2—C7—N3, C7—N2—C8, and C7—N3—C10, are 109.89 (10), 109.60 (10), and 108.08 (9)°, respectively. All other C—N, C—C, and C—H bond lengths and corresponding angles are in the normal range for such compounds (Royal et al., 1998[Royal, G., Dahaoui-Gindrey, V., Dahaoui, S., Tabard, A., Guilard, R., Pullumbi, P. & Lecomte, C. (1998). Eur. J. Org. Chem. pp. 1971-1975.]; Tripier et al., 2001[Tripier, R., Lagrange, J.-M., Espinosa, E., Denat, F. & Guilard, R. (2001). Chem. Commun. pp. 2728-2729.]). The intra­molecular hydrogen bond between the amine group N4—H1N4 and the tertiary N3 atom lends some rigidity to the 12-membered macropolycycle L2 ring (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level. Hydrogen-bonding inter­actions are indicated by dashed lines.

3. Supra­molecular features

In the crystal, the macropolycycle and the two water mol­ecules are held together by N—H⋯O, and O—H⋯O hydrogen bonds (Table 1[link]); O—H⋯O hydrogen bonds between the water mol­ecules are also observed. All inter­molecular hydrogen-bonding inter­actions are of medium strength and lead to the formation of a three-dimensional network between the components. The packing along the b axis is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.914 (15) 2.395 (15) 3.2763 (19) 162.0 (13)
N4—H1N4⋯N3 0.882 (16) 2.287 (15) 2.8304 (16) 119.8 (12)
O1W—H1O1⋯N1 0.85 (1) 2.06 (1) 2.9077 (18) 178 (2)
O1W—H2O1⋯O2Wii 0.83 (1) 1.99 (1) 2.816 (2) 175 (2)
O2W—H1O2⋯N4 0.84 (1) 2.10 (1) 2.9190 (18) 168 (2)
O2W—H2O2⋯O1Wiii 0.83 (1) 1.98 (1) 2.7975 (17) 166 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y+1, z.
[Figure 2]
Figure 2
Crystal packing diagram of (I)[link], viewed perpendicular to the ac plane. H atoms not involved in hydrogen bonds have been omitted. The dashed lines represent N—H⋯N (blue), O—H⋯O (pink) and O—H⋯N (green) hydrogen bonds, respectively.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, May 2016 with three updates; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just one hit for a 9,20-dimethyl-1,8,12,19-tetra­aza­tetra­cyclo[17.3.1.02,7.013,18]tricosane (L2) unit, viz. the crystal structure of [Cr(L2)(H2O)](ClO4)2·3H2O (Kang et al., 2008[Kang, S.-G., Kweon, J. K., Jeong, G. R. & Lee, U. (2008). Bull. Korean Chem. Soc. 29, 1905-1910.]). However, no structure of any other compound with L2 has been deposited.

5. Synthesis and crystallization

Commercially available (Sigma–Aldrich) 1,2-cyclo­hexa­nedi­amine was used as provided. All other chemicals were reagent grade and used without further purification. The starting material, 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo(16.4.01,18.07,12)docosane (L1) was synthesized according to a literature protocol (Kang & Jeong, 2003[Kang, S.-G. & Jeong, J. H. (2003). Bull. Korean Chem. Soc. 24, 393-396.]). To a solution of L1 (0.5 g, 1.5 mmol) in H2O (40 mL) was rapidly added 37% formaldehyde (0.11 mL, 1.5 mmol) at room temperature. The reaction mixture was refluxed for 3 h. After cooling, the resultant white solid was filtered, washed with water, and dried. The crude product of L2·2H2O, (I)[link], was recrystallized from a hot THF/H2O (1:2 v/v) solution to give colourless crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. All C-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.98–1.00 Å with Uiso(H) values of 1.5 and 1.2 Ueq of the parent atoms, respectively. N- and O-bound H atoms were assigned based on a difference Fourier map, and were refined with distance restraints of 0.91 (4) and 0.88 (2) Å (using DFIX and DANG commands), respectively, and with Uiso(H) values of 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula C21H40N4·2H2O
Mr 384.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.3870 (17), 10.275 (2), 14.115 (3)
α, β, γ (°) 87.20 (3), 77.83 (3), 72.31 (3)
V3) 1132.8 (5)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.06
Crystal size (mm) 0.08 × 0.07 × 0.05
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.])
Tmin, Tmax 0.878, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11640, 5950, 3853
Rint 0.045
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 0.92
No. of reflections 5950
No. of parameters 265
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.27
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

9,20-Dimethyl-1,8,12,19-tetraazatetracyclo[17.3.1.02,7.013,18]tricosane dihydrate top
Crystal data top
C21H40N4·2H2OZ = 2
Mr = 384.60F(000) = 428
Triclinic, P1Dx = 1.128 Mg m3
a = 8.3870 (17) ÅSynchrotron radiation, λ = 0.610 Å
b = 10.275 (2) ÅCell parameters from 63772 reflections
c = 14.115 (3) Åθ = 0.4–33.6°
α = 87.20 (3)°µ = 0.06 mm1
β = 77.83 (3)°T = 173 K
γ = 72.31 (3)°Block, colorless
V = 1132.8 (5) Å30.08 × 0.07 × 0.05 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
3853 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.045
ω scanθmax = 26.0°, θmin = 1.3°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.878, Tmax = 1.000k = 1414
11640 measured reflectionsl = 1818
5950 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 0.92Δρmax = 0.37 e Å3
5950 reflectionsΔρmin = 0.27 e Å3
265 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.042 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44588 (14)0.16840 (11)0.39264 (8)0.0138 (2)
H1N10.532 (2)0.1462 (15)0.4261 (11)0.017*
N20.24153 (13)0.20083 (10)0.24205 (8)0.0101 (2)
N30.11157 (13)0.43397 (10)0.20720 (8)0.0094 (2)
N40.19952 (14)0.60232 (11)0.32752 (8)0.0129 (2)
H1N40.138 (2)0.5454 (16)0.3368 (11)0.015*
C10.52453 (16)0.12714 (13)0.29073 (9)0.0118 (3)
H10.55940.20470.25630.014*
C20.68449 (18)0.00477 (14)0.28851 (11)0.0200 (3)
H2A0.76510.03180.31970.024*
H2B0.65160.06980.32680.024*
C30.77460 (18)0.04848 (15)0.18675 (11)0.0241 (3)
H3A0.87240.13060.19020.029*
H3B0.81990.02190.15030.029*
C40.65341 (19)0.08452 (14)0.13344 (11)0.0222 (3)
H4C0.61820.16220.16540.027*
H4D0.71240.11230.06580.027*
C50.49601 (18)0.03878 (13)0.13402 (10)0.0165 (3)
H5A0.41680.01390.10040.020*
H5B0.53140.11390.09800.020*
C60.40204 (16)0.08885 (12)0.23757 (9)0.0109 (2)
H60.37140.00990.27240.013*
C70.26051 (15)0.31402 (12)0.17952 (9)0.0097 (2)
H7A0.27180.28820.11120.012*
H7B0.36540.33570.18520.012*
C80.09840 (17)0.15840 (13)0.22515 (10)0.0159 (3)
H8A0.08170.08390.26960.019*
H8B0.12250.12420.15770.019*
C90.06214 (17)0.28106 (14)0.24294 (11)0.0176 (3)
H9A0.09410.30610.31270.021*
H9B0.15740.25550.22580.021*
C100.03765 (16)0.40486 (13)0.18391 (10)0.0132 (3)
H100.01150.38020.11350.016*
C110.19966 (17)0.52625 (15)0.20482 (11)0.0222 (3)
H11A0.21580.56170.27050.033*
H11B0.29830.49690.19960.033*
H11C0.18890.59810.15780.033*
C120.14475 (16)0.56142 (12)0.16863 (9)0.0106 (2)
H120.03320.63550.18390.013*
C130.20962 (19)0.56205 (14)0.05870 (10)0.0177 (3)
H13A0.32060.48990.04060.021*
H13B0.12740.54080.02550.021*
C140.2320 (2)0.70002 (15)0.02457 (11)0.0253 (3)
H14A0.28100.69490.04590.030*
H14B0.11910.77080.03590.030*
C150.3498 (2)0.73944 (16)0.07885 (11)0.0266 (4)
H15A0.46630.67440.06130.032*
H15B0.35650.83180.05920.032*
C160.28572 (19)0.73863 (14)0.18812 (10)0.0178 (3)
H16A0.17360.80940.20630.021*
H16B0.36690.76160.22120.021*
C170.26717 (16)0.59943 (12)0.22211 (9)0.0111 (2)
H170.38180.52900.20670.013*
C180.33000 (18)0.56602 (13)0.38753 (10)0.0174 (3)
H18A0.27160.58980.45580.021*
H18B0.40650.62380.36810.021*
C190.44121 (17)0.41627 (14)0.38303 (10)0.0158 (3)
H19A0.52500.40610.42500.019*
H19B0.50640.39380.31570.019*
C200.34221 (17)0.31229 (13)0.41426 (9)0.0138 (3)
H200.24520.33330.37950.017*
C210.2677 (2)0.32446 (16)0.52319 (11)0.0285 (4)
H21A0.19710.26300.54080.043*
H21B0.19730.41880.53990.043*
H21C0.36110.29930.55870.043*
O1W0.26626 (14)0.02391 (11)0.47877 (8)0.0248 (3)
H1O10.3177 (19)0.0321 (15)0.4526 (11)0.030*
H2O10.1784 (15)0.0183 (16)0.5179 (10)0.030*
O2W0.04284 (15)0.88477 (11)0.39664 (9)0.0291 (3)
H1O20.075 (2)0.8012 (10)0.3828 (13)0.035*
H2O20.1220 (18)0.9029 (17)0.4144 (13)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0154 (6)0.0140 (5)0.0119 (6)0.0022 (4)0.0064 (4)0.0016 (4)
N20.0090 (5)0.0082 (5)0.0147 (6)0.0034 (4)0.0053 (4)0.0028 (4)
N30.0078 (5)0.0066 (5)0.0147 (6)0.0021 (4)0.0045 (4)0.0016 (4)
N40.0142 (5)0.0141 (5)0.0116 (6)0.0064 (4)0.0020 (4)0.0014 (4)
C10.0113 (6)0.0118 (6)0.0119 (6)0.0028 (5)0.0032 (5)0.0016 (4)
C20.0135 (6)0.0198 (7)0.0239 (8)0.0017 (5)0.0082 (5)0.0023 (5)
C30.0152 (7)0.0209 (7)0.0294 (9)0.0037 (6)0.0026 (6)0.0031 (6)
C40.0217 (7)0.0134 (7)0.0253 (8)0.0028 (6)0.0019 (6)0.0053 (5)
C50.0195 (7)0.0122 (6)0.0161 (7)0.0014 (5)0.0041 (5)0.0025 (5)
C60.0122 (6)0.0068 (5)0.0131 (6)0.0016 (5)0.0035 (5)0.0014 (4)
C70.0095 (6)0.0082 (5)0.0111 (6)0.0016 (4)0.0032 (4)0.0013 (4)
C80.0145 (6)0.0126 (6)0.0253 (8)0.0085 (5)0.0082 (5)0.0037 (5)
C90.0119 (6)0.0171 (7)0.0273 (8)0.0080 (5)0.0073 (5)0.0045 (5)
C100.0105 (6)0.0126 (6)0.0184 (7)0.0034 (5)0.0075 (5)0.0010 (5)
C110.0119 (7)0.0200 (7)0.0338 (9)0.0015 (5)0.0084 (6)0.0027 (6)
C120.0118 (6)0.0065 (6)0.0133 (6)0.0019 (5)0.0038 (5)0.0009 (4)
C130.0286 (8)0.0143 (6)0.0123 (7)0.0080 (6)0.0071 (5)0.0028 (5)
C140.0424 (9)0.0170 (7)0.0160 (7)0.0114 (7)0.0022 (6)0.0048 (5)
C150.0417 (9)0.0217 (8)0.0187 (8)0.0203 (7)0.0049 (7)0.0003 (6)
C160.0246 (7)0.0137 (6)0.0169 (7)0.0113 (6)0.0006 (5)0.0017 (5)
C170.0117 (6)0.0099 (6)0.0113 (6)0.0037 (5)0.0004 (5)0.0012 (4)
C180.0241 (7)0.0160 (7)0.0154 (7)0.0077 (6)0.0080 (5)0.0029 (5)
C190.0167 (7)0.0173 (7)0.0167 (7)0.0072 (5)0.0077 (5)0.0002 (5)
C200.0146 (6)0.0150 (6)0.0123 (7)0.0048 (5)0.0032 (5)0.0008 (5)
C210.0408 (10)0.0258 (8)0.0164 (8)0.0129 (7)0.0047 (7)0.0028 (6)
O1W0.0230 (6)0.0241 (6)0.0268 (6)0.0091 (5)0.0009 (5)0.0011 (4)
O2W0.0286 (6)0.0219 (6)0.0355 (7)0.0030 (5)0.0075 (5)0.0120 (5)
Geometric parameters (Å, º) top
N1—C11.4744 (17)C10—C111.5253 (19)
N1—C201.4786 (17)C10—H101.0000
N1—H1N10.914 (15)C11—H11A0.9800
N2—C71.4526 (16)C11—H11B0.9800
N2—C81.4618 (16)C11—H11C0.9800
N2—C61.4731 (16)C12—C131.5327 (19)
N3—C71.4621 (16)C12—C171.5414 (17)
N3—C101.4745 (16)C12—H121.0000
N3—C121.4754 (16)C13—C141.5278 (19)
N4—C181.4718 (17)C13—H13A0.9900
N4—C171.4747 (17)C13—H13B0.9900
N4—H1N40.882 (16)C14—C151.523 (2)
C1—C21.5307 (18)C14—H14A0.9900
C1—C61.5403 (17)C14—H14B0.9900
C1—H11.0000C15—C161.523 (2)
C2—C31.517 (2)C15—H15A0.9900
C2—H2A0.9900C15—H15B0.9900
C2—H2B0.9900C16—C171.5287 (18)
C3—C41.521 (2)C16—H16A0.9900
C3—H3A0.9900C16—H16B0.9900
C3—H3B0.9900C17—H171.0000
C4—C51.5258 (19)C18—C191.5344 (19)
C4—H4C0.9900C18—H18A0.9900
C4—H4D0.9900C18—H18B0.9900
C5—C61.5375 (19)C19—C201.5375 (19)
C5—H5A0.9900C19—H19A0.9900
C5—H5B0.9900C19—H19B0.9900
C6—H61.0000C20—C211.5285 (19)
C7—H7A0.9900C20—H201.0000
C7—H7B0.9900C21—H21A0.9800
C8—C91.5238 (19)C21—H21B0.9800
C8—H8A0.9900C21—H21C0.9800
C8—H8B0.9900O1W—H1O10.847 (9)
C9—C101.5290 (18)O1W—H2O10.833 (9)
C9—H9A0.9900O2W—H1O20.837 (9)
C9—H9B0.9900O2W—H2O20.830 (9)
C1—N1—C20118.35 (10)C11—C10—H10108.6
C1—N1—H1N1106.9 (10)C9—C10—H10108.6
C20—N1—H1N1109.3 (10)C10—C11—H11A109.5
C7—N2—C8109.60 (10)C10—C11—H11B109.5
C7—N2—C6113.54 (10)H11A—C11—H11B109.5
C8—N2—C6114.55 (10)C10—C11—H11C109.5
C7—N3—C10108.08 (9)H11A—C11—H11C109.5
C7—N3—C12112.33 (10)H11B—C11—H11C109.5
C10—N3—C12116.57 (10)N3—C12—C13115.37 (10)
C18—N4—C17115.03 (11)N3—C12—C17110.39 (10)
C18—N4—H1N4111.0 (9)C13—C12—C17110.37 (11)
C17—N4—H1N4105.5 (10)N3—C12—H12106.7
N1—C1—C2108.50 (11)C13—C12—H12106.7
N1—C1—C6112.59 (10)C17—C12—H12106.7
C2—C1—C6109.49 (11)C14—C13—C12111.80 (11)
N1—C1—H1108.7C14—C13—H13A109.3
C2—C1—H1108.7C12—C13—H13A109.3
C6—C1—H1108.7C14—C13—H13B109.3
C3—C2—C1113.15 (12)C12—C13—H13B109.3
C3—C2—H2A108.9H13A—C13—H13B107.9
C1—C2—H2A108.9C15—C14—C13110.44 (12)
C3—C2—H2B108.9C15—C14—H14A109.6
C1—C2—H2B108.9C13—C14—H14A109.6
H2A—C2—H2B107.8C15—C14—H14B109.6
C2—C3—C4111.16 (12)C13—C14—H14B109.6
C2—C3—H3A109.4H14A—C14—H14B108.1
C4—C3—H3A109.4C16—C15—C14111.33 (12)
C2—C3—H3B109.4C16—C15—H15A109.4
C4—C3—H3B109.4C14—C15—H15A109.4
H3A—C3—H3B108.0C16—C15—H15B109.4
C3—C4—C5109.76 (12)C14—C15—H15B109.4
C3—C4—H4C109.7H15A—C15—H15B108.0
C5—C4—H4C109.7C15—C16—C17111.59 (11)
C3—C4—H4D109.7C15—C16—H16A109.3
C5—C4—H4D109.7C17—C16—H16A109.3
H4C—C4—H4D108.2C15—C16—H16B109.3
C4—C5—C6111.95 (12)C17—C16—H16B109.3
C4—C5—H5A109.2H16A—C16—H16B108.0
C6—C5—H5A109.2N4—C17—C16110.67 (10)
C4—C5—H5B109.2N4—C17—C12109.40 (10)
C6—C5—H5B109.2C16—C17—C12109.47 (11)
H5A—C5—H5B107.9N4—C17—H17109.1
N2—C6—C5113.91 (11)C16—C17—H17109.1
N2—C6—C1111.74 (10)C12—C17—H17109.1
C5—C6—C1109.61 (10)N4—C18—C19116.65 (11)
N2—C6—H6107.1N4—C18—H18A108.1
C5—C6—H6107.1C19—C18—H18A108.1
C1—C6—H6107.1N4—C18—H18B108.1
N2—C7—N3109.89 (10)C19—C18—H18B108.1
N2—C7—H7A109.7H18A—C18—H18B107.3
N3—C7—H7A109.7C18—C19—C20114.94 (11)
N2—C7—H7B109.7C18—C19—H19A108.5
N3—C7—H7B109.7C20—C19—H19A108.5
H7A—C7—H7B108.2C18—C19—H19B108.5
N2—C8—C9108.58 (10)C20—C19—H19B108.5
N2—C8—H8A110.0H19A—C19—H19B107.5
C9—C8—H8A110.0N1—C20—C21107.37 (11)
N2—C8—H8B110.0N1—C20—C19114.21 (11)
C9—C8—H8B110.0C21—C20—C19110.67 (12)
H8A—C8—H8B108.4N1—C20—H20108.1
C8—C9—C10112.39 (11)C21—C20—H20108.1
C8—C9—H9A109.1C19—C20—H20108.1
C10—C9—H9A109.1C20—C21—H21A109.5
C8—C9—H9B109.1C20—C21—H21B109.5
C10—C9—H9B109.1H21A—C21—H21B109.5
H9A—C9—H9B107.9C20—C21—H21C109.5
N3—C10—C11112.80 (11)H21A—C21—H21C109.5
N3—C10—C9107.26 (10)H21B—C21—H21C109.5
C11—C10—C9110.94 (12)H1O1—O1W—H2O1108.9 (15)
N3—C10—H10108.6H1O2—O2W—H2O2107.8 (15)
C20—N1—C1—C2153.36 (11)C12—N3—C10—C9171.80 (10)
C20—N1—C1—C685.30 (13)C8—C9—C10—N355.43 (14)
N1—C1—C2—C3178.89 (12)C8—C9—C10—C11179.03 (12)
C6—C1—C2—C355.66 (15)C7—N3—C12—C1354.74 (14)
C1—C2—C3—C455.65 (16)C10—N3—C12—C1370.74 (14)
C2—C3—C4—C555.09 (16)C7—N3—C12—C1771.21 (12)
C3—C4—C5—C657.78 (16)C10—N3—C12—C17163.31 (10)
C7—N2—C6—C551.09 (14)N3—C12—C13—C14177.16 (11)
C8—N2—C6—C575.88 (14)C17—C12—C13—C1456.88 (15)
C7—N2—C6—C173.80 (13)C12—C13—C14—C1555.58 (17)
C8—N2—C6—C1159.24 (11)C13—C14—C15—C1655.15 (17)
C4—C5—C6—N2175.37 (11)C14—C15—C16—C1757.13 (17)
C4—C5—C6—C158.62 (14)C18—N4—C17—C1689.72 (13)
N1—C1—C6—N256.17 (14)C18—N4—C17—C12149.58 (10)
C2—C1—C6—N2176.96 (10)C15—C16—C17—N4178.08 (11)
N1—C1—C6—C5176.58 (10)C15—C16—C17—C1257.42 (15)
C2—C1—C6—C555.80 (13)N3—C12—C17—N453.01 (13)
C8—N2—C7—N366.00 (13)C13—C12—C17—N4178.27 (10)
C6—N2—C7—N3164.48 (10)N3—C12—C17—C16174.44 (10)
C10—N3—C7—N267.79 (12)C13—C12—C17—C1656.85 (13)
C12—N3—C7—N2162.22 (10)C17—N4—C18—C1969.66 (15)
C7—N2—C8—C957.21 (14)N4—C18—C19—C2059.72 (16)
C6—N2—C8—C9173.83 (11)C1—N1—C20—C21176.50 (12)
N2—C8—C9—C1053.63 (15)C1—N1—C20—C1960.40 (15)
C7—N3—C10—C11176.94 (11)C18—C19—C20—N1169.30 (11)
C12—N3—C10—C1149.35 (15)C18—C19—C20—C2169.41 (15)
C7—N3—C10—C960.60 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.914 (15)2.395 (15)3.2763 (19)162.0 (13)
N4—H1N4···N30.882 (16)2.287 (15)2.8304 (16)119.8 (12)
O1W—H1O1···N10.85 (1)2.06 (1)2.9077 (18)178 (2)
O1W—H2O1···O2Wii0.83 (1)1.99 (1)2.816 (2)175 (2)
O2W—H1O2···N40.84 (1)2.10 (1)2.9190 (18)168 (2)
O2W—H2O2···O1Wiii0.83 (1)1.98 (1)2.7975 (17)166 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by a grant from the 2017 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationBarefield, E. K. (2010). Coord. Chem. Rev. 254, 1607–1627.  Google Scholar
First citationChoi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612–1616.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHubin, T. J. (2003). Coord. Chem. Rev. 241, 27–46.  Web of Science CrossRef CAS Google Scholar
First citationKang, S.-G. & Jeong, J. H. (2003). Bull. Korean Chem. Soc. 24, 393–396.  CAS Google Scholar
First citationKang, S.-G., Kweon, J. K., Jeong, G. R. & Lee, U. (2008). Bull. Korean Chem. Soc. 29, 1905–1910.  CAS Google Scholar
First citationLiang, X. & Sadler, P. (2004). Chem. Soc. Rev. 33, 246–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405.  Web of Science CrossRef CAS Google Scholar
First citationMoon, D., Hong, Y. P. & Choi, J.-H. (2016). Acta Cryst. C72, 701–704.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoyal, G., Dahaoui-Gindrey, V., Dahaoui, S., Tabard, A., Guilard, R., Pullumbi, P. & Lecomte, C. (1998). Eur. J. Org. Chem. pp. 1971–1975.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTripier, R., Lagrange, J.-M., Espinosa, E., Denat, F. & Guilard, R. (2001). Chem. Commun. pp. 2728–2729.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds