research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-benzoato-κ2O:O′)bis­­(benzoato-κO)octa­butyldi-μ3-oxido-tetra­tin(IV)

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany, and bDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carerra 30 No 45-03, Bogotá, Colombia
*Correspondence e-mail: hreuter@uos.de

Edited by M. Zeller, Purdue University, USA (Received 18 January 2017; accepted 29 January 2017; online 3 February 2017)

The asymmetric unit of the title compound, [{Sn(C4H9)2(C6H5COO)}2O]2, consists of two half molecules, completed by application of inversion symmetry. Both mol­ecules adopt a ladder structure typical for this class of dimeric tetra­organodistannoxane di­carboxyl­ates characterized by a centrosymmetric four-membered (Sn—O)2 ring of rhomboidal shape that is extended on both sides by folded six-membered Sn—O—C rings. To a first approximation, both kinds of Sn atoms (Sni and Sno) are trigonal–bipyramidally coordinated. The bond angles between the n-butyl groups are widened [135.64 (7)–146.20 (7)°] in comparison with an ideal trigonal bipyramid. Sn—O bond lengths within the {R2SnO3} coordination sphere depend strongly on the position of the corresponding O atom – axial (ax) or equatorial (eq) – as well as on the functionality of the carboxyl­ate groups which exhibit μ2 (–COOi) and μ1 (–COOo) coordination modes, respectively. In summary, the following sequence of distances [mean values] is found: d(Sno—Oμ3)eq [2.024 (2) Å] < d(Sni—Oμ3)eq [2.044 (2) Å] < d(Sni—Oμ3)ax [2.158 (6) Å] < d(Sno—Oμ1-carb)ax [2.182 (6) Å] < d(Sni—Oμ2-carb)ax [2.250 (2) Å] ≃ d(Sno—Oμ2-carb)ax [2.247 (12) Å]. The n-butyl groups adopt an anti–anti conformation with exception of two disordered outer n-butyl groups of the second mol­ecule which exhibit gauche–anti and anti–gauche conformations. Weak intra­molecular Sn⋯O inter­actions between the different O atoms of the outer carboxyl groups with the inner, as well as outer, Sn atoms give rise to a strongly distorted octa­hedral coordination at these Sn atoms. Inter­molecular inter­actions between the individual mol­ecules are restricted to van der Waals and O⋯H—C inter­actions of which a nearly linear very short C—H⋯O contact between the H atom of the phenyl group of one of the mol­ecules with the outer non-coordinating C=O group of the other molecule is the most prominent. It gives rise to a chain-like arrangement of the mol­ecules along [111]. The two n-butyl groups attached to the outer Sn atom of one mol­ecule are disordered over two sets of sites with occupancies of 0.806 (3)/0.194 (3) and 0.702 (3)/0.298 (3).

1. Chemical context

Our focus on organotin(IV) carboxyl­ates is due to the variety of architectures and the diverse applications displayed by those compounds (Davies, 1997[Davies, A. G. (1997). In Organotin Chemistry. Weinheim: VCH.]; Chandrasekhar et al., 2008[Chandrasekhar, V., Singh, P. & Gopal, K. (2008). Organotin Carboxylate and Sulfonate Clusters. In Tin Chemistry - Fundamentals, Frontiers, and Applications edited by A. G. Davies, M. Gielen, K. H. Pannell & E. R. T. Tiekink. New York: John Wiley & Sons.]). In our search of new structures displayed by these compounds and their derivatives, we recently reported the structure of monomeric di-n-butyl­tin (IV) dibenzoate, nBu2Sn(OOCPh)2 (Reuter & Okio, 2016[Reuter, H. & Okio, C. K. Y. A. (2016). Acta Cryst. E72, 897-900.]), with the tin atom sixfold coordinated via intra­molecular complexation. While that compound has been synthesized by the reaction of di-n-butyl­tin(IV) oxide, nBu2SnO, with benzoic acid, PhCOOH, in a molar ratio of 1:2, we herein present the structure of [{nBu2Sn(OOCPh)}2O]2 obtained from the same reactants using a molar ratio of 1:1.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes with two formula units [{nBu2Sn(OOCPh)}2O]2 in space group P[\overline{1}]. The asymmetric unit consists of one formula unit composed of two half molecules, completed by application of inversion symmetry (Fig. 1[link]). With the exception of both n-butyl groups attached to the outer Sn atom (Sn4) of the second mol­ecule, all parts of the structure are well ordered. The disorder of the two n-butyl groups was managed by a split model with site occupancies of 0.806 (3)/0.194 (3) and 0.702 (3)/0.298 (3). No further consideration will be made for the structural parameters of those n-butyl groups. It is noteworthy, however, that this disorder is caused by the conformational flexibility of the n-butyl group which adopts – in the case of the major/minor components – a gaucheanti/anti–gauche and anti-gauche/anti–gauche conformation with respect to the Sn—CαCβ—Cγ and Cα—CβCγ—Cδ torsion angles (Fig. 2[link]b,c). This conformation of the disordered n-butyl groups is in contrast to the conformation of all other n-butyl groups of both dimers, which show exclusively an antianti conformation (Fig. 2[link]a). Structural parameters (Table 1[link]) within the ordered n-butyl groups follow the general trends: d(C—C)mean = 1.521 (6) Å, 〈(C—Cβ/γ—C)mean = 112.6 (11)° while bond angles at Cα range from 112.5 (1) to 123.1 (1)°. Sn—C distances are in the range of 2.127 (2)–2.134 (2) Å, mean value 2.130 (3) Å.

Table 1
Selected bond lengths (Å)

Sn1—O1 2.0424 (11) Sn3—O3 2.0460 (11)
Sn1—C111 2.1335 (19) Sn3—C311 2.1271 (17)
Sn1—C121 2.1300 (19) Sn3—C321 2.1268 (18)
Sn1—O1i 2.1641 (11) Sn3—O3ii 2.1520 (12)
Sn1—O11 2.2507 (12) Sn3—O31 2.2475 (13)
Sn2—O1 2.0273 (11) Sn4—O3 2.0214 (11)
Sn2—C211 2.1342 (19) Sn4—C411 2.1286 (18)
Sn2—C221 2.1282 (19) Sn4—C421 2.1266 (19)
Sn2—O21 2.1744 (12) Sn4—O41 2.1886 (13)
Sn2—O12 2.2601 (12) Sn4—O32 2.2350 (13)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The asymmetric unit (labelled atoms) of the title compound, showing the atom-labeling scheme and displacement ellipsoids of the non-H atoms at the 50% probability level. n-Butyl groups have been omitted for clarity.
[Figure 2]
Figure 2
Main types of conformations adopted by the n-butyl groups of the title compound: (a) anti–anti, (b) anti–gauche and (c) gauche–anti. Displacement ellipsoids of the non-H atoms are drawn at the 50% probability level and bonds to Sn atoms are indicated as short sticks.

The Sn–O framework of both mol­ecules adopts the ladder structure typical for this class of tetra­organodistannoxane di­carboxyl­ates (Chandrasekhar et al., 2008[Chandrasekhar, V., Singh, P. & Gopal, K. (2008). Organotin Carboxylate and Sulfonate Clusters. In Tin Chemistry - Fundamentals, Frontiers, and Applications edited by A. G. Davies, M. Gielen, K. H. Pannell & E. R. T. Tiekink. New York: John Wiley & Sons.]). This ladder-type structure is characterized by a central, four-membered (Sn–O)2 ring on both sides extended by six-membered Sn–O–C rings. Its two inner (Sni) and two outer (Sno) tin atoms are – to a first approximation – fivefold, trigonal–bipyramidally coordinated and linked together via two μ2-coordinating oxygen atoms (Oi) and two chelating (–COOi) carboxyl­ate groups. The structure is completed by two monodentate carboxyl­ate groups (–COOo) attached to the outer tin atoms (Fig. 3[link]).

[Figure 3]
Figure 3
Location of axial (ax) and equatorial (eq) bonds with respect to the trigonal–bipyramidal coordination at the inner (Sni) and outer (Sno) Sn atoms and of the outer (–COOo) μ1- and inner (–COOi) μ2-carboxyl­ate groups.

The central, planar and centrosymmetric four-membered (Sn–O)2 rings exhibit acute [75.90 (5)/75.78 (5)°] angles at tin and obtuse ones [104.10 (5)/104.22 (5)°] at oxygen. Its rhomboidal shape with different Sn—O distances results from the position of the μ3-oxygen atom (O1/O3) within the trigonal–bipyramidal coordination sphere of the inner tin atoms (Sn1/Sn3): bonds where the O atom is in an equatorial (eq) position are significantly shorter [2.042 (1)/2.046 (1) Å] than those where the O atom is in an axial (ax) position [2.164 (1)/2.152 (1) Å]. The second axially positioned Sn—O bond at the inner tin atoms is even longer [2.251 (1)/2.248 (1) Å] as it results from a coordinative bond of the oxygen atom (O11/O31) of the μ2-benzoate ligand (–COOi). In contrast to the prediction of the VSEPR concept, the bond angle between both equatorially positioned n-butyl groups is widened to 146.20 (7)/141.73 (7)°.

The conformation of the outer, six-membered Sn–O–C rings is defined by an angle of 19.9 (1)/23.4 (1)° between the O–C–O plane and the Sn–O–Sn plane (Fig. 4[link]). In case of the trigonal–bipyramidally coordinated outer tin atoms, Sn—O bond lengths follow the rule: d(Sno—Oμ3)eq [2.027 (1)/2.022 (1) Å] < d(Sno—Oμ1-carb)ax [2.175 (1)/2.188 (1) Å] < d(Sno—Oμ2-carb)ax [2.260 (1)/2.235 (1) Å]. Bond angles between the n-butyl groups at the tin atoms are 142.49 (7) and 135.64 (7)°.

[Figure 4]
Figure 4
Folded conformation of the outer six-membered Sn–O–C rings of mol­ecule 1 as an example. Displacement ellipsoids are drawn at the 50% probability level and bonds to C atoms are indicated as short sticks.

The different coordination modes of both benzoate ligands are reflected in different C—O bond lengths: in the case of the monodentate carboxyl­ate group (–COOo), the C—O bonds are of different strengths: the short, strong one [1.232 (2)/1.222 (3) Å] indicates a localized C=O double bond whereas the long, weak one [1.307 (2)/1.306 (3) Å] of the Sn-coordinating oxygen atom indicates a localized C—O single bond. In the case of the bridging benzoate groups (–COOi) both C—O bonds are of almost equal lengths [1.259 (2),1.258 (2)], in accordance with a delocalized π-system. In the two benzoate ligands, the carboxyl­ate groups and the phenyl groups are not co-planar, but are inclined to each other at angles of 15.1 (2), 14.8 (3)/3.9 (3) and 17.3 (1)°.

Another characteristic feature of the mol­ecular structure comprises some additional, very weak inter­actions [d(Sn⋯O) = 2.7857 (2)/2.7141 (2) Å] of the μ1-O atoms (O21/O41) of the outer carboxyl­ate groups with the inner tin atoms (Sn1/Sn3), while those of the μ0-O atoms (O22/O42) of the outer carboxyl­ate groups with the outer tin atoms (Sn2/Sn4) are still longer [2.8901 (2)/2.9883 (2) Å]. Taking these weak inter­actions into account, both kinds of Sn atoms adopt a strongly distorted octa­hedral coordination. All bonding features (except the last ones) of the two mol­ecules are summarized in Fig. 5[link], which also visualizes the major structural differences between the mol­ecules as a result of the different orientations of the n-butyl groups relative to the Sn–O framework.

[Figure 5]
Figure 5
Stick model showing the principal bonding scheme within the two mol­ecules of the title compound, viewed down the central (Sn–O)2 ring in order to visualize the different orientations of the n-butyl groups with respect to the Sn–O framework of both mol­ecules.

3. Supra­molecular features

Inter­molecular inter­actions are restricted to van der Waals and C—H⋯O contacts. Among the latter, a very short [d(H⋯O) = 2.487 Å], nearly linear [〈(C—H⋯O) = 172.6°] contact between the hydrogen atom H26 of a phenyl ring of mol­ecule 1 and the non-coordinating oxygen atom O42 of the second mol­ecule attracts attention as it leads to a chain-like arrangement of the two mol­ecules along [111] (Fig. 6[link]). All other C—H⋯O=C contacts are longer than 2.73 Å.

[Figure 6]
Figure 6
The short, nearly linear, C—H⋯O=C inter­actions (dashed sticks, blue) between two different neighbouring mol­ecules responsible for the chain-like arrangement along the [111] direction.

4. Database survey

Tetraorganodistannoxane di­carboxyl­ates, [R2Sn(OOCR′)]2O, have been extensively structurally characterized. The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) quotes as many as 214 entries (date: 10.01.2017). The majority of organic moieties attached to tin are found to be n-butyl (145) while for the di­carboxyl­ates benzoic acid derivatives (90) are the most studied. Even for the combination of R = nBu and R′ = benzoic acid derivatives not less than 67 structures are described, but from the parent compound with R′ = PhCOO, only the structure of the methyl compound (R = Me) has been completely characterized (Amini et al., 2002[Amini, M. M., Abadi, S. H., Mirzaee, M., Lügger, T., Hahn, F. E. & Ng, S. W. (2002). Acta Cryst. E58, m697-m699.]).

5. Synthesis and crystallization

[{nBu2Sn(OOCPh)}2O]2 was obtained from an equimolar mixture of 0.300 g (1.2 mmol) of n-di­butyl­tin oxide with 0.147 g (1.2 mmol) of benzoic acid in ethanol under reflux for 3.5 h. After removal of the solvent, single crystals were obtained by recrystallization of the solid from ethanol/n-hexane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Most of the hydrogen atoms were clearly identified in difference Fourier syntheses. Their positions were calculated assuming idealized geometries and allowed to ride on the carbon atoms with C—H = 0.98 Å (–CH3), 0.99 Å (–CH2–), and 0.95 Å (C—Harom) using one common isotropic displacement parameter for each n-butyl and phenyl group. Disorder of both n-butyl groups at the outer Sn atom (Sn4) of the second mol­ecule was refined using a split model with site occupancies of 0.806 (3)/0.194 (3) and 0.702 (3)/0.298 (3). In order for the structural model to be chemically meaningful, the atomic positions of the minor components were restrained to a target value for the C—C distance [d(C—C) = 1.526 (3) Å] and displacement parameters were taken from the chemically equivalent C atoms of the major occupancy component.

Table 2
Experimental details

Crystal data
Chemical formula [Sn4(C4H9)8(C7H5O2)4O2]
Mr 1448.09
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 14.3221 (6), 14.3742 (6), 17.4049 (7)
α, β, γ (°) 66.915 (2), 81.233 (2), 78.528 (2)
V3) 3219.3 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.59
Crystal size (mm) 0.42 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.556, 0.722
No. of measured, independent and observed [I > 2σ(I)] reflections 137897, 15505, 13810
Rint 0.035
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.04
No. of reflections 15505
No. of parameters 710
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(µ-benzoato-κ2O:O')bis(benzoato-κO)octabutyldi-µ3-oxido-tetratin(IV) top
Crystal data top
[Sn4(C4H9)8(C7H5O2)4O2]Z = 2
Mr = 1448.09F(000) = 1464
Triclinic, P1Dx = 1.494 Mg m3
a = 14.3221 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3742 (6) ÅCell parameters from 9485 reflections
c = 17.4049 (7) Åθ = 2.4–28.3°
α = 66.915 (2)°µ = 1.59 mm1
β = 81.233 (2)°T = 100 K
γ = 78.528 (2)°Parallelepiped, colourless
V = 3219.3 (2) Å30.42 × 0.26 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
13810 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.0°, θmin = 1.9°
Tmin = 0.556, Tmax = 0.722h = 1818
137897 measured reflectionsk = 1818
15505 independent reflectionsl = 2222
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0156P)2 + 2.1897P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
15505 reflectionsΔρmax = 0.81 e Å3
710 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.03987 (2)0.92445 (2)0.03511 (2)0.01446 (3)
Sn20.03972 (2)0.81339 (2)0.18341 (2)0.01445 (3)
O10.01698 (9)0.91985 (9)0.06728 (7)0.0160 (2)
C1110.19099 (13)0.94730 (15)0.00704 (12)0.0233 (4)
H1110.20310.93020.05420.053 (3)*
H1120.21441.02130.03460.053 (3)*
C1120.25200 (14)0.88943 (17)0.03089 (13)0.0284 (4)
H1130.22880.81510.00520.053 (3)*
H1140.24470.90920.09250.053 (3)*
C1130.35776 (16)0.9103 (2)0.00266 (16)0.0420 (6)
H1150.36460.89540.05830.053 (3)*
H1160.38220.98380.03160.053 (3)*
C1140.4177 (2)0.8465 (2)0.0209 (2)0.0613 (8)
H1170.41070.86040.08120.053 (3)*
H1180.48500.86410.00350.053 (3)*
H1190.39600.77370.01000.053 (3)*
C1210.07447 (14)0.89110 (14)0.11872 (11)0.0208 (4)
H1210.05840.84030.13790.056 (3)*
H1220.08180.95430.16850.056 (3)*
C1220.16874 (15)0.84947 (17)0.07840 (13)0.0295 (4)
H1230.17990.89590.05230.056 (3)*
H1240.16350.78190.03320.056 (3)*
C1230.25439 (15)0.83781 (19)0.13868 (14)0.0357 (5)
H1250.25460.90270.18800.056 (3)*
H1260.24810.78370.15850.056 (3)*
C1240.34921 (18)0.8106 (2)0.09965 (19)0.0550 (7)
H1270.40160.80080.14040.056 (3)*
H1280.34900.74720.04990.056 (3)*
H1290.35810.86610.08350.056 (3)*
C2110.08718 (13)0.81715 (15)0.26495 (11)0.0219 (4)
H2110.13950.85750.22870.048 (2)*
H2120.10130.74610.29140.048 (2)*
C2120.09632 (14)0.85724 (15)0.33488 (11)0.0227 (4)
H2130.08530.92940.31100.048 (2)*
H2140.04710.81680.37440.048 (2)*
C2130.19597 (16)0.8503 (2)0.38207 (15)0.0380 (5)
H2150.24450.88880.34140.048 (2)*
H2160.20570.77770.40600.048 (2)*
C2140.21275 (15)0.89078 (17)0.45179 (14)0.0324 (5)
H2170.19950.96130.42960.048 (2)*
H2180.17020.84800.49580.048 (2)*
H2190.27940.88930.47520.048 (2)*
C2210.17341 (14)0.72163 (14)0.17206 (12)0.0222 (4)
H2210.21290.76400.12420.045 (2)*
H2220.20640.70370.22320.045 (2)*
C2220.17112 (16)0.62290 (15)0.15960 (13)0.0284 (4)
H2230.12990.58080.20600.045 (2)*
H2240.14220.64000.10660.045 (2)*
C2230.26983 (18)0.56040 (18)0.15659 (15)0.0411 (6)
H2250.30080.54740.20770.045 (2)*
H2260.30970.60030.10760.045 (2)*
C2240.2651 (2)0.4579 (2)0.15053 (19)0.0641 (9)
H2270.23380.47040.10030.064 (3)*
H2280.22840.41680.20040.064 (3)*
H2290.33000.42110.14700.064 (3)*
O110.03864 (10)0.75409 (9)0.01683 (8)0.0241 (3)
O120.03990 (10)0.71155 (10)0.15460 (8)0.0236 (3)
C110.04706 (13)0.69199 (13)0.09152 (11)0.0196 (4)
C120.06755 (14)0.58777 (14)0.10684 (12)0.0237 (4)
C130.09874 (17)0.56773 (16)0.04403 (14)0.0346 (5)
H130.10630.61990.00990.047 (3)*
C140.1189 (2)0.47041 (19)0.06069 (16)0.0492 (7)
H140.14110.45640.01820.047 (3)*
C150.1068 (2)0.39439 (18)0.13877 (17)0.0482 (7)
H150.12050.32820.14970.047 (3)*
C160.0750 (2)0.41364 (17)0.20105 (16)0.0439 (6)
H160.06590.36070.25440.047 (3)*
C170.05638 (17)0.51081 (15)0.18543 (14)0.0329 (5)
H170.03590.52480.22870.047 (3)*
O210.09580 (9)0.93884 (9)0.19155 (7)0.0191 (3)
O220.13977 (9)0.81985 (9)0.31306 (8)0.0213 (3)
C210.13446 (12)0.90883 (14)0.26235 (11)0.0172 (3)
C220.17197 (13)0.98877 (14)0.27895 (11)0.0179 (4)
C230.14682 (14)1.09279 (14)0.23253 (12)0.0219 (4)
H230.10551.11430.18890.030 (3)*
C240.18210 (15)1.16491 (16)0.24995 (13)0.0290 (4)
H240.16481.23570.21830.030 (3)*
C250.24249 (15)1.13388 (17)0.31330 (14)0.0318 (5)
H250.26691.18340.32490.030 (3)*
C260.26727 (15)1.03149 (17)0.35949 (14)0.0307 (5)
H260.30871.01070.40300.030 (3)*
C270.23215 (13)0.95773 (16)0.34305 (12)0.0231 (4)
H270.24920.88710.37530.030 (3)*
Sn30.61120 (2)0.44791 (2)0.52321 (2)0.01354 (3)
Sn40.49447 (2)0.36021 (2)0.38939 (2)0.01504 (3)
O30.50553 (8)0.43974 (9)0.46018 (7)0.0150 (2)
C3110.60956 (13)0.34279 (13)0.64978 (11)0.0186 (4)
H3110.67650.31550.66390.038 (2)*
H3120.58000.38070.68640.038 (2)*
C3120.55676 (14)0.25282 (14)0.67031 (11)0.0215 (4)
H3130.58610.21360.63470.038 (2)*
H3140.48930.27890.65740.038 (2)*
C3130.55999 (17)0.18205 (15)0.76230 (12)0.0303 (5)
H3150.62750.15630.77500.038 (2)*
H3160.53080.22160.79780.038 (2)*
C3140.5076 (2)0.09152 (19)0.78418 (15)0.0478 (7)
H3170.50820.05090.84440.038 (2)*
H3180.53960.04890.75270.038 (2)*
H3190.44140.11650.76950.038 (2)*
C3210.69759 (14)0.54809 (15)0.42927 (12)0.0239 (4)
H3210.68320.61570.43450.036 (4)*
H3220.76560.52100.43970.036 (4)*
C3220.68403 (14)0.56270 (14)0.34011 (11)0.0216 (4)
H3230.61480.57590.33290.042 (3)*
H3240.71170.49880.33070.042 (3)*
C3230.73061 (15)0.65076 (16)0.27503 (13)0.0293 (4)
H3250.70830.71310.28810.042 (3)*
H3260.80080.63410.27790.042 (3)*
C3240.70742 (17)0.6723 (2)0.18683 (14)0.0442 (6)
H3270.63820.69140.18310.042 (3)*
H3280.72950.61080.17350.042 (3)*
H3290.73960.72860.14690.042 (3)*
O310.69881 (10)0.31322 (10)0.49789 (8)0.0261 (3)
O320.65313 (9)0.31492 (10)0.38033 (8)0.0201 (3)
C310.71303 (13)0.28987 (13)0.43385 (11)0.0173 (3)
C320.80661 (12)0.22829 (13)0.42121 (11)0.0162 (3)
C330.87661 (13)0.20435 (14)0.47628 (11)0.0205 (4)
H330.86500.22780.52140.028 (3)*
C340.96322 (14)0.14621 (15)0.46514 (13)0.0260 (4)
H341.01070.12920.50310.028 (3)*
C350.98102 (14)0.11283 (15)0.39920 (12)0.0251 (4)
H351.04080.07330.39170.028 (3)*
C360.91186 (14)0.13692 (14)0.34414 (12)0.0238 (4)
H360.92430.11410.29870.028 (3)*
C370.82457 (13)0.19424 (13)0.35504 (11)0.0192 (4)
H370.77700.21030.31730.028 (3)*
O410.34751 (9)0.43755 (10)0.39771 (8)0.0209 (3)
O420.30888 (10)0.32399 (11)0.35606 (10)0.0320 (3)
C410.28552 (14)0.39698 (14)0.37840 (12)0.0214 (4)
C420.18298 (13)0.44420 (14)0.38510 (11)0.0206 (4)
C430.15777 (13)0.54131 (14)0.38792 (11)0.0209 (4)
H430.20630.57830.38700.032 (3)*
C440.06256 (14)0.58483 (15)0.39207 (12)0.0253 (4)
H440.04590.65170.39310.032 (3)*
C450.00816 (14)0.53014 (16)0.39474 (12)0.0303 (5)
H450.07350.55960.39800.032 (3)*
C460.01560 (15)0.43340 (16)0.39270 (13)0.0313 (5)
H460.03340.39600.39550.032 (3)*
C470.11084 (15)0.39030 (16)0.38658 (13)0.0279 (4)
H470.12710.32450.38340.032 (3)*
C4110.47723 (15)0.20853 (14)0.47207 (12)0.0259 (4)0.806 (3)
H4110.53220.17880.50700.032 (2)*0.806 (3)
H4120.41860.21130.51000.032 (2)*0.806 (3)
C4120.47008 (15)0.13829 (16)0.42666 (14)0.0222 (5)0.806 (3)
H4130.45140.07320.46820.032 (2)*0.806 (3)
H4140.41950.17120.38730.032 (2)*0.806 (3)
C4130.56410 (18)0.11528 (19)0.37830 (17)0.0267 (6)0.806 (3)
H4150.58300.18010.33650.032 (2)*0.806 (3)
H4160.61490.08180.41750.032 (2)*0.806 (3)
C4140.5540 (4)0.0455 (5)0.3339 (5)0.0358 (11)0.806 (3)
H4170.53690.01940.37550.032 (2)*0.806 (3)
H4180.61480.03220.30260.032 (2)*0.806 (3)
H4190.50380.07870.29500.032 (2)*0.806 (3)
C4150.47723 (15)0.20853 (14)0.47207 (12)0.0259 (4)0.194 (3)
H4310.48710.19960.52980.032 (2)*0.194 (3)
H4320.41120.19760.47200.032 (2)*0.194 (3)
C4160.5483 (5)0.1284 (6)0.4462 (5)0.0222 (5)0.194 (3)
H4330.61360.14650.43550.032 (2)*0.194 (3)
H4340.54910.06010.49170.032 (2)*0.194 (3)
C4170.5168 (9)0.1268 (9)0.3670 (6)0.0267 (6)0.194 (3)
H4350.44970.11430.37880.032 (2)*0.194 (3)
H4360.51740.19600.32300.032 (2)*0.194 (3)
C4180.5738 (19)0.050 (2)0.331 (2)0.0358 (11)0.194 (3)
H4370.55890.01870.36530.032 (2)*0.194 (3)
H4380.64230.05030.32960.032 (2)*0.194 (3)
H4390.55690.06860.27340.032 (2)*0.194 (3)
C4210.50793 (14)0.43918 (16)0.25721 (12)0.0288 (4)0.702 (3)
H4210.45010.43460.23490.095 (5)*0.702 (3)
H4220.50690.51230.24620.095 (5)*0.702 (3)
C4220.5947 (2)0.4060 (3)0.20591 (16)0.0399 (8)0.702 (3)
H4230.65150.42580.21820.095 (5)*0.702 (3)
H4240.60470.33030.22590.095 (5)*0.702 (3)
C4230.5910 (4)0.4481 (3)0.11158 (18)0.0542 (11)0.702 (3)
H4250.65240.42290.08630.095 (5)*0.702 (3)
H4260.54000.42060.09830.095 (5)*0.702 (3)
C4240.5727 (4)0.5628 (3)0.0715 (3)0.0704 (13)0.702 (3)
H4270.51330.58900.09750.095 (5)*0.702 (3)
H4280.56710.58340.01140.095 (5)*0.702 (3)
H4290.62600.59080.07940.095 (5)*0.702 (3)
C4250.50793 (14)0.43918 (16)0.25721 (12)0.0288 (4)0.298 (3)
H4410.44770.48680.24110.095 (5)*0.298 (3)
H4420.55930.48150.24390.095 (5)*0.298 (3)
C4260.5292 (7)0.3773 (4)0.2019 (3)0.0399 (8)0.298 (3)
H4430.47980.33280.21460.095 (5)*0.298 (3)
H4440.59210.33320.21290.095 (5)*0.298 (3)
C4270.5303 (7)0.4492 (8)0.1100 (4)0.0542 (11)0.298 (3)
H4450.51970.41140.07600.095 (5)*0.298 (3)
H4460.47640.50610.10360.095 (5)*0.298 (3)
C4280.6228 (7)0.4941 (10)0.0753 (7)0.0704 (13)0.298 (3)
H4470.67420.44040.06960.095 (5)*0.298 (3)
H4480.63980.52170.11380.095 (5)*0.298 (3)
H4490.61390.54910.02040.095 (5)*0.298 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01998 (6)0.01333 (6)0.01166 (5)0.00403 (4)0.00460 (4)0.00444 (4)
Sn20.01999 (6)0.01252 (5)0.01096 (5)0.00310 (4)0.00446 (4)0.00309 (4)
O10.0237 (7)0.0134 (6)0.0119 (6)0.0047 (5)0.0060 (5)0.0034 (5)
C1110.0221 (10)0.0275 (10)0.0200 (9)0.0060 (8)0.0013 (7)0.0077 (8)
C1120.0265 (11)0.0358 (11)0.0240 (10)0.0126 (9)0.0039 (8)0.0080 (9)
C1130.0271 (12)0.0532 (15)0.0417 (14)0.0121 (11)0.0038 (10)0.0104 (12)
C1140.0381 (15)0.0655 (19)0.073 (2)0.0225 (14)0.0170 (14)0.0069 (16)
C1210.0288 (10)0.0183 (9)0.0146 (8)0.0013 (7)0.0036 (7)0.0058 (7)
C1220.0271 (11)0.0399 (12)0.0250 (10)0.0014 (9)0.0049 (8)0.0181 (9)
C1230.0273 (11)0.0444 (13)0.0343 (12)0.0001 (10)0.0003 (9)0.0170 (10)
C1240.0310 (14)0.075 (2)0.0684 (19)0.0012 (13)0.0057 (13)0.0405 (17)
C2110.0224 (10)0.0254 (10)0.0177 (9)0.0050 (8)0.0014 (7)0.0073 (8)
C2120.0257 (10)0.0232 (9)0.0180 (9)0.0020 (8)0.0018 (7)0.0072 (8)
C2130.0255 (11)0.0577 (15)0.0383 (13)0.0062 (10)0.0007 (9)0.0273 (12)
C2140.0274 (11)0.0375 (12)0.0326 (11)0.0053 (9)0.0045 (9)0.0160 (10)
C2210.0241 (10)0.0206 (9)0.0194 (9)0.0009 (7)0.0059 (7)0.0055 (7)
C2220.0387 (12)0.0238 (10)0.0234 (10)0.0078 (9)0.0146 (9)0.0113 (8)
C2230.0493 (15)0.0375 (13)0.0340 (12)0.0182 (11)0.0159 (11)0.0179 (10)
C2240.093 (2)0.0501 (16)0.0583 (18)0.0388 (16)0.0441 (17)0.0395 (15)
O110.0392 (8)0.0160 (6)0.0186 (6)0.0080 (6)0.0065 (6)0.0047 (5)
O120.0336 (8)0.0209 (7)0.0199 (7)0.0118 (6)0.0041 (6)0.0070 (5)
C110.0216 (9)0.0169 (8)0.0217 (9)0.0055 (7)0.0041 (7)0.0067 (7)
C120.0298 (11)0.0181 (9)0.0253 (10)0.0091 (8)0.0034 (8)0.0074 (8)
C130.0539 (15)0.0278 (11)0.0285 (11)0.0166 (10)0.0072 (10)0.0109 (9)
C140.080 (2)0.0385 (13)0.0453 (15)0.0297 (13)0.0080 (14)0.0217 (12)
C150.0745 (19)0.0235 (11)0.0524 (16)0.0250 (12)0.0031 (14)0.0127 (11)
C160.0651 (17)0.0221 (11)0.0421 (14)0.0184 (11)0.0102 (12)0.0016 (10)
C170.0469 (14)0.0218 (10)0.0301 (11)0.0144 (9)0.0080 (10)0.0038 (9)
O210.0271 (7)0.0183 (6)0.0144 (6)0.0064 (5)0.0074 (5)0.0054 (5)
O220.0281 (7)0.0194 (6)0.0166 (6)0.0047 (5)0.0065 (5)0.0048 (5)
C210.0166 (9)0.0220 (9)0.0156 (8)0.0042 (7)0.0017 (7)0.0089 (7)
C220.0177 (9)0.0240 (9)0.0165 (8)0.0067 (7)0.0020 (7)0.0120 (7)
C230.0242 (10)0.0243 (9)0.0207 (9)0.0084 (8)0.0006 (7)0.0105 (8)
C240.0317 (11)0.0271 (10)0.0338 (11)0.0112 (9)0.0029 (9)0.0163 (9)
C250.0280 (11)0.0412 (12)0.0427 (13)0.0153 (9)0.0014 (9)0.0301 (11)
C260.0251 (11)0.0449 (13)0.0345 (11)0.0078 (9)0.0076 (9)0.0248 (10)
C270.0208 (9)0.0311 (10)0.0225 (9)0.0050 (8)0.0029 (7)0.0144 (8)
Sn30.01207 (6)0.01606 (6)0.01332 (5)0.00164 (4)0.00290 (4)0.00592 (4)
Sn40.01779 (6)0.01416 (6)0.01564 (6)0.00312 (4)0.00384 (4)0.00697 (5)
O30.0146 (6)0.0162 (6)0.0170 (6)0.0018 (5)0.0040 (5)0.0085 (5)
C3110.0227 (9)0.0187 (9)0.0153 (8)0.0010 (7)0.0057 (7)0.0069 (7)
C3120.0264 (10)0.0192 (9)0.0189 (9)0.0037 (7)0.0028 (7)0.0067 (7)
C3130.0423 (13)0.0243 (10)0.0216 (10)0.0065 (9)0.0002 (9)0.0060 (8)
C3140.0714 (19)0.0361 (13)0.0316 (13)0.0229 (13)0.0036 (12)0.0042 (11)
C3210.0213 (10)0.0327 (11)0.0208 (9)0.0136 (8)0.0007 (7)0.0097 (8)
C3220.0214 (9)0.0251 (10)0.0193 (9)0.0082 (8)0.0011 (7)0.0073 (8)
C3230.0277 (11)0.0298 (11)0.0259 (10)0.0116 (9)0.0004 (8)0.0032 (9)
C3240.0353 (13)0.0579 (16)0.0235 (11)0.0136 (12)0.0021 (10)0.0048 (11)
O310.0272 (7)0.0295 (7)0.0210 (7)0.0107 (6)0.0070 (6)0.0143 (6)
O320.0182 (6)0.0224 (6)0.0202 (6)0.0002 (5)0.0036 (5)0.0093 (5)
C310.0192 (9)0.0150 (8)0.0158 (8)0.0025 (7)0.0011 (7)0.0038 (7)
C320.0181 (9)0.0128 (8)0.0161 (8)0.0022 (7)0.0003 (7)0.0041 (7)
C330.0217 (9)0.0203 (9)0.0198 (9)0.0014 (7)0.0026 (7)0.0086 (7)
C340.0191 (10)0.0298 (10)0.0266 (10)0.0012 (8)0.0041 (8)0.0094 (8)
C350.0207 (10)0.0221 (9)0.0278 (10)0.0022 (8)0.0040 (8)0.0090 (8)
C360.0299 (11)0.0203 (9)0.0208 (9)0.0019 (8)0.0045 (8)0.0107 (8)
C370.0228 (9)0.0169 (8)0.0182 (9)0.0041 (7)0.0008 (7)0.0066 (7)
O410.0168 (6)0.0246 (7)0.0268 (7)0.0036 (5)0.0066 (5)0.0135 (6)
O420.0298 (8)0.0325 (8)0.0454 (9)0.0019 (6)0.0139 (7)0.0245 (7)
C410.0232 (10)0.0228 (9)0.0212 (9)0.0064 (8)0.0069 (7)0.0080 (8)
C420.0197 (9)0.0254 (9)0.0168 (9)0.0071 (7)0.0066 (7)0.0042 (7)
C430.0197 (9)0.0256 (9)0.0168 (9)0.0069 (7)0.0041 (7)0.0046 (7)
C440.0228 (10)0.0261 (10)0.0204 (9)0.0020 (8)0.0049 (8)0.0014 (8)
C450.0180 (10)0.0374 (12)0.0241 (10)0.0065 (8)0.0044 (8)0.0027 (9)
C460.0235 (10)0.0351 (12)0.0278 (11)0.0155 (9)0.0101 (8)0.0043 (9)
C470.0298 (11)0.0254 (10)0.0274 (10)0.0118 (8)0.0106 (8)0.0023 (8)
C4110.0369 (12)0.0195 (9)0.0213 (9)0.0084 (8)0.0026 (8)0.0075 (8)
C4120.0230 (12)0.0159 (11)0.0273 (12)0.0038 (9)0.0029 (9)0.0071 (9)
C4130.0244 (15)0.0209 (11)0.0358 (14)0.0054 (12)0.0020 (12)0.0124 (10)
C4140.044 (3)0.0282 (14)0.0374 (14)0.0106 (18)0.008 (2)0.0167 (12)
C4150.0369 (12)0.0195 (9)0.0213 (9)0.0084 (8)0.0026 (8)0.0075 (8)
C4160.0230 (12)0.0159 (11)0.0273 (12)0.0038 (9)0.0029 (9)0.0071 (9)
C4170.0244 (15)0.0209 (11)0.0358 (14)0.0054 (12)0.0020 (12)0.0124 (10)
C4180.044 (3)0.0282 (14)0.0374 (14)0.0106 (18)0.008 (2)0.0167 (12)
C4210.0311 (11)0.0333 (11)0.0175 (9)0.0016 (9)0.0070 (8)0.0061 (8)
C4220.051 (2)0.0460 (18)0.0179 (13)0.0056 (15)0.0014 (14)0.0094 (13)
C4230.066 (3)0.067 (2)0.0215 (15)0.005 (3)0.002 (2)0.0109 (15)
C4240.106 (4)0.060 (3)0.040 (2)0.008 (2)0.009 (2)0.015 (2)
C4250.0311 (11)0.0333 (11)0.0175 (9)0.0016 (9)0.0070 (8)0.0061 (8)
C4260.051 (2)0.0460 (18)0.0179 (13)0.0056 (15)0.0014 (14)0.0094 (13)
C4270.066 (3)0.067 (2)0.0215 (15)0.005 (3)0.002 (2)0.0109 (15)
C4280.106 (4)0.060 (3)0.040 (2)0.008 (2)0.009 (2)0.015 (2)
Geometric parameters (Å, º) top
Sn1—O12.0424 (11)C311—H3120.9900
Sn1—C1112.1335 (19)C312—C3131.525 (3)
Sn1—C1212.1300 (19)C312—H3130.9900
Sn1—O1i2.1641 (11)C312—H3140.9900
Sn1—O112.2507 (12)C313—C3141.521 (3)
Sn2—O12.0273 (11)C313—H3150.9900
Sn2—C2112.1342 (19)C313—H3160.9900
Sn2—C2212.1282 (19)C314—H3170.9800
Sn2—O212.1744 (12)C314—H3180.9800
Sn2—O122.2601 (12)C314—H3190.9800
O1—Sn1i2.1641 (11)C321—C3221.520 (2)
C111—C1121.516 (3)C321—H3210.9900
C111—H1110.9900C321—H3220.9900
C111—H1120.9900C322—C3231.520 (3)
C112—C1131.528 (3)C322—H3230.9900
C112—H1130.9900C322—H3240.9900
C112—H1140.9900C323—C3241.518 (3)
C113—C1141.519 (3)C323—H3250.9900
C113—H1150.9900C323—H3260.9900
C113—H1160.9900C324—H3270.9800
C114—H1170.9800C324—H3280.9800
C114—H1180.9800C324—H3290.9800
C114—H1190.9800O31—C311.262 (2)
C121—C1221.520 (3)O32—C311.261 (2)
C121—H1210.9900C31—C321.490 (2)
C121—H1220.9900C32—C371.391 (2)
C122—C1231.516 (3)C32—C331.393 (2)
C122—H1230.9900C33—C341.384 (3)
C122—H1240.9900C33—H330.9500
C123—C1241.523 (3)C34—C351.381 (3)
C123—H1250.9900C34—H340.9500
C123—H1260.9900C35—C361.383 (3)
C124—H1270.9800C35—H350.9500
C124—H1280.9800C36—C371.385 (3)
C124—H1290.9800C36—H360.9500
C211—C2121.517 (2)C37—H370.9500
C211—H2110.9900O41—C411.301 (2)
C211—H2120.9900O42—C411.226 (2)
C212—C2131.535 (3)C41—C421.498 (3)
C212—H2130.9900C42—C431.389 (3)
C212—H2140.9900C42—C471.401 (3)
C213—C2141.510 (3)C43—C441.386 (3)
C213—H2150.9900C43—H430.9500
C213—H2160.9900C44—C451.386 (3)
C214—H2170.9800C44—H440.9500
C214—H2180.9800C45—C461.377 (3)
C214—H2190.9800C45—H450.9500
C221—C2221.525 (3)C46—C471.388 (3)
C221—H2210.9900C46—H460.9500
C221—H2220.9900C47—H470.9500
C222—C2231.523 (3)C411—C4121.532 (2)
C222—H2230.9900C411—H4110.9900
C222—H2240.9900C411—H4120.9900
C223—C2241.532 (3)C412—C4131.525 (2)
C223—H2250.9900C412—H4130.9900
C223—H2260.9900C412—H4140.9900
C224—H2270.9800C413—C4141.525 (3)
C224—H2280.9800C413—H4150.9900
C224—H2290.9800C413—H4160.9900
O11—C111.259 (2)C414—H4170.9800
O12—C111.258 (2)C414—H4180.9800
C11—C121.496 (2)C414—H4190.9800
C12—C131.387 (3)Sn4—C4152.1285 (18)
C12—C171.389 (3)C415—C4161.538 (3)
C13—C141.394 (3)C415—H4310.9900
C13—H130.9500C415—H4320.9900
C14—C151.379 (4)C416—C4171.525 (3)
C14—H140.9500C416—H4330.9900
C15—C161.377 (3)C416—H4340.9900
C15—H150.9500C417—C4181.524 (3)
C16—C171.387 (3)C417—H4350.9900
C16—H160.9500C417—H4360.9900
C17—H170.9500C418—H4370.9800
O21—C211.307 (2)C418—H4380.9800
O22—C211.232 (2)C418—H4390.9800
C21—C221.498 (2)C421—C4221.526 (2)
C22—C271.392 (2)C421—H4210.9900
C22—C231.395 (3)C421—H4220.9900
C23—C241.387 (3)C422—C4231.516 (3)
C23—H230.9500C422—H4230.9900
C24—C251.384 (3)C422—H4240.9900
C24—H240.9500C423—C4241.501 (3)
C25—C261.375 (3)C423—H4250.9900
C25—H250.9500C423—H4260.9900
C26—C271.397 (3)C424—H4270.9800
C26—H260.9500C424—H4280.9800
C27—H270.9500C424—H4290.9800
Sn3—O32.0460 (11)Sn4—C4252.1266 (19)
Sn3—C3112.1271 (17)C425—C4261.512 (3)
Sn3—C3212.1268 (18)C425—H4410.9900
Sn3—O3ii2.1520 (12)C425—H4420.9900
Sn3—O312.2475 (13)C426—C4271.526 (3)
Sn4—O32.0214 (11)C426—H4430.9900
Sn4—C4112.1286 (18)C426—H4440.9900
Sn4—C4212.1266 (19)C427—C4281.526 (3)
Sn4—O412.1886 (13)C427—H4450.9900
Sn4—O322.2350 (13)C427—H4460.9900
O3—Sn3ii2.1521 (12)C428—H4470.9800
C311—C3121.522 (2)C428—H4480.9800
C311—H3110.9900C428—H4490.9800
O1—Sn1—C121108.22 (6)C312—C311—H312108.3
O1—Sn1—C111105.19 (6)Sn3—C311—H312108.3
C121—Sn1—C111146.21 (7)H311—C311—H312107.4
O1—Sn1—O1i75.90 (5)C311—C312—C313111.66 (15)
C121—Sn1—O1i95.08 (6)C311—C312—H313109.3
C111—Sn1—O1i97.77 (6)C313—C312—H313109.3
O1—Sn1—O1192.83 (5)C311—C312—H314109.3
C121—Sn1—O1183.57 (6)C313—C312—H314109.3
C111—Sn1—O1189.94 (6)H313—C312—H314107.9
O1i—Sn1—O11167.66 (5)C314—C313—C312112.54 (18)
O1—Sn2—C221106.53 (6)C314—C313—H315109.1
O1—Sn2—C211109.62 (6)C312—C313—H315109.1
C221—Sn2—C211142.50 (7)C314—C313—H316109.1
O1—Sn2—O2180.33 (4)C312—C313—H316109.1
C221—Sn2—O2197.30 (6)H315—C313—H316107.8
C211—Sn2—O2198.22 (6)C313—C314—H317109.5
O1—Sn2—O1288.40 (5)C313—C314—H318109.5
C221—Sn2—O1291.80 (6)H317—C314—H318109.5
C211—Sn2—O1279.66 (6)C313—C314—H319109.5
O21—Sn2—O12167.14 (5)H317—C314—H319109.5
Sn2—O1—Sn1135.12 (6)H318—C314—H319109.5
Sn2—O1—Sn1i120.42 (5)C322—C321—Sn3114.50 (12)
Sn1—O1—Sn1i104.10 (5)C322—C321—H321108.6
C112—C111—Sn1119.14 (14)Sn3—C321—H321108.6
C112—C111—H111107.5C322—C321—H322108.6
Sn1—C111—H111107.5Sn3—C321—H322108.6
C112—C111—H112107.5H321—C321—H322107.6
Sn1—C111—H112107.5C321—C322—C323112.53 (16)
H111—C111—H112107.0C321—C322—H323109.1
C111—C112—C113112.58 (18)C323—C322—H323109.1
C111—C112—H113109.1C321—C322—H324109.1
C113—C112—H113109.1C323—C322—H324109.1
C111—C112—H114109.1H323—C322—H324107.8
C113—C112—H114109.1C324—C323—C322112.11 (18)
H113—C112—H114107.8C324—C323—H325109.2
C114—C113—C112112.5 (2)C322—C323—H325109.2
C114—C113—H115109.1C324—C323—H326109.2
C112—C113—H115109.1C322—C323—H326109.2
C114—C113—H116109.1H325—C323—H326107.9
C112—C113—H116109.1C323—C324—H327109.5
H115—C113—H116107.8C323—C324—H328109.5
C113—C114—H117109.5H327—C324—H328109.5
C113—C114—H118109.5C323—C324—H329109.5
H117—C114—H118109.5H327—C324—H329109.5
C113—C114—H119109.5H328—C324—H329109.5
H117—C114—H119109.5C31—O31—Sn3132.36 (12)
H118—C114—H119109.5C31—O32—Sn4131.00 (12)
C122—C121—Sn1112.48 (12)O32—C31—O31124.28 (17)
C122—C121—H121109.1O32—C31—C32118.13 (15)
Sn1—C121—H121109.1O31—C31—C32117.59 (15)
C122—C121—H122109.1C37—C32—C33119.71 (17)
Sn1—C121—H122109.1C37—C32—C31120.57 (16)
H121—C121—H122107.8C33—C32—C31119.72 (16)
C123—C122—C121114.20 (17)C34—C33—C32119.78 (17)
C123—C122—H123108.7C34—C33—H33120.1
C121—C122—H123108.7C32—C33—H33120.1
C123—C122—H124108.7C35—C34—C33120.40 (18)
C121—C122—H124108.7C35—C34—H34119.8
H123—C122—H124107.6C33—C34—H34119.8
C122—C123—C124113.1 (2)C34—C35—C36119.97 (18)
C122—C123—H125109.0C34—C35—H35120.0
C124—C123—H125109.0C36—C35—H35120.0
C122—C123—H126109.0C35—C36—C37120.20 (17)
C124—C123—H126109.0C35—C36—H36119.9
H125—C123—H126107.8C37—C36—H36119.9
C123—C124—H127109.5C36—C37—C32119.94 (17)
C123—C124—H128109.5C36—C37—H37120.0
H127—C124—H128109.5C32—C37—H37120.0
C123—C124—H129109.5C41—O41—Sn4113.34 (11)
H127—C124—H129109.5O42—C41—O41122.39 (18)
H128—C124—H129109.5O42—C41—C42121.34 (16)
C212—C211—Sn2123.08 (13)O41—C41—C42116.27 (16)
C212—C211—H211106.6C43—C42—C47119.17 (18)
Sn2—C211—H211106.6C43—C42—C41121.47 (16)
C212—C211—H212106.6C47—C42—C41119.35 (17)
Sn2—C211—H212106.6C44—C43—C42120.69 (17)
H211—C211—H212106.5C44—C43—H43119.7
C211—C212—C213110.73 (16)C42—C43—H43119.7
C211—C212—H213109.5C45—C44—C43119.58 (19)
C213—C212—H213109.5C45—C44—H44120.2
C211—C212—H214109.5C43—C44—H44120.2
C213—C212—H214109.5C46—C45—C44120.45 (19)
H213—C212—H214108.1C46—C45—H45119.8
C214—C213—C212114.65 (18)C44—C45—H45119.8
C214—C213—H215108.6C45—C46—C47120.27 (18)
C212—C213—H215108.6C45—C46—H46119.9
C214—C213—H216108.6C47—C46—H46119.9
C212—C213—H216108.6C46—C47—C42119.8 (2)
H215—C213—H216107.6C46—C47—H47120.1
C213—C214—H217109.5C42—C47—H47120.1
C213—C214—H218109.5C412—C411—Sn4113.43 (13)
H217—C214—H218109.5C412—C411—H411108.9
C213—C214—H219109.5Sn4—C411—H411108.9
H217—C214—H219109.5C412—C411—H412108.9
H218—C214—H219109.5Sn4—C411—H412108.9
C222—C221—Sn2117.13 (13)H411—C411—H412107.7
C222—C221—H221108.0C413—C412—C411112.25 (18)
Sn2—C221—H221108.0C413—C412—H413109.2
C222—C221—H222108.0C411—C412—H413109.2
Sn2—C221—H222108.0C413—C412—H414109.2
H221—C221—H222107.3C411—C412—H414109.2
C223—C222—C221112.96 (18)H413—C412—H414107.9
C223—C222—H223109.0C414—C413—C412110.6 (3)
C221—C222—H223109.0C414—C413—H415109.5
C223—C222—H224109.0C412—C413—H415109.5
C221—C222—H224109.0C414—C413—H416109.5
H223—C222—H224107.8C412—C413—H416109.5
C222—C223—C224112.0 (2)H415—C413—H416108.1
C222—C223—H225109.2C413—C414—H417109.5
C224—C223—H225109.2C413—C414—H418109.5
C222—C223—H226109.2H417—C414—H418109.5
C224—C223—H226109.2C413—C414—H419109.5
H225—C223—H226107.9H417—C414—H419109.5
C223—C224—H227109.5H418—C414—H419109.5
C223—C224—H228109.5C416—C415—Sn4111.5 (4)
H227—C224—H228109.5C416—C415—H431109.3
C223—C224—H229109.5Sn4—C415—H431109.3
H227—C224—H229109.5C416—C415—H432109.3
H228—C224—H229109.5Sn4—C415—H432109.3
C11—O11—Sn1130.39 (12)H431—C415—H432108.0
C11—O12—Sn2136.33 (12)C417—C416—C415108.1 (6)
O12—C11—O11124.52 (16)C417—C416—H433110.1
O12—C11—C12117.39 (16)C415—C416—H433110.1
O11—C11—C12118.09 (16)C417—C416—H434110.1
C13—C12—C17119.84 (18)C415—C416—H434110.1
C13—C12—C11120.83 (18)H433—C416—H434108.4
C17—C12—C11119.32 (17)C418—C417—C416118.3 (15)
C12—C13—C14119.5 (2)C418—C417—H435107.7
C12—C13—H13120.3C416—C417—H435107.7
C14—C13—H13120.3C418—C417—H436107.7
C15—C14—C13120.1 (2)C416—C417—H436107.7
C15—C14—H14119.9H435—C417—H436107.1
C13—C14—H14119.9C417—C418—H437109.5
C16—C15—C14120.6 (2)C417—C418—H438109.5
C16—C15—H15119.7H437—C418—H438109.5
C14—C15—H15119.7C417—C418—H439109.5
C15—C16—C17119.6 (2)H437—C418—H439109.5
C15—C16—H16120.2H438—C418—H439109.5
C17—C16—H16120.2C422—C421—Sn4119.24 (15)
C16—C17—C12120.3 (2)C422—C421—H421107.5
C16—C17—H17119.8Sn4—C421—H421107.5
C12—C17—H17119.8C422—C421—H422107.5
C21—O21—Sn2110.21 (10)Sn4—C421—H422107.5
O22—C21—O21122.11 (16)H421—C421—H422107.0
O22—C21—C22121.51 (15)C423—C422—C421117.2 (3)
O21—C21—C22116.38 (15)C423—C422—H423108.0
C27—C22—C23119.73 (17)C421—C422—H423108.0
C27—C22—C21118.77 (17)C423—C422—H424108.0
C23—C22—C21121.50 (16)C421—C422—H424108.0
C24—C23—C22120.09 (18)H423—C422—H424107.3
C24—C23—H23120.0C424—C423—C422114.8 (3)
C22—C23—H23120.0C424—C423—H425108.6
C25—C24—C23120.1 (2)C422—C423—H425108.6
C25—C24—H24119.9C424—C423—H426108.6
C23—C24—H24119.9C422—C423—H426108.6
C26—C25—C24120.10 (18)H425—C423—H426107.6
C26—C25—H25120.0C423—C424—H427109.5
C24—C25—H25120.0C423—C424—H428109.5
C25—C26—C27120.60 (19)H427—C424—H428109.5
C25—C26—H26119.7C423—C424—H429109.5
C27—C26—H26119.7H427—C424—H429109.5
C22—C27—C26119.37 (19)H428—C424—H429109.5
C22—C27—H27120.3C426—C425—Sn4118.6 (3)
C26—C27—H27120.3C426—C425—H441107.7
O3—Sn3—C321104.42 (6)Sn4—C425—H441107.7
O3—Sn3—C311113.05 (6)C426—C425—H442107.7
C321—Sn3—C311141.73 (7)Sn4—C425—H442107.7
O3—Sn3—O3ii75.78 (5)H441—C425—H442107.1
C321—Sn3—O3ii98.78 (7)C425—C426—C427109.7 (5)
C311—Sn3—O3ii97.63 (6)C425—C426—H443109.7
O3—Sn3—O3188.63 (5)C427—C426—H443109.7
C321—Sn3—O3190.42 (7)C425—C426—H444109.7
C311—Sn3—O3183.17 (6)C427—C426—H444109.7
O3ii—Sn3—O31163.43 (5)H443—C426—H444108.2
O3—Sn4—C411107.63 (6)C428—C427—C426114.1 (8)
O3—Sn4—O4178.49 (5)C428—C427—H445108.7
C411—Sn4—O4199.90 (7)C426—C427—H445108.7
O3—Sn4—O3290.57 (5)C428—C427—H446108.7
C411—Sn4—O3290.61 (7)C426—C427—H446108.7
O41—Sn4—O32166.67 (5)H445—C427—H446107.6
Sn4—O3—Sn3135.16 (6)C427—C428—H447109.5
Sn4—O3—Sn3ii120.55 (5)C427—C428—H448109.5
Sn3—O3—Sn3ii104.22 (5)H447—C428—H448109.5
C312—C311—Sn3115.78 (12)C427—C428—H449109.5
C312—C311—H311108.3H447—C428—H449109.5
Sn3—C311—H311108.3H448—C428—H449109.5
C111—C112—C113—C114175.8 (2)Sn1—C111—C112—C113177.18 (15)
C121—C122—C123—C124171.8 (2)Sn1—C121—C122—C123172.39 (15)
C211—C212—C213—C214178.65 (19)Sn2—C211—C212—C213179.79 (14)
C221—C222—C223—C224175.83 (19)Sn2—C221—C222—C223177.13 (14)
C311—C312—C313—C314179.97 (19)Sn3—C311—C312—C313179.85 (13)
C321—C322—C323—C324173.66 (19)Sn3—C321—C322—C323167.95 (14)
C411—C412—C413—C414179.9 (4)Sn4—C411—C412—C41368.3 (2)
C415—C416—C417—C418177.5 (16)Sn4—C415—C416—C41772.2 (7)
C421—C422—C423—C42455.9 (5)Sn4—C421—C422—C423167.1 (3)
C425—C426—C427—C42879.6 (11)Sn4—C425—C426—C427176.8 (5)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

First citationAmini, M. M., Abadi, S. H., Mirzaee, M., Lügger, T., Hahn, F. E. & Ng, S. W. (2002). Acta Cryst. E58, m697–m699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, V., Singh, P. & Gopal, K. (2008). Organotin Carboxylate and Sulfonate Clusters. In Tin Chemistry – Fundamentals, Frontiers, and Applications edited by A. G. Davies, M. Gielen, K. H. Pannell & E. R. T. Tiekink. New York: John Wiley & Sons.  Google Scholar
First citationDavies, A. G. (1997). In Organotin Chemistry. Weinheim: VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReuter, H. & Okio, C. K. Y. A. (2016). Acta Cryst. E72, 897–900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds