research communications
Podanthus mitiqui (L.)
of erioflorin isolated fromaUniversidad de La Frontera, Departamento de Ciencias Quimicas y Recursos Naturales, Avenida Francisco Salazar 01145, 4811230 Temuco, Chile, bUniversidad Austral de Chile, Instituto de Ciencias Quimica, Facultad de Ciencias, Casilla 567, 5090000 Valdivia, Chile, and cUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de
The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a,2,3,5a,7,8,8a,9,10,10a-decahydro-3-hydroxy-4,10a-dimethyl-8-methylidene-7-oxooxireno[5,6]cyclodeca[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the P212121, and its molecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C—H⋯O hydrogen bond. An O—H⋯O hydrogen bond and further C—H⋯O interactions can be observed in the packing.
CCDC reference: 1530526
1. Chemical context
Podanthus mitiqui (Lindl) [Asteraceae, Compositae] is an endemic plant of the Central Zone of Chile. It is an evergreen shrub that can reach up to two meters in height; its flowers are yellow or orange–yellow globose inflorescences. Previous chemical investigations of extracts isolated from the stems and leaves of Podanthus mitiqui revealed the presence of sesquiterpene with a germacrane framework such as ovatifolin, deacetylovatifolin and arturin (Hoeneisen et al., 1980) as well as erioflorin methacrylate and heliangine methacrylate (Hoeneisen et al., 1981). Sesquiterpene show significant anti-inflammatory, cytotoxic (Ghantous et al., 2010) and antiprotozoal activities (Kaur et al., 2009; Cea et al., 1990; Bautista et al., 2012) that make them interesting as attractive skeletons for drug design (for their toxic activities, see Schmidt, 1999). The natural compound erioflorin has previously been isolated from Eriophyllum confertiflorum (Torrance et al., 1969), Podanthus ovatifolius (Gnecco et al., 1973), Helianthus tuberosus (Morimoto & Oshio, 1981), Viguiera eriophora (Delgado et al., 1982; Spring et al., 2000) and Eriophyllum lanatum (Cea et al., 1990). Now we report the title compound from P. mitiqui. Erioflorin has strong cytotoxic activity for the stabilization of the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase β-TrCP1 and interferes with cell cycle progression and proliferation of tumor cells (Blees et al., 2012). Herein we present the of erioflorin in order to establish unambiguously the stereochemical features of this natural compound.
2. Structural commentary
The molecule is built up from a 1,10-epoxidized ten-membered ring with hydroxyl, methylacryl and two methyl substituents (Fig. 1). This ring is 5,6-fused with a five-membered lactone ring with a vinyl group as substituent. The dihedral angles between the mean planes of the ten-membered ring and the lactone and the epoxide rings are 45.2 (1) and 45.7 (2)°, respectively.
The ten-membered ring adopts an extended q = 1.161 (3) Å and smallest displacement parameters φ of 23.2 (8), 252.2 (3) and 346.1 (2)°. The maximum deviation from the mean plane is 0.589 (3) Å (C3). The C—C bond lengths range from 1.474 (5) to 1.557 (4) Å. The Z-configured double bond is located between C4 and C5 with a bond length of 1.326 (4) Å. Some bond angles differ notably from ideal values due to the ring strain, such as C3—C4—C5 and C4—C5—C6 [125.7 (3) and 127.5 (3)°, respectively]. The bond angles within the ten-membered ring including Csp3 atoms range from 112.0 (3)° to 125.7 (3)°. The ten-membered and the five-membered rings are trans-fused. The lactone ring shows a closed puckering on C6-C7 (twisted). The puckering amplitude and the smallest displacement parameter of the five-membered ring are q = 0.192 (3) Å and φ = 58.7 (9)°. With respect to the lactone ring, H6 and H7 are equatorially oriented, whereas the C6—C5 and the C7—C8 bonds are axial. The maximum deviations of the substituents from the best plane are 0.065 (6) Å (O4) and −0.323 (6) Å (C13). The 1,10-epoxy ring is trans-fused. The C8 side chain is β oriented as well as the C10 methyl group, whereas the C4 methyl group is α. The methacrylate substituent deviates from the planarity by twisting about C16—C17 [torsion angle O5—C16—C17—C19 = 28.4 (5)°]. The structure is closely related to that of dihydroheliangine monochlorido acetate (Nishikawa et al., 1966). Heliangine contains dimethacrylate instead of methacrylate. Further similar compounds are eriophyllin (5-position: –AcO instead of OH; 6-position: –CH2OH instead of –CH3), eriophyllin-B (6-position: CH2OH; 8-position: unsubstituted) and eriophyllin-C (6-position: –CHO; 8-position: unsubstituted), which were also isolated from Eriophyllum confertiflorum (Torrance et al., 1969). Their crystal structures are hitherto unknown. The X-ray analysis provides the The correct of the molecule was assigned to agree with the known of erioflorin and is particularly based on the positions of the C6 and C7 protons as β and α, respectively, and of the methacrylate substituent as β (Torrance et al., 1969; Gnecco et al., 1973).
with puckering amplitudes from 0.257 (3) to 0.805 (3) Å, yielding a total puckering amplitude3. Supramolecular features
The ii, running along the c-axis direction is formed via the hydroxyl group and the lactone oxo group (Fig. 2, Table 1). Furthermore, three weak C—H⋯O hydrogen bonds occur between hydrogen atoms bonded to carbon ring atoms and the oxygen atom of the same epoxide ring, running along the a-axis direction (C1—H1⋯O1i), approximately between the a and b axes (C7—H7⋯O1i) and along b (C13—H13B⋯O6iii). Non-hydrogen intermolecular contacts are found between O2 and O4iv [2.750 (4) Å; symmetry code: (iv) 1 − x, + y, − z]. The contains no residual solvent-accessible voids.
features infinite chains connected by hydrogen bonds. A strong O—H⋯O hydrogen bond, namely O2—H2⋯O44. Database survey
For structures containing the decahydrooxireno[6,7]cyclodec-4-ene[1,2-b]furan unit, see Hull & Kennard (1978) and Bautista et al. (2012). For the structures of Argophyllin A, see Watson & Zabel (1982) and of Argophyllone B, see Stipanovic et al. (1985).
5. Extraction and crystallization
Erioflorin was isolated from Podanthus mitiqui collected in Concepcion, VIII Region of Chile, in February 2015 (S 36° 50′ 06.02′′ W 73° 01′ 49.36′′). Aerial parts (9.6 kg) were powdered and extracted by maceration with ethyl acetate for 3 d. The organic layer was evaporated in vacuo giving a crude product (250 g) which was further purified by giving a primary fractioning of 11 fractions (F1–F11) by using increasing polarity from hexane to ethyl acetate. F-8 (6 g) was further purified by (silica gel 60/70–210 mesh, hexane/EtOAc 1:3 v/v) giving a white solid, which was recrystallized from EtOc, affording colourless crystals suitable for X-ray M.p. (from methanol): 499–500 K. For further physical data [m.p.(methanol, ethyl acetate), αD, IR, 1H NMR] for erioflorin, see Torrance et al. (1969), Morimoto & Oshio (1981) and Blees et al. (2012).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located from a difference Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model with C—H = 0.97 Å (–CH3, allowing for rotation), C—H = 0.98 Å (–CH2), C—H = 0.99 Å, (–CH), C—H = 0.94 Å (=CH2), and Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Uiso(CH,CH2), with the exception of the O—H hydrogen atom, which was refined freely, but with Uiso(H) = 1.5Uiso(O).
details are summarized in Table 2Supporting information
CCDC reference: 1530526
https://doi.org/10.1107/S2056989017001700/zl2693sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017001700/zl2693Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017001700/zl2693Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2016); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).C19H24O6 | Dx = 1.239 Mg m−3 |
Mr = 348.38 | Melting point = 498–499 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4709 (3) Å | Cell parameters from 28996 reflections |
b = 9.8287 (3) Å | θ = 1.8–25.0° |
c = 22.4299 (6) Å | µ = 0.09 mm−1 |
V = 1867.47 (10) Å3 | T = 210 K |
Z = 4 | Needle, colourless |
F(000) = 744 | 1.02 × 0.19 × 0.06 mm |
Stoe IPDS 2 diffractometer | 3307 independent reflections |
Radiation source: sealed X-ray tube | 2968 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.105 |
rotation method scans | θmax = 25.1°, θmin = 1.8° |
Absorption correction: integration (X-RED; Stoe & Cie, 2011) | h = −10→10 |
Tmin = 0.585, Tmax = 0.825 | k = −11→11 |
24317 measured reflections | l = −26→26 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5108P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
3307 reflections | Δρmax = 0.22 e Å−3 |
233 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.019 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.2718 (4) | 0.7223 (3) | 0.94856 (14) | 0.0455 (7) | |
H1 | 1.1651 | 0.7406 | 0.9646 | 0.055* | |
C2 | 1.2836 (5) | 0.5963 (4) | 0.91111 (17) | 0.0560 (9) | |
H2A | 1.2413 | 0.5195 | 0.9340 | 0.067* | |
H2B | 1.3954 | 0.5777 | 0.9034 | 0.067* | |
C3 | 1.1965 (4) | 0.6038 (3) | 0.85131 (15) | 0.0486 (8) | |
H3 | 1.1997 | 0.5119 | 0.8334 | 0.058* | |
C4 | 1.0244 (4) | 0.6422 (3) | 0.85906 (14) | 0.0443 (7) | |
C5 | 0.9680 (3) | 0.7678 (3) | 0.86197 (14) | 0.0417 (7) | |
H5 | 0.8582 | 0.7760 | 0.8670 | 0.050* | |
C6 | 1.0579 (3) | 0.8971 (3) | 0.85813 (13) | 0.0383 (6) | |
H6 | 1.1702 | 0.8782 | 0.8491 | 0.046* | |
C7 | 1.0446 (3) | 0.9878 (3) | 0.91481 (13) | 0.0366 (6) | |
H7 | 1.0075 | 0.9325 | 0.9489 | 0.044* | |
C8 | 1.1992 (4) | 1.0598 (3) | 0.93117 (13) | 0.0416 (7) | |
H8 | 1.1719 | 1.1426 | 0.9541 | 0.050* | |
C9 | 1.3134 (4) | 0.9765 (4) | 0.96848 (14) | 0.0480 (8) | |
H9A | 1.4052 | 1.0339 | 0.9771 | 0.058* | |
H9B | 1.2620 | 0.9568 | 1.0066 | 0.058* | |
C10 | 1.3734 (4) | 0.8436 (4) | 0.94334 (15) | 0.0460 (8) | |
C11 | 0.9193 (4) | 1.0888 (3) | 0.89732 (14) | 0.0421 (7) | |
C12 | 0.9029 (4) | 1.0827 (4) | 0.83196 (15) | 0.0509 (8) | |
C13 | 0.8339 (4) | 1.1686 (4) | 0.93126 (18) | 0.0557 (9) | |
H13A | 0.7575 | 1.2258 | 0.9141 | 0.067* | |
H13B | 0.8491 | 1.1686 | 0.9728 | 0.067* | |
C14 | 0.9170 (5) | 0.5216 (4) | 0.86532 (19) | 0.0637 (10) | |
H14A | 0.9229 | 0.4664 | 0.8295 | 0.095* | |
H14B | 0.8094 | 0.5527 | 0.8710 | 0.095* | |
H14C | 0.9494 | 0.4678 | 0.8994 | 0.095* | |
C15 | 1.5071 (4) | 0.8528 (5) | 0.89945 (19) | 0.0625 (10) | |
H15A | 1.5415 | 0.7620 | 0.8887 | 0.094* | |
H15B | 1.5943 | 0.9021 | 0.9173 | 0.094* | |
H15C | 1.4717 | 0.9005 | 0.8640 | 0.094* | |
C16 | 1.3628 (4) | 1.2116 (3) | 0.87355 (16) | 0.0461 (7) | |
C17 | 1.4187 (5) | 1.2424 (4) | 0.81157 (19) | 0.0636 (10) | |
C18 | 1.5204 (4) | 1.3623 (4) | 0.8052 (2) | 0.0637 (10) | |
H18A | 1.5912 | 1.3680 | 0.8391 | 0.096* | |
H18B | 1.4555 | 1.4436 | 0.8036 | 0.096* | |
H18C | 1.5815 | 1.3548 | 0.7688 | 0.096* | |
C19 | 1.3174 (7) | 1.2043 (6) | 0.76391 (19) | 0.0893 (16) | |
H19A | 1.3158 | 1.2558 | 0.7286 | 0.107* | |
H19B | 1.2519 | 1.1275 | 0.7677 | 0.107* | |
O1 | 1.3989 (3) | 0.7432 (3) | 0.99078 (11) | 0.0602 (7) | |
O2 | 1.2835 (3) | 0.6918 (3) | 0.81346 (11) | 0.0502 (6) | |
H2 | 1.245 (5) | 0.681 (5) | 0.779 (2) | 0.075* | |
O3 | 0.9867 (3) | 0.9803 (2) | 0.80995 (9) | 0.0466 (6) | |
O4 | 0.8276 (4) | 1.1601 (3) | 0.80088 (13) | 0.0800 (10) | |
O5 | 1.2672 (3) | 1.1032 (2) | 0.87473 (10) | 0.0472 (6) | |
O6 | 1.4016 (4) | 1.2734 (3) | 0.91723 (13) | 0.0680 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0439 (16) | 0.0556 (19) | 0.0370 (15) | 0.0101 (15) | −0.0056 (13) | 0.0065 (14) |
C2 | 0.060 (2) | 0.0514 (18) | 0.057 (2) | 0.0157 (18) | −0.0042 (17) | 0.0038 (17) |
C3 | 0.0514 (18) | 0.0456 (16) | 0.0488 (19) | 0.0022 (15) | 0.0046 (15) | −0.0048 (15) |
C4 | 0.0465 (16) | 0.0476 (17) | 0.0389 (16) | −0.0089 (14) | 0.0022 (14) | −0.0047 (14) |
C5 | 0.0334 (13) | 0.0507 (17) | 0.0411 (16) | −0.0036 (13) | 0.0012 (12) | −0.0064 (15) |
C6 | 0.0364 (14) | 0.0408 (15) | 0.0377 (15) | 0.0020 (12) | −0.0030 (12) | 0.0026 (13) |
C7 | 0.0344 (14) | 0.0395 (15) | 0.0358 (14) | 0.0005 (12) | 0.0007 (11) | 0.0006 (12) |
C8 | 0.0416 (16) | 0.0474 (16) | 0.0358 (15) | −0.0056 (14) | −0.0033 (12) | −0.0008 (13) |
C9 | 0.0445 (17) | 0.061 (2) | 0.0380 (15) | −0.0040 (16) | −0.0091 (13) | −0.0004 (15) |
C10 | 0.0368 (16) | 0.061 (2) | 0.0407 (17) | 0.0054 (14) | −0.0096 (13) | 0.0035 (14) |
C11 | 0.0431 (17) | 0.0443 (16) | 0.0389 (15) | 0.0035 (14) | −0.0012 (13) | 0.0028 (13) |
C12 | 0.0521 (19) | 0.059 (2) | 0.0420 (17) | 0.0135 (17) | −0.0024 (14) | 0.0072 (16) |
C13 | 0.056 (2) | 0.057 (2) | 0.055 (2) | 0.0140 (17) | 0.0025 (16) | 0.0002 (17) |
C14 | 0.072 (2) | 0.056 (2) | 0.063 (2) | −0.0208 (19) | 0.0096 (19) | −0.0086 (19) |
C15 | 0.0373 (18) | 0.085 (3) | 0.065 (2) | −0.0032 (18) | 0.0051 (16) | −0.003 (2) |
C16 | 0.0453 (17) | 0.0383 (15) | 0.0547 (19) | −0.0019 (13) | −0.0024 (14) | −0.0011 (16) |
C17 | 0.064 (2) | 0.065 (2) | 0.063 (2) | −0.019 (2) | 0.0036 (18) | 0.013 (2) |
C18 | 0.049 (2) | 0.057 (2) | 0.085 (3) | 0.0022 (17) | 0.014 (2) | 0.000 (2) |
C19 | 0.110 (4) | 0.114 (4) | 0.045 (2) | −0.046 (3) | 0.005 (2) | 0.005 (2) |
O1 | 0.0578 (14) | 0.0738 (16) | 0.0491 (14) | 0.0128 (13) | −0.0181 (11) | 0.0102 (12) |
O2 | 0.0420 (12) | 0.0630 (14) | 0.0458 (12) | 0.0000 (11) | 0.0056 (10) | −0.0082 (11) |
O3 | 0.0506 (12) | 0.0543 (13) | 0.0349 (11) | 0.0070 (11) | −0.0031 (9) | 0.0019 (10) |
O4 | 0.090 (2) | 0.097 (2) | 0.0535 (16) | 0.0422 (18) | −0.0130 (15) | 0.0130 (16) |
O5 | 0.0506 (13) | 0.0508 (12) | 0.0402 (11) | −0.0137 (11) | −0.0016 (9) | 0.0038 (10) |
O6 | 0.0806 (18) | 0.0558 (14) | 0.0675 (17) | −0.0177 (14) | 0.0062 (14) | −0.0152 (14) |
C1—O1 | 1.449 (4) | C10—O1 | 1.467 (4) |
C1—C10 | 1.475 (5) | C10—C15 | 1.503 (5) |
C1—C2 | 1.499 (5) | C11—C13 | 1.311 (5) |
C1—H1 | 0.9900 | C11—C12 | 1.474 (5) |
C2—C3 | 1.532 (5) | C12—O4 | 1.213 (4) |
C2—H2A | 0.9800 | C12—O3 | 1.327 (4) |
C2—H2B | 0.9800 | C13—H13A | 0.9400 |
C3—O2 | 1.418 (4) | C13—H13B | 0.9400 |
C3—C4 | 1.516 (5) | C14—H14A | 0.9700 |
C3—H3 | 0.9900 | C14—H14B | 0.9700 |
C4—C5 | 1.326 (4) | C14—H14C | 0.9700 |
C4—C14 | 1.501 (5) | C15—H15A | 0.9700 |
C5—C6 | 1.484 (4) | C15—H15B | 0.9700 |
C5—H5 | 0.9400 | C15—H15C | 0.9700 |
C6—O3 | 1.483 (3) | C16—O6 | 1.199 (4) |
C6—C7 | 1.557 (4) | C16—O5 | 1.338 (4) |
C6—H6 | 0.9900 | C16—C17 | 1.499 (5) |
C7—C11 | 1.505 (4) | C17—C19 | 1.421 (6) |
C7—C8 | 1.533 (4) | C17—C18 | 1.467 (5) |
C7—H7 | 0.9900 | C18—H18A | 0.9700 |
C8—O5 | 1.455 (4) | C18—H18B | 0.9700 |
C8—C9 | 1.519 (4) | C18—H18C | 0.9700 |
C8—H8 | 0.9900 | C19—H19A | 0.9400 |
C9—C10 | 1.511 (5) | C19—H19B | 0.9400 |
C9—H9A | 0.9800 | O2—H2 | 0.85 (5) |
C9—H9B | 0.9800 | ||
O1—C1—C10 | 60.2 (2) | H9A—C9—H9B | 107.1 |
O1—C1—C2 | 115.7 (3) | O1—C10—C1 | 59.0 (2) |
C10—C1—C2 | 125.7 (3) | O1—C10—C15 | 113.9 (3) |
O1—C1—H1 | 114.5 | C1—C10—C15 | 122.7 (3) |
C10—C1—H1 | 114.5 | O1—C10—C9 | 111.1 (3) |
C2—C1—H1 | 114.5 | C1—C10—C9 | 118.2 (3) |
C1—C2—C3 | 114.7 (3) | C15—C10—C9 | 116.4 (3) |
C1—C2—H2A | 108.6 | C13—C11—C12 | 123.3 (3) |
C3—C2—H2A | 108.6 | C13—C11—C7 | 129.2 (3) |
C1—C2—H2B | 108.6 | C12—C11—C7 | 107.4 (3) |
C3—C2—H2B | 108.6 | O4—C12—O3 | 122.9 (3) |
H2A—C2—H2B | 107.6 | O4—C12—C11 | 126.6 (3) |
O2—C3—C4 | 114.6 (3) | O3—C12—C11 | 110.5 (3) |
O2—C3—C2 | 107.6 (3) | C11—C13—H13A | 120.0 |
C4—C3—C2 | 112.0 (3) | C11—C13—H13B | 120.0 |
O2—C3—H3 | 107.4 | H13A—C13—H13B | 120.0 |
C4—C3—H3 | 107.4 | C4—C14—H14A | 109.5 |
C2—C3—H3 | 107.4 | C4—C14—H14B | 109.5 |
C5—C4—C14 | 120.8 (3) | H14A—C14—H14B | 109.5 |
C5—C4—C3 | 125.7 (3) | C4—C14—H14C | 109.5 |
C14—C4—C3 | 113.4 (3) | H14A—C14—H14C | 109.5 |
C4—C5—C6 | 127.5 (3) | H14B—C14—H14C | 109.5 |
C4—C5—H5 | 116.2 | C10—C15—H15A | 109.5 |
C6—C5—H5 | 116.2 | C10—C15—H15B | 109.5 |
O3—C6—C5 | 107.8 (2) | H15A—C15—H15B | 109.5 |
O3—C6—C7 | 104.5 (2) | C10—C15—H15C | 109.5 |
C5—C6—C7 | 113.9 (2) | H15A—C15—H15C | 109.5 |
O3—C6—H6 | 110.2 | H15B—C15—H15C | 109.5 |
C5—C6—H6 | 110.2 | O6—C16—O5 | 123.6 (3) |
C7—C6—H6 | 110.2 | O6—C16—C17 | 124.7 (3) |
C11—C7—C8 | 111.1 (2) | O5—C16—C17 | 111.7 (3) |
C11—C7—C6 | 102.5 (2) | C19—C17—C18 | 119.6 (4) |
C8—C7—C6 | 113.4 (2) | C19—C17—C16 | 117.0 (3) |
C11—C7—H7 | 109.9 | C18—C17—C16 | 115.9 (4) |
C8—C7—H7 | 109.9 | C17—C18—H18A | 109.5 |
C6—C7—H7 | 109.9 | C17—C18—H18B | 109.5 |
O5—C8—C9 | 112.6 (3) | H18A—C18—H18B | 109.5 |
O5—C8—C7 | 105.4 (2) | C17—C18—H18C | 109.5 |
C9—C8—C7 | 115.3 (3) | H18A—C18—H18C | 109.5 |
O5—C8—H8 | 107.7 | H18B—C18—H18C | 109.5 |
C9—C8—H8 | 107.7 | C17—C19—H19A | 120.0 |
C7—C8—H8 | 107.7 | C17—C19—H19B | 120.0 |
C10—C9—C8 | 118.3 (3) | H19A—C19—H19B | 120.0 |
C10—C9—H9A | 107.7 | C1—O1—C10 | 60.8 (2) |
C8—C9—H9A | 107.7 | C3—O2—H2 | 106 (3) |
C10—C9—H9B | 107.7 | C12—O3—C6 | 111.4 (2) |
C8—C9—H9B | 107.7 | C16—O5—C8 | 119.4 (2) |
O1—C1—C2—C3 | −155.0 (3) | C8—C9—C10—O1 | −146.5 (3) |
C10—C1—C2—C3 | −84.4 (4) | C8—C9—C10—C1 | −81.3 (4) |
C1—C2—C3—O2 | 72.5 (4) | C8—C9—C10—C15 | 80.9 (4) |
C1—C2—C3—C4 | −54.4 (4) | C8—C7—C11—C13 | −76.3 (4) |
O2—C3—C4—C5 | −36.3 (5) | C6—C7—C11—C13 | 162.3 (4) |
C2—C3—C4—C5 | 86.7 (4) | C8—C7—C11—C12 | 104.9 (3) |
O2—C3—C4—C14 | 145.4 (3) | C6—C7—C11—C12 | −16.5 (3) |
C2—C3—C4—C14 | −91.6 (4) | C13—C11—C12—O4 | 10.6 (7) |
C14—C4—C5—C6 | 178.4 (3) | C7—C11—C12—O4 | −170.5 (4) |
C3—C4—C5—C6 | 0.3 (6) | C13—C11—C12—O3 | −170.9 (3) |
C4—C5—C6—O3 | 125.5 (3) | C7—C11—C12—O3 | 7.9 (4) |
C4—C5—C6—C7 | −119.1 (4) | O6—C16—C17—C19 | −153.5 (5) |
O3—C6—C7—C11 | 19.0 (3) | O5—C16—C17—C19 | 28.4 (5) |
C5—C6—C7—C11 | −98.4 (3) | O6—C16—C17—C18 | −3.8 (6) |
O3—C6—C7—C8 | −100.9 (3) | O5—C16—C17—C18 | 178.1 (3) |
C5—C6—C7—C8 | 141.8 (3) | C2—C1—O1—C10 | 118.1 (3) |
C11—C7—C8—O5 | −74.8 (3) | C15—C10—O1—C1 | −115.1 (3) |
C6—C7—C8—O5 | 40.0 (3) | C9—C10—O1—C1 | 111.1 (3) |
C11—C7—C8—C9 | 160.4 (3) | O4—C12—O3—C6 | −176.3 (4) |
C6—C7—C8—C9 | −84.8 (3) | C11—C12—O3—C6 | 5.2 (4) |
O5—C8—C9—C10 | −61.5 (4) | C5—C6—O3—C12 | 105.8 (3) |
C7—C8—C9—C10 | 59.5 (4) | C7—C6—O3—C12 | −15.7 (3) |
C2—C1—C10—O1 | −101.8 (3) | O6—C16—O5—C8 | 3.0 (5) |
O1—C1—C10—C15 | 100.1 (3) | C17—C16—O5—C8 | −178.9 (3) |
C2—C1—C10—C15 | −1.7 (5) | C9—C8—O5—C16 | −80.4 (3) |
O1—C1—C10—C9 | −98.9 (3) | C7—C8—O5—C16 | 153.1 (3) |
C2—C1—C10—C9 | 159.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.99 | 2.47 | 3.456 (4) | 173 |
C6—H6···O2 | 0.99 | 2.22 | 2.954 (4) | 130 |
C7—H7···O1i | 0.99 | 2.38 | 3.341 (4) | 164 |
O2—H2···O4ii | 0.85 (5) | 1.90 (5) | 2.750 (4) | 176 (5) |
C13—H13B···O6iii | 0.94 | 2.57 | 3.493 (5) | 167 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) −x+2, y−1/2, −z+3/2; (iii) x−1/2, −y+5/2, −z+2. |
Acknowledgements
We thank Bernd Schmidt (University of Potsdam) for helpful discussions.
Funding information
Funding for this research was provided by: University of La Frontera (Temuco, Chile) (award No. DIUFRO DI15-0063); Deutsche ForschungsgemeinschaftOpen Access Publishing Fund of University Potsdam
References
Bautista, E., Calzada, F., Yepez-Mulia, I., Chavez-Soto, M. & Ortega, A. (2012). Planta Med. 78, 1698–1701. CAS PubMed Google Scholar
Blees, J. S., Bokesch, H. R., Rübsamen, D., Schulz, K., Milke, L., Bajer, M. M., Gustafson, K. R., Henrich, C. J., McMahon, J. B., Colburn, N. H., Schmid, T. & Brüne, B. (2012). PLoS One, 7, e46567–e46567. Web of Science CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2016). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Cea, G., Alarcón, M., Weigert, G. & Sepulveda, R. (1990). Bull. Environ. Contam. Toxicol. 44, 19–28. CrossRef CAS PubMed Google Scholar
Delgado, G., Romo de Vivar, A. & Herz, W. (1982). Phytochemistry, 21, 1305–1308. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N. A. & Darwiche, N. (2010). Drug Discov. Today, 15, 668–678. Web of Science CrossRef CAS PubMed Google Scholar
Gnecco, S., Poyser, J. P., Silva, M., Sammes, P. G. & Tyler, T. W. (1973). Phytochemistry, 12, 2469–2477. CrossRef CAS Web of Science Google Scholar
Hoeneisen, M., Kodama, M. & Itô, S. (1981). Phytochemistry, 20, 1743. CrossRef Web of Science Google Scholar
Hoeneisen, M., Sicva, M. & Bohlmann, F. (1980). Phytochemistry, 19, 2765–2766. CrossRef CAS Web of Science Google Scholar
Hull, S. E. & Kennard, O. (1978). Cryst. Struct. Commun. 7, 85–90. CAS Google Scholar
Kaur, K., Jain, M., Kaur, T. & Jain, R. (2009). Bioorg. Med. Chem. 17, 3229–3256. Web of Science CrossRef PubMed CAS Google Scholar
Morimoto, H. & Oshio, H. (1981). J. Nat. Prod. 44, 748–749. CrossRef CAS Web of Science Google Scholar
Nishikawa, M., Kamiya, K., Takabatake, A., Oshio, H., Tomie, Y. & Nitta, I. (1966). Tetrahedron, 22, 3601–3606. CSD CrossRef CAS Google Scholar
Schmidt, T. J. (1999). Current Org. Chem. 3, 577–608. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spring, O., Zipper, R., Klaiber, I., Reeb, S. & Vogler, B. (2000). Phytochemistry, 55, 255–261. Web of Science CrossRef PubMed CAS Google Scholar
Stipanovic, R. D., Miller, R. B. & Hope, H. (1985). Phytochemistry, 24, 358–359. CAS Google Scholar
Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Torrance, S. J., Geissman, T. A. & Chedekel, N. R. (1969). Phytochemistry, 8, 2381–2392. CrossRef CAS Web of Science Google Scholar
Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.