research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(μ-3-nitro­benzoato)-κ3O,O′:O;κ3O:O,O′-bis­­[bis­­(3-cyano­pyridine-κN1)(3-nitro­benzoato-κ2O,O′)cadmium]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bSANAEM, Saray Mahallesi, Atom Caddesi, No. 27, 06980 Saray-Kazan, Ankara, Turkey, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and dInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 February 2017; accepted 16 February 2017; online 21 February 2017)

The asymmetric unit of the title compound, [Cd2(C7H4NO4)4(C6H4N2)4], contains one CdII atom, two 3-nitro­benzoate (NB) anions and two 3-cyano­pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl­ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the CdII atoms are bridged by the carboxyl­ate O atoms of two symmetry-related NB anions, thus completing the distorted N2O5 penta­gonal–bipyramidal coordination sphere of each CdII atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C—H⋯N hydrogen bonds link the mol­ecules, enclosing R22(26) ring motifs, in which they are further linked via C—H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, ππ stacking inter­actions between parallel benzene rings and between parallel pyridine rings of adjacent mol­ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C—H⋯π inter­action, may further stabilize the crystal structure.

1. Chemical context

In the last two decades, research on metal–organic frameworks (MOFs) has received considerable attention due to their extensive structural chemistry (Li et al., 2016[Li, X., Yang, L., Zhao, L., Wang, X. L., Shao, K. Z. & Su, Z. M. (2016). Cryst. Growth Des. 16, 4374-4382.]) and their potential applications, including gas storage, nonlinear optics and ion exchange (Carlucci et al., 2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]). In the syntheses of compounds having MOF structures, various carboxyl­ate ligands have been used (Li et al., 2004[Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205-210.]).

[Scheme 1]

On the other hand, transition-metal complexes with biochemically active mol­ecules show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

The structure–function–coordination relationships of aryl­carboxyl­ate ions in ZnII complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH range and temperature of the synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]).

The structures of some dinuclear complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA; C6H6N2O) and some benzoic acid derivatives as ligands, e.g. [Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2 [(II); Hökelek et al., 2009[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m1608-m1609.]], [Cu2(C8H7O3)4(C6H6N2O)2(H2O)2] [(III); Hökelek et al., 2010[Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m807-m808.]], [Cu2(C8H5O3)4(C6H6N2O)4] [(IV); Sertçelik et al., 2013[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.]], [Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2] [(V); Necefoğlu et al., 2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Adıgüzel, V. & Hökelek, T. (2011). Acta Cryst. E67, m1128-m1129.]] and [Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2] [(VI); Bozkurt et al., 2013[Bozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m389-m390.]], have been determined previously. In this context, we have synthesized the CdII-containing title compound, bis(μ-3-nitro­benzoato)-κ3O,O′:O;κ3O:O,O′-bis­[bis­(3-cyano­pyridine-κN)(3-nitro­benzoato-κ2O,O′)cadmium], [Cd2(C7H4NO4)4(C6H4N2)4], and report herein its crystal structure.

2. Structural commentary

The asymmetric unit of the title complex contains one CdII atom, two 3-nitro­benzoate (NB) anions and two 3-cyano­pyridine (CPy) ligands. The two CPy ligands are monodentate (through the pyridine N atoms), while both NB anions act as bidentate ligands through their carboxyl­ate O atoms (Fig. 1[link]). The centrosymmetric dinuclear mol­ecule is completed by application of inversion symmerty. The CdII atoms are bridged by the carboxyl­ate O atoms of one NB anions (O6 and O5) and its symmetry-related counterpart [symmetry code: (i) −x, −y + 1, −z + 1]. Hence, this carboxyl­ate group not only chelates to one CdII atom but also bridges two CdII atoms (Fig. 2[link]). Thus, each CdII atom is surrounded by three NB anions and two CPy ligands. The overall coordination sphere of the CdII atom is defined by the bridging/chelating NB anions (O5, O5i and O6), one chelating NB anion (O1 and O2) and two 3-cyano­pyridine (CPy) ligands (N3 and N5), resulting in a distorted penta­gonal–bipyramidal environment. The five carboxyl­ate O atoms (O1, O2, O5, O5i and O6) of the three NB anions around the CdII atom form a distorted penta­gonal arrangement, with an average Cd1—O bond length of 2.42 Å (Table 1[link]). The distorted penta­gonal–bipyramidal coordination is completed by pyridine atoms N3 and N5 of the CPy ligands at distances of 2.3186 (17) and 2.3435 (17) Å, respectively, in the axial positions (Table 1[link]; Figs. 1[link] and 2[link]). The Cd1 atom lies 0.1252 (1) Å above and 0.0326 (1) Å below of planar O1/O2/C1 and O5/O6/C8 carboxyl­ate groups, respectively. The Cd1⋯Cd1i separation in the binuclear mol­ecule is 3.9360 (15) Å and is comparable to the corresponding MM distances (M is a metal) in the structurally related transition metal(II) complexes [7.1368 (3) Å in (III), 4.1554 (8) Å in (IV), 7.180 (2) Å in (V) and 7.1647 (3) Å in (VI)]. The metal atoms are bridged by two NA ligand N and O atoms in (III), (V) and (VI), while they are bridged by two carboxyl­ate O atoms in (IV).

Table 1
Selected bond lengths (Å)

Cd1—O1 2.3017 (15) Cd1—O6 2.3264 (15)
Cd1—O2 2.5072 (18) Cd1—N3 2.3186 (17)
Cd1—O5 2.5367 (16) Cd1—N5 2.3435 (17)
Cd1—O5i 2.4716 (16)    
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the binuclear title mol­ecule. Symmetry-related atoms are related by the symmetry code (−x, −y + 1, −z + 1). H atoms have been omitted for clarity.

The near equalities of the C1—O1 [1.264 (3) Å], C1—O2 [1.241 (3) Å], C8—O5 [1.256 (3) Å] and C8—O6 [1.253 (3) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O1—Cd1—O2 and O5—Cd1—O6 bite angles are reduced to 54.33 (5) and 53.47 (5)°, respectively. The corresponding O—M—O (M is a divalent metal) angles are 60.92 (12)° in (II), 53.50 (14)° in (IV), 57.61 (8)° in (V), and 54.22 (4) and 53.32 (5)° in (VI). The dihedral angles between the planar carboxyl­ate groups (O1/O2/C1 and O5/O6/C8) and the adjacent benzene [A (C2–C7) and B (C9–C14)] rings in the title structure are 17.18 (13) and 3.36 (12)°, respectively, while the benzene (A and B) and pyridine [C (N3/C15–C19) and D (N5/C21–C25)] rings are oriented at dihedral angles of A/B = 10.02 (7)°, A/C = 72.70 (7)°, A/D = 74.72 (7)°, B/C = 82.28 (7)°, B/D = 84.54 (8)° and C/D = 5.76 (9)°.

3. Supra­molecular features

Intra­molecular C—Hcpy⋯Oc (cpy = cyano­pyridine and c = carboxyl­ate) and C—Hnb⋯Oc (nb = nitro­benzoate) hydrogen bonds (Table 2[link]) link the cyano­pyridine and nitro­benzoate ligands to the carboxyl­ate O atoms. In the crystal, C—Hcpy⋯Ncpy hydrogen bonds (Table 2[link]) link the mol­ecules, enclosing R22(26) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 3[link]), in which they are further linked via additional C—Hcpy⋯Onb (nb = nitro­benzoate) hydrogen bonds (Table 2[link]), resulting in a three-dimensional network. The ππ contacts between parallel benzene rings and between parallel pyridine rings of adjacent mol­ecules, Cg1–Cg2i and Cg3–Cg4ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z + 1; Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings A (atoms C2–C7), B (C9–C14), C (N3/C15–C19) and D (N5/C21–C25)] may further stabilize the structure, with centroid–centroid distances of 3.885 (1) and 3.712 (1) Å, respectively. A weak C—H⋯π inter­action (Table 2[link]) is also observed.

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N3/C15–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.20 3.108 (3) 167
C15—H15⋯O2ii 0.93 2.32 3.111 (3) 143
C23—H23⋯N4iii 0.93 2.38 3.236 (5) 154
C25—H25⋯O6 0.93 2.58 3.242 (3) 128
C10—H10⋯Cg3ii 0.93 3.26 4.186 (3) 176
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1.
[Figure 3]
Figure 3
Part of the crystal structure. Intra­molecular (C—Hcpy⋯Oc and C—Hnb⋯Oc) and inter­molecular (C—Hcpy⋯Ncpy and C—Hcpy⋯Onb) (cpy = cyano­pyridine, c = carboxyl­ate and nb = nitro­benzoate) hydrogen bonds are shown as dashed lines. Nonbonding H atoms have been omitted for clarity.

4. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. Aromatic H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The maximum and minimum electron densities were found at 1.43 and 0.80 Å from atoms O2 and Cd1, respectively.

Table 3
Experimental details

Crystal data
Chemical formula [Cd2(C7H4NO4)4(C6H4N2)4]
Mr 1305.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.5237 (3), 12.7145 (4), 13.0583 (5)
α, β, γ (°) 105.022 (3), 97.347 (3), 104.866 (2)
V3) 1292.12 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.28 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.615, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 65471, 6414, 5828
Rint 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.22
No. of reflections 6414
No. of parameters 370
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.75
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

5. Synthesis and crystallization

The title compound was prepared by the reaction of 3CdSO4·8H2O (0.64 g, 2.5 mmol) in H2O (50 ml) and 3-cyano­pyridine (0.52 g, 5 mmol) in H2O (50 ml) with sodium 3-nitro­benzoate (0.95 g, 5 mmol) in H2O (100 ml) at 333 K. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012)'; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Bis(µ-3-nitrobenzoato)-κ3O,O':O;κ3O:O,O'-bis[bis(3-cyanopyridine-κN1)(3-nitrobenzoato-κ2O,O')cadmium] top
Crystal data top
[Cd2(C7H4NO4)4(C6H4N2)4]Z = 1
Mr = 1305.72F(000) = 652
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5237 (3) ÅCell parameters from 9607 reflections
b = 12.7145 (4) Åθ = 3.1–28.3°
c = 13.0583 (5) ŵ = 0.91 mm1
α = 105.022 (3)°T = 296 K
β = 97.347 (3)°Prism, colourless
γ = 104.866 (2)°0.28 × 0.20 × 0.18 mm
V = 1292.12 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6414 independent reflections
Radiation source: fine-focus sealed tube5828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.615, Tmax = 0.746k = 1616
65471 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.8651P]
where P = (Fo2 + 2Fc2)/3
6414 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.75 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.151839 (18)0.436274 (11)0.419807 (11)0.03200 (6)
O10.0821 (2)0.25149 (13)0.30752 (14)0.0448 (4)
O20.3355 (2)0.35240 (13)0.30991 (15)0.0480 (4)
O30.0992 (3)0.15593 (16)0.12938 (19)0.0675 (6)
O40.0033 (3)0.22812 (15)0.00392 (17)0.0646 (5)
O50.1364 (2)0.61626 (13)0.55320 (14)0.0431 (4)
O60.3515 (2)0.61460 (13)0.47720 (13)0.0414 (3)
O70.8058 (3)0.9744 (2)0.5573 (3)0.1093 (12)
O80.7807 (3)1.13029 (18)0.6485 (3)0.0928 (9)
N10.0007 (3)0.14806 (16)0.07056 (17)0.0435 (4)
N20.7303 (3)1.02738 (18)0.6099 (2)0.0537 (5)
N30.2275 (2)0.37248 (14)0.56414 (14)0.0320 (3)
N40.6329 (5)0.5371 (3)0.8932 (3)0.1256 (18)
N50.0320 (2)0.48389 (15)0.27322 (14)0.0358 (4)
N60.3803 (3)0.2705 (2)0.0491 (2)0.0685 (7)
C10.2174 (3)0.26302 (16)0.27548 (16)0.0324 (4)
C20.2308 (3)0.16188 (17)0.19015 (17)0.0322 (4)
C30.1160 (3)0.05585 (17)0.17155 (17)0.0330 (4)
H30.03500.04690.21270.040*
C40.1244 (3)0.03626 (17)0.09058 (17)0.0347 (4)
C50.2408 (3)0.0262 (2)0.0267 (2)0.0459 (5)
H50.24290.08920.02790.055*
C60.3544 (4)0.0798 (2)0.0456 (2)0.0535 (6)
H60.43400.08860.00340.064*
C70.3498 (3)0.1736 (2)0.1279 (2)0.0447 (5)
H70.42740.24450.14100.054*
C80.2760 (2)0.66594 (16)0.53913 (16)0.0315 (4)
C90.3550 (2)0.79211 (16)0.59657 (16)0.0312 (4)
C100.5053 (3)0.84920 (17)0.57676 (18)0.0346 (4)
H100.55920.81060.52940.042*
C110.5721 (3)0.96539 (17)0.62989 (19)0.0384 (5)
C120.4989 (3)1.02590 (19)0.7024 (2)0.0491 (6)
H120.54791.10360.73730.059*
C130.3506 (4)0.9677 (2)0.7217 (2)0.0565 (7)
H130.29881.00640.77060.068*
C140.2785 (3)0.8520 (2)0.6685 (2)0.0453 (5)
H140.17760.81400.68110.054*
C150.3517 (3)0.43881 (18)0.64654 (18)0.0360 (4)
H150.40610.51230.64660.043*
C160.4023 (3)0.4017 (2)0.73219 (19)0.0414 (5)
C170.3240 (3)0.2918 (2)0.7327 (2)0.0479 (6)
H170.35670.26530.78940.058*
C180.1962 (3)0.2229 (2)0.6465 (2)0.0503 (6)
H180.14110.14860.64370.060*
C190.1517 (3)0.26648 (19)0.56478 (19)0.0417 (5)
H190.06490.22000.50720.050*
C200.5330 (4)0.4779 (3)0.8215 (3)0.0706 (10)
C210.0872 (3)0.40583 (18)0.19319 (17)0.0375 (4)
H210.12400.33180.19710.045*
C220.1584 (3)0.43099 (19)0.10448 (17)0.0373 (4)
C230.1049 (3)0.5416 (2)0.09792 (19)0.0462 (5)
H230.15120.56090.03970.055*
C240.0186 (4)0.6213 (2)0.1803 (2)0.0541 (7)
H240.05790.69600.17870.065*
C250.0835 (3)0.58913 (19)0.26552 (19)0.0460 (6)
H250.16750.64380.32040.055*
C260.2833 (3)0.3418 (2)0.0192 (2)0.0484 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03932 (9)0.02142 (7)0.02841 (8)0.00423 (6)0.00100 (6)0.00389 (5)
O10.0451 (9)0.0315 (8)0.0489 (9)0.0062 (7)0.0178 (7)0.0009 (7)
O20.0433 (9)0.0304 (8)0.0549 (10)0.0010 (7)0.0077 (8)0.0003 (7)
O30.0779 (14)0.0390 (10)0.0778 (14)0.0002 (9)0.0284 (12)0.0163 (10)
O40.0769 (14)0.0324 (9)0.0658 (13)0.0110 (9)0.0042 (10)0.0060 (8)
O50.0372 (8)0.0272 (7)0.0521 (9)0.0040 (6)0.0057 (7)0.0061 (7)
O60.0422 (8)0.0266 (7)0.0437 (8)0.0026 (6)0.0061 (7)0.0000 (6)
O70.0819 (17)0.0595 (14)0.155 (3)0.0138 (12)0.0739 (19)0.0093 (16)
O80.0713 (15)0.0345 (10)0.141 (2)0.0190 (10)0.0299 (15)0.0046 (13)
N10.0528 (11)0.0276 (9)0.0451 (11)0.0108 (8)0.0003 (9)0.0091 (8)
N20.0436 (11)0.0353 (10)0.0650 (14)0.0075 (9)0.0087 (10)0.0070 (10)
N30.0325 (8)0.0287 (8)0.0325 (8)0.0070 (7)0.0044 (7)0.0091 (7)
N40.136 (3)0.085 (2)0.103 (3)0.028 (2)0.077 (2)0.050 (2)
N50.0488 (10)0.0272 (8)0.0279 (8)0.0093 (7)0.0024 (7)0.0072 (7)
N60.0717 (16)0.0507 (14)0.0597 (15)0.0003 (12)0.0179 (13)0.0112 (12)
C10.0396 (10)0.0240 (9)0.0312 (9)0.0086 (8)0.0033 (8)0.0072 (7)
C20.0361 (10)0.0269 (9)0.0346 (10)0.0122 (8)0.0055 (8)0.0093 (8)
C30.0373 (10)0.0282 (9)0.0332 (10)0.0105 (8)0.0056 (8)0.0092 (8)
C40.0411 (11)0.0259 (9)0.0348 (10)0.0110 (8)0.0006 (8)0.0081 (8)
C50.0548 (14)0.0371 (11)0.0464 (13)0.0196 (10)0.0167 (11)0.0048 (10)
C60.0565 (15)0.0471 (14)0.0628 (16)0.0197 (12)0.0313 (13)0.0136 (12)
C70.0437 (12)0.0347 (11)0.0540 (14)0.0086 (9)0.0183 (10)0.0098 (10)
C80.0323 (9)0.0236 (9)0.0298 (9)0.0016 (7)0.0040 (7)0.0055 (7)
C90.0303 (9)0.0221 (8)0.0321 (9)0.0004 (7)0.0020 (7)0.0045 (7)
C100.0331 (10)0.0246 (9)0.0387 (11)0.0027 (7)0.0041 (8)0.0047 (8)
C110.0321 (10)0.0261 (9)0.0452 (12)0.0034 (8)0.0006 (9)0.0071 (8)
C120.0485 (13)0.0230 (10)0.0587 (15)0.0004 (9)0.0032 (11)0.0023 (10)
C130.0547 (15)0.0342 (12)0.0656 (17)0.0061 (11)0.0202 (13)0.0062 (11)
C140.0387 (11)0.0332 (11)0.0509 (13)0.0005 (9)0.0118 (10)0.0007 (10)
C150.0334 (10)0.0317 (10)0.0388 (11)0.0042 (8)0.0001 (8)0.0128 (8)
C160.0376 (11)0.0411 (12)0.0431 (12)0.0086 (9)0.0002 (9)0.0162 (10)
C170.0519 (14)0.0486 (13)0.0483 (13)0.0137 (11)0.0059 (11)0.0269 (11)
C180.0567 (15)0.0351 (12)0.0568 (15)0.0034 (10)0.0089 (12)0.0222 (11)
C190.0432 (12)0.0323 (10)0.0411 (12)0.0017 (9)0.0021 (9)0.0095 (9)
C200.0715 (19)0.0570 (17)0.0665 (19)0.0031 (14)0.0272 (16)0.0329 (15)
C210.0454 (12)0.0296 (10)0.0336 (10)0.0072 (9)0.0035 (9)0.0093 (8)
C220.0408 (11)0.0361 (11)0.0310 (10)0.0106 (9)0.0019 (8)0.0070 (8)
C230.0601 (15)0.0393 (12)0.0379 (11)0.0157 (11)0.0025 (10)0.0148 (10)
C240.0765 (18)0.0296 (11)0.0472 (13)0.0060 (11)0.0058 (12)0.0155 (10)
C250.0605 (15)0.0284 (10)0.0369 (11)0.0030 (10)0.0055 (10)0.0075 (9)
C260.0533 (14)0.0412 (12)0.0430 (12)0.0080 (11)0.0028 (11)0.0123 (10)
Geometric parameters (Å, º) top
Cd1—O12.3017 (15)C7—H70.9300
Cd1—O22.5072 (18)C8—C91.511 (3)
Cd1—O52.5367 (16)C9—C101.393 (3)
Cd1—O5i2.4716 (16)C9—C141.389 (3)
Cd1—O62.3264 (15)C10—C111.387 (3)
Cd1—N32.3186 (17)C10—H100.9300
Cd1—N52.3435 (17)C11—N21.470 (3)
Cd1—C12.733 (2)C11—C121.377 (3)
O1—C11.264 (3)C12—C131.381 (4)
O5—Cd1i2.4716 (16)C12—H120.9300
O5—C81.256 (3)C13—H130.9300
O6—C81.253 (3)C14—C131.386 (3)
O8—N21.210 (3)C14—H140.9300
N1—O31.220 (3)C15—C161.384 (3)
N1—O41.219 (3)C15—H150.9300
N1—C41.472 (3)C16—C171.387 (3)
N2—O71.198 (3)C16—C201.438 (4)
N3—C151.330 (3)C17—H170.9300
N3—C191.339 (3)C18—C171.381 (4)
N4—C201.127 (4)C18—H180.9300
N5—C211.335 (3)C19—C181.379 (3)
N5—C251.331 (3)C19—H190.9300
C1—O21.241 (3)C21—C221.387 (3)
C1—C21.508 (3)C21—H210.9300
C2—C71.381 (3)C22—C231.391 (3)
C3—C21.388 (3)C22—C261.443 (3)
C3—C41.384 (3)C23—C241.375 (3)
C3—H30.9300C23—H230.9300
C4—C51.378 (3)C24—H240.9300
C5—C61.382 (4)C25—C241.380 (3)
C5—H50.9300C25—H250.9300
C6—H60.9300C26—N61.144 (3)
C7—C61.397 (3)
O1—Cd1—O254.33 (5)C4—C5—H5120.8
O1—Cd1—O5161.73 (6)C6—C5—H5120.8
O1—Cd1—O5i85.39 (6)C5—C6—C7120.1 (2)
O1—Cd1—O6144.74 (6)C5—C6—H6120.0
O1—Cd1—N388.63 (6)C7—C6—H6120.0
O1—Cd1—N587.92 (6)C2—C7—C6120.5 (2)
O1—Cd1—C127.40 (6)C2—C7—H7119.7
O2—Cd1—O5143.94 (5)C6—C7—H7119.7
O2—Cd1—C126.95 (6)O5—C8—C9119.48 (19)
O5i—Cd1—O2139.57 (5)O6—C8—O5122.10 (18)
O5i—Cd1—O576.40 (5)O6—C8—C9118.41 (18)
O5—Cd1—C1170.87 (6)C10—C9—C8119.84 (19)
O5i—Cd1—C1112.66 (6)C14—C9—C8120.56 (19)
O6—Cd1—O290.60 (5)C14—C9—C10119.60 (18)
O6—Cd1—O553.47 (5)C9—C10—H10121.0
O6—Cd1—O5i129.14 (5)C11—C10—C9117.9 (2)
O6—Cd1—N589.46 (6)C11—C10—H10121.0
O6—Cd1—C1117.41 (6)C10—C11—N2118.8 (2)
N3—Cd1—O293.62 (6)C12—C11—N2117.92 (19)
N3—Cd1—O589.29 (6)C12—C11—C10123.3 (2)
N3—Cd1—O5i88.16 (6)C11—C12—C13118.0 (2)
N3—Cd1—O698.23 (6)C11—C12—H12121.0
N3—Cd1—N5170.84 (6)C13—C12—H12121.0
N3—Cd1—C192.02 (6)C12—C13—C14120.3 (2)
N5—Cd1—O291.25 (6)C12—C13—H13119.8
N5—Cd1—O591.33 (6)C14—C13—H13119.8
N5—Cd1—O5i83.11 (6)C9—C14—H14119.6
N5—Cd1—C188.81 (6)C13—C14—C9120.9 (2)
C1—O1—Cd195.65 (12)C13—C14—H14119.6
C1—O2—Cd186.70 (13)N3—C15—C16121.9 (2)
Cd1i—O5—Cd1103.60 (5)N3—C15—H15119.0
C8—O5—Cd1i165.65 (15)C16—C15—H15119.0
C8—O5—Cd187.27 (13)C15—C16—C17119.8 (2)
C8—O6—Cd197.16 (12)C15—C16—C20119.9 (2)
O3—N1—C4118.33 (19)C17—C16—C20120.3 (2)
O4—N1—O3123.3 (2)C16—C17—H17120.9
O4—N1—C4118.4 (2)C18—C17—C16118.1 (2)
O7—N2—O8122.4 (2)C18—C17—H17120.9
O7—N2—C11119.0 (2)C17—C18—H18120.7
O8—N2—C11118.6 (2)C19—C18—C17118.7 (2)
C15—N3—Cd1120.77 (14)C19—C18—H18120.7
C15—N3—C19118.26 (19)N3—C19—C18123.2 (2)
C19—N3—Cd1120.93 (14)N3—C19—H19118.4
C21—N5—Cd1121.21 (14)C18—C19—H19118.4
C25—N5—Cd1121.09 (15)N4—C20—C16178.3 (5)
C25—N5—C21117.68 (19)N5—C21—C22122.5 (2)
O1—C1—Cd156.96 (10)N5—C21—H21118.7
O1—C1—C2116.79 (18)C22—C21—H21118.7
O2—C1—Cd166.35 (12)C21—C22—C23119.3 (2)
O2—C1—O1123.24 (19)C21—C22—C26119.7 (2)
O2—C1—C2120.0 (2)C23—C22—C26121.0 (2)
C2—C1—Cd1172.89 (15)C22—C23—H23121.1
C3—C2—C1118.64 (19)C24—C23—C22117.9 (2)
C7—C2—C1121.51 (19)C24—C23—H23121.1
C7—C2—C3119.80 (19)C23—C24—C25119.2 (2)
C2—C3—H3120.6C23—C24—H24120.4
C4—C3—C2118.7 (2)C25—C24—H24120.4
C4—C3—H3120.6N5—C25—C24123.4 (2)
C3—C4—N1118.3 (2)N5—C25—H25118.3
C5—C4—N1119.2 (2)C24—C25—H25118.3
C5—C4—C3122.4 (2)N6—C26—C22178.8 (3)
C4—C5—C6118.5 (2)
O2—Cd1—O1—C11.60 (12)Cd1—O1—C1—C2176.08 (15)
O5—Cd1—O1—C1179.36 (16)Cd1—O5—C8—O60.7 (2)
O5i—Cd1—O1—C1174.69 (14)Cd1i—O5—C8—O6140.5 (5)
O6—Cd1—O1—C15.3 (2)Cd1—O5—C8—C9178.05 (16)
N3—Cd1—O1—C197.04 (14)Cd1i—O5—C8—C938.3 (7)
N5—Cd1—O1—C191.44 (14)Cd1—O6—C8—O50.8 (2)
O1—Cd1—O2—C11.62 (12)Cd1—O6—C8—C9177.99 (15)
O5—Cd1—O2—C1178.89 (11)O3—N1—C4—C33.3 (3)
O5i—Cd1—O2—C14.09 (18)O3—N1—C4—C5178.5 (2)
O6—Cd1—O2—C1174.39 (13)O4—N1—C4—C3176.7 (2)
N3—Cd1—O2—C187.33 (13)O4—N1—C4—C51.5 (3)
N5—Cd1—O2—C184.92 (14)Cd1—N3—C15—C16178.18 (17)
O1—Cd1—O5—Cd1i4.8 (2)C19—N3—C15—C160.7 (3)
O1—Cd1—O5—C8175.30 (18)Cd1—N3—C19—C18177.4 (2)
O2—Cd1—O5—Cd1i176.53 (8)C15—N3—C19—C180.0 (4)
O2—Cd1—O5—C86.03 (18)Cd1—N5—C21—C22178.82 (17)
O5i—Cd1—O5—Cd1i0.0C25—N5—C21—C220.5 (3)
O5i—Cd1—O5—C8170.51 (16)Cd1—N5—C25—C24179.2 (2)
O6—Cd1—O5—Cd1i170.93 (10)C21—N5—C25—C240.8 (4)
O6—Cd1—O5—C80.42 (12)O1—C1—O2—Cd12.9 (2)
N3—Cd1—O5—Cd1i88.28 (7)C2—C1—O2—Cd1176.33 (17)
N3—Cd1—O5—C8101.21 (13)O1—C1—C2—C315.8 (3)
N5—Cd1—O5—Cd1i82.58 (7)O1—C1—C2—C7161.6 (2)
N5—Cd1—O5—C887.92 (13)O2—C1—C2—C3164.9 (2)
O1—Cd1—O6—C8177.25 (12)O2—C1—C2—C717.6 (3)
O2—Cd1—O6—C8177.13 (13)C1—C2—C7—C6176.7 (2)
O5—Cd1—O6—C80.42 (12)C3—C2—C7—C60.7 (4)
O5i—Cd1—O6—C810.98 (16)C4—C3—C2—C1177.69 (18)
N3—Cd1—O6—C883.38 (13)C4—C3—C2—C70.2 (3)
N5—Cd1—O6—C891.63 (13)C2—C3—C4—N1179.25 (18)
C1—Cd1—O6—C8179.99 (12)C2—C3—C4—C51.1 (3)
O1—Cd1—N3—C15146.88 (17)N1—C4—C5—C6179.1 (2)
O1—Cd1—N3—C1930.50 (17)C3—C4—C5—C60.9 (4)
O2—Cd1—N3—C1592.75 (17)C4—C5—C6—C70.1 (4)
O2—Cd1—N3—C1984.63 (17)C2—C7—C6—C50.9 (4)
O5—Cd1—N3—C1551.27 (16)O5—C8—C9—C10176.4 (2)
O5i—Cd1—N3—C15127.69 (17)O5—C8—C9—C143.1 (3)
O5—Cd1—N3—C19131.34 (17)O6—C8—C9—C102.4 (3)
O5i—Cd1—N3—C1954.93 (17)O6—C8—C9—C14178.1 (2)
O6—Cd1—N3—C151.62 (17)C8—C9—C10—C11178.96 (19)
O6—Cd1—N3—C19175.77 (17)C14—C9—C10—C110.6 (3)
C1—Cd1—N3—C15119.69 (17)C8—C9—C14—C13179.8 (2)
C1—Cd1—N3—C1957.69 (17)C10—C9—C14—C130.6 (4)
O1—Cd1—N5—C2125.91 (17)C9—C10—C11—N2179.8 (2)
O1—Cd1—N5—C25152.4 (2)C9—C10—C11—C121.4 (4)
O2—Cd1—N5—C2180.15 (18)C10—C11—N2—O77.6 (4)
O2—Cd1—N5—C2598.16 (19)C10—C11—N2—O8173.3 (3)
O5—Cd1—N5—C21135.83 (17)C12—C11—N2—O7171.3 (3)
O5—Cd1—N5—C2545.86 (19)C12—C11—N2—O87.7 (4)
O5i—Cd1—N5—C25122.0 (2)N2—C11—C12—C13179.7 (3)
O5i—Cd1—N5—C2159.69 (17)C10—C11—C12—C130.9 (4)
O6—Cd1—N5—C257.57 (19)C11—C12—C13—C140.4 (5)
O6—Cd1—N5—C21170.74 (18)C9—C14—C13—C121.2 (5)
C1—Cd1—N5—C2153.30 (18)N3—C15—C16—C170.9 (4)
C1—Cd1—N5—C25125.0 (2)N3—C15—C16—C20177.6 (3)
O1—Cd1—C1—O2177.1 (2)C15—C16—C17—C180.2 (4)
O2—Cd1—C1—O1177.1 (2)C20—C16—C17—C18178.2 (3)
O5i—Cd1—C1—O15.74 (15)C19—C18—C17—C160.4 (4)
O5i—Cd1—C1—O2177.13 (13)N3—C19—C18—C170.6 (4)
O6—Cd1—C1—O1176.54 (13)N5—C21—C22—C230.3 (4)
O6—Cd1—C1—O26.33 (15)N5—C21—C22—C26178.2 (2)
N3—Cd1—C1—O183.11 (14)C21—C22—C23—C240.6 (4)
N3—Cd1—C1—O294.02 (14)C26—C22—C23—C24177.8 (3)
N5—Cd1—C1—O187.76 (14)C22—C23—C24—C250.3 (4)
N5—Cd1—C1—O295.10 (14)N5—C25—C24—C230.5 (5)
Cd1—O1—C1—O23.1 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.203.108 (3)167
C15—H15···O2ii0.932.323.111 (3)143
C23—H23···N4iii0.932.383.236 (5)154
C25—H25···O60.932.583.242 (3)128
C10—H10···Cg3ii0.933.264.186 (3)176
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z1.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m389–m390.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m807–m808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m1608–m1609.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Yang, L., Zhao, L., Wang, X. L., Shao, K. Z. & Su, Z. M. (2016). Cryst. Growth Des. 16, 4374–4382.  CSD CrossRef CAS Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Adıgüzel, V. & Hökelek, T. (2011). Acta Cryst. E67, m1128–m1129.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds