research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of erioflorin isolated from Podanthus mitiqui (L.)

aUniversidad de La Frontera, Departamento de Ciencias Quimicas y Recursos Naturales, Avenida Francisco Salazar 01145, 4811230 Temuco, Chile, bUniversidad Austral de Chile, Instituto de Ciencias Quimica, Facultad de Ciencias, Casilla 567, 5090000 Valdivia, Chile, and cUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de

Edited by M. Zeller, Purdue University, USA (Received 23 January 2017; accepted 1 February 2017; online 7 February 2017)

The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a,2,3,5a,7,8,8a,9,10,10a-deca­hydro-3-hy­droxy-4,10a-dimethyl-8-methyl­idene-7-oxooxireno[5,6]cyclo­deca­[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the space group P212121, and its mol­ecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C—H⋯O hydrogen bond. An O—H⋯O hydrogen bond and further C—H⋯O interactions can be observed in the packing.

1. Chemical context

Podanthus mitiqui (Lindl) [Asteraceae, Compositae] is an endemic plant of the Central Zone of Chile. It is an evergreen shrub that can reach up to two meters in height; its flowers are yellow or orange–yellow globose inflorescences. Previous chemical investigations of extracts isolated from the stems and leaves of Podanthus mitiqui revealed the presence of sesquiterpene lactones with a germacrane framework such as ovatifolin, de­acetyl­ovatifolin and arturin (Hoeneisen et al., 1980[Hoeneisen, M., Sicva, M. & Bohlmann, F. (1980). Phytochemistry, 19, 2765-2766.]) as well as erioflorin methacrylate and heliangine methacrylate (Hoeneisen et al., 1981[Hoeneisen, M., Kodama, M. & Itô, S. (1981). Phytochemistry, 20, 1743.]). Sesquiterpene lactones show significant anti-inflammatory, cytotoxic (Ghantous et al., 2010[Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N. A. & Darwiche, N. (2010). Drug Discov. Today, 15, 668-678.]) and anti­protozoal activities (Kaur et al., 2009[Kaur, K., Jain, M., Kaur, T. & Jain, R. (2009). Bioorg. Med. Chem. 17, 3229-3256.]; Cea et al., 1990[Cea, G., Alarcón, M., Weigert, G. & Sepulveda, R. (1990). Bull. Environ. Contam. Toxicol. 44, 19-28.]; Bautista et al., 2012[Bautista, E., Calzada, F., Yepez-Mulia, I., Chavez-Soto, M. & Ortega, A. (2012). Planta Med. 78, 1698-1701.]) that make them inter­esting as attractive skeletons for drug design (for their toxic activities, see Schmidt, 1999[Schmidt, T. J. (1999). Current Org. Chem. 3, 577-608.]). The natural compound erioflorin has previously been isolated from Eriophyllum confertiflorum (Torrance et al., 1969[Torrance, S. J., Geissman, T. A. & Chedekel, N. R. (1969). Phytochemistry, 8, 2381-2392.]), Podanthus ovatifolius (Gnecco et al., 1973[Gnecco, S., Poyser, J. P., Silva, M., Sammes, P. G. & Tyler, T. W. (1973). Phytochemistry, 12, 2469-2477.]), Helianthus tuberosus (Morimoto & Oshio, 1981[Morimoto, H. & Oshio, H. (1981). J. Nat. Prod. 44, 748-749.]), Viguiera eriophora (Delgado et al., 1982[Delgado, G., Romo de Vivar, A. & Herz, W. (1982). Phytochemistry, 21, 1305-1308.]; Spring et al., 2000[Spring, O., Zipper, R., Klaiber, I., Reeb, S. & Vogler, B. (2000). Phytochemistry, 55, 255-261.]) and Eriophyllum lanatum (Cea et al., 1990[Cea, G., Alarcón, M., Weigert, G. & Sepulveda, R. (1990). Bull. Environ. Contam. Toxicol. 44, 19-28.]). Now we report the title compound from P. mitiqui. Erioflorin has strong cytotoxic activity for the stabilization of the tumor suppressor Pdcd4 by inhibiting its inter­action with the E3-ligase β-TrCP1 and inter­feres with cell cycle progression and proliferation of tumor cells (Blees et al., 2012[Blees, J. S., Bokesch, H. R., Rübsamen, D., Schulz, K., Milke, L., Bajer, M. M., Gustafson, K. R., Henrich, C. J., McMahon, J. B., Colburn, N. H., Schmid, T. & Brüne, B. (2012). PLoS One, 7, e46567-e46567.]). Herein we present the crystal structure of erioflorin in order to establish unambiguously the stereochemical features of this natural compound.

2. Structural commentary

The mol­ecule is built up from a 1,10-epoxidized ten-membered ring with hydroxyl, methyl­acryl and two methyl substituents (Fig. 1[link]). This ring is 5,6-fused with a five-membered lactone ring with a vinyl group as substituent. The dihedral angles between the mean planes of the ten-membered ring and the lactone and the epoxide rings are 45.2 (1) and 45.7 (2)°, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of erioflorin with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds as blue dashed lines.

The ten-membered ring adopts an extended crown conformation with puckering amplitudes from 0.257 (3) to 0.805 (3) Å, yielding a total puckering amplitude q = 1.161 (3) Å and smallest displacement parameters φ of 23.2 (8), 252.2 (3) and 346.1 (2)°. The maximum deviation from the mean plane is 0.589 (3) Å (C3). The C—C bond lengths range from 1.474 (5) to 1.557 (4) Å. The Z-configured double bond is located between C4 and C5 with a bond length of 1.326 (4) Å. Some bond angles differ notably from ideal values due to the ring strain, such as C3—C4—C5 and C4—C5—C6 [125.7 (3) and 127.5 (3)°, respectively]. The bond angles within the ten-membered ring including Csp3 atoms range from 112.0 (3)° to 125.7 (3)°. The ten-membered and the five-membered rings are trans-fused. The lactone ring shows a closed puckering on C6-C7 (twisted). The puckering amplitude and the smallest displacement parameter of the five-membered ring are q = 0.192 (3) Å and φ = 58.7 (9)°. With respect to the lactone ring, H6 and H7 are equatorially oriented, whereas the C6—C5 and the C7—C8 bonds are axial. The maximum deviations of the substituents from the best plane are 0.065 (6) Å (O4) and −0.323 (6) Å (C13). The 1,10-ep­oxy ring is trans-fused. The C8 side chain is β oriented as well as the C10 methyl group, whereas the C4 methyl group is α. The methacrylate substituent deviates from the planarity by twisting about C16—C17 [torsion angle O5—C16—C17—C19 = 28.4 (5)°]. The structure is closely related to that of di­hydro­heliangine mono­chlorido acetate (Nishikawa et al., 1966[Nishikawa, M., Kamiya, K., Takabatake, A., Oshio, H., Tomie, Y. & Nitta, I. (1966). Tetrahedron, 22, 3601-3606.]). Heliangine contains dimethacrylate instead of methacrylate. Further similar compounds are eriophyllin (5-position: –AcO instead of OH; 6-position: –CH2OH instead of –CH3), eriophyllin-B (6-position: CH2OH; 8-position: unsubstituted) and eriophyllin-C (6-position: –CHO; 8-position: unsubstituted), which were also isolated from Eriophyllum confertiflorum (Torrance et al., 1969[Torrance, S. J., Geissman, T. A. & Chedekel, N. R. (1969). Phytochemistry, 8, 2381-2392.]). Their crystal structures are hitherto unknown. The X-ray analysis provides the relative configuration. The correct absolute configuration of the molecule was assigned to agree with the known chirality of erioflorin and is particularly based on the positions of the C6 and C7 protons as β and α, respectively, and of the methacrylate substituent as β (Torrance et al., 1969[Torrance, S. J., Geissman, T. A. & Chedekel, N. R. (1969). Phytochemistry, 8, 2381-2392.]; Gnecco et al., 1973[Gnecco, S., Poyser, J. P., Silva, M., Sammes, P. G. & Tyler, T. W. (1973). Phytochemistry, 12, 2469-2477.]).

3. Supra­molecular features

The crystal structure features infinite chains connected by hydrogen bonds. A strong O—H⋯O hydrogen bond, namely O2—H2⋯O4ii, running along the c-axis direction is formed via the hydroxyl group and the lactone oxo group (Fig. 2[link], Table 1[link]). Furthermore, three weak C—H⋯O hydrogen bonds occur between hydrogen atoms bonded to carbon ring atoms and the oxygen atom of the same epoxide ring, running along the a-axis direction (C1—H1⋯O1i), approximately between the a and b axes (C7—H7⋯O1i) and along b (C13—H13B⋯O6iii). Non-hydrogen inter­molecular contacts are found between O2 and O4iv [2.750 (4) Å; symmetry code: (iv) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z]. The unit cell contains no residual solvent-accessible voids.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.99 2.47 3.456 (4) 173
C6—H6⋯O2 0.99 2.22 2.954 (4) 130
C7—H7⋯O1i 0.99 2.38 3.341 (4) 164
O2—H2⋯O4ii 0.85 (5) 1.90 (5) 2.750 (4) 176 (5)
C13—H13B⋯O6iii 0.94 2.57 3.493 (5) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2].
[Figure 2]
Figure 2
Part of the crystal structure of erioflorin, with hydrogen bonds shown as blue dashed lines. The view is along the a axis.

4. Database survey

For structures containing the deca­hydro­oxireno[6,7]cyclo­dec-4-ene[1,2-b]furan unit, see Hull & Kennard (1978[Hull, S. E. & Kennard, O. (1978). Cryst. Struct. Commun. 7, 85-90.]) and Bautista et al. (2012[Bautista, E., Calzada, F., Yepez-Mulia, I., Chavez-Soto, M. & Ortega, A. (2012). Planta Med. 78, 1698-1701.]). For the structures of Argophyllin A, see Watson & Zabel (1982[Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834-838.]) and of Argophyllone B, see Stipanovic et al. (1985[Stipanovic, R. D., Miller, R. B. & Hope, H. (1985). Phytochemistry, 24, 358-359.]).

5. Extraction and crystallization

Erioflorin was isolated from Podanthus mitiqui collected in Concepcion, VIII Region of Chile, in February 2015 (S 36° 50′ 06.02′′ W 73° 01′ 49.36′′). Aerial parts (9.6 kg) were powdered and extracted by maceration with ethyl acetate for 3 d. The organic layer was evaporated in vacuo giving a crude product (250 g) which was further purified by column chromatography, giving a primary fractioning of 11 fractions (F1–F11) by using increasing polarity from hexane to ethyl acetate. F-8 (6 g) was further purified by column chromatography (silica gel 60/70–210 mesh, hexa­ne/EtOAc 1:3 v/v) giving a white solid, which was recrystallized from EtOc, affording colourless crystals suitable for X-ray diffraction analysis. M.p. (from methanol): 499–500 K. For further physical data [m.p.(methanol, ethyl acetate), αD, IR, 1H NMR] for erioflorin, see Torrance et al. (1969[Torrance, S. J., Geissman, T. A. & Chedekel, N. R. (1969). Phytochemistry, 8, 2381-2392.]), Morimoto & Oshio (1981[Morimoto, H. & Oshio, H. (1981). J. Nat. Prod. 44, 748-749.]) and Blees et al. (2012[Blees, J. S., Bokesch, H. R., Rübsamen, D., Schulz, K., Milke, L., Bajer, M. M., Gustafson, K. R., Henrich, C. J., McMahon, J. B., Colburn, N. H., Schmid, T. & Brüne, B. (2012). PLoS One, 7, e46567-e46567.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located from a difference Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model with C—H = 0.97 Å (–CH3, allowing for rotation), C—H = 0.98 Å (–CH2), C—H = 0.99 Å, (–CH), C—H = 0.94 Å (=CH2), and Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Uiso(CH,CH2), with the exception of the O—H hydrogen atom, which was refined freely, but with Uiso(H) = 1.5Uiso(O).

Table 2
Experimental details

Crystal data
Chemical formula C19H24O6
Mr 348.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 210
a, b, c (Å) 8.4709 (3), 9.8287 (3), 22.4299 (6)
V3) 1867.47 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 1.02 × 0.19 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.585, 0.825
No. of measured, independent and observed [I > 2σ(I)] reflections 24317, 3307, 2968
Rint 0.105
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.09
No. of reflections 3307
No. of parameters 233
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Computer programs: X-AREA and X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact, Bonn, Germany.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2016); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

(1aR,3S,4Z,5aR,8aR,9R,10aR)-1a,2,3,5a,7,8,8a,9,10,10a-Decahydro-3-hydroxy-4,10a-dimethyl-8-methylidene-7-oxooxireno[5,6]cyclodeca[1,2-b]furan-9-yl methacrylate top
Crystal data top
C19H24O6Dx = 1.239 Mg m3
Mr = 348.38Melting point = 498–499 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.4709 (3) ÅCell parameters from 28996 reflections
b = 9.8287 (3) Åθ = 1.8–25.0°
c = 22.4299 (6) ŵ = 0.09 mm1
V = 1867.47 (10) Å3T = 210 K
Z = 4Needle, colourless
F(000) = 7441.02 × 0.19 × 0.06 mm
Data collection top
Stoe IPDS 2
diffractometer
3307 independent reflections
Radiation source: sealed X-ray tube2968 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.105
rotation method scansθmax = 25.1°, θmin = 1.8°
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
h = 1010
Tmin = 0.585, Tmax = 0.825k = 1111
24317 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5108P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3307 reflectionsΔρmax = 0.22 e Å3
233 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2718 (4)0.7223 (3)0.94856 (14)0.0455 (7)
H11.16510.74060.96460.055*
C21.2836 (5)0.5963 (4)0.91111 (17)0.0560 (9)
H2A1.24130.51950.93400.067*
H2B1.39540.57770.90340.067*
C31.1965 (4)0.6038 (3)0.85131 (15)0.0486 (8)
H31.19970.51190.83340.058*
C41.0244 (4)0.6422 (3)0.85906 (14)0.0443 (7)
C50.9680 (3)0.7678 (3)0.86197 (14)0.0417 (7)
H50.85820.77600.86700.050*
C61.0579 (3)0.8971 (3)0.85813 (13)0.0383 (6)
H61.17020.87820.84910.046*
C71.0446 (3)0.9878 (3)0.91481 (13)0.0366 (6)
H71.00750.93250.94890.044*
C81.1992 (4)1.0598 (3)0.93117 (13)0.0416 (7)
H81.17191.14260.95410.050*
C91.3134 (4)0.9765 (4)0.96848 (14)0.0480 (8)
H9A1.40521.03390.97710.058*
H9B1.26200.95681.00660.058*
C101.3734 (4)0.8436 (4)0.94334 (15)0.0460 (8)
C110.9193 (4)1.0888 (3)0.89732 (14)0.0421 (7)
C120.9029 (4)1.0827 (4)0.83196 (15)0.0509 (8)
C130.8339 (4)1.1686 (4)0.93126 (18)0.0557 (9)
H13A0.75751.22580.91410.067*
H13B0.84911.16860.97280.067*
C140.9170 (5)0.5216 (4)0.86532 (19)0.0637 (10)
H14A0.92290.46640.82950.095*
H14B0.80940.55270.87100.095*
H14C0.94940.46780.89940.095*
C151.5071 (4)0.8528 (5)0.89945 (19)0.0625 (10)
H15A1.54150.76200.88870.094*
H15B1.59430.90210.91730.094*
H15C1.47170.90050.86400.094*
C161.3628 (4)1.2116 (3)0.87355 (16)0.0461 (7)
C171.4187 (5)1.2424 (4)0.81157 (19)0.0636 (10)
C181.5204 (4)1.3623 (4)0.8052 (2)0.0637 (10)
H18A1.59121.36800.83910.096*
H18B1.45551.44360.80360.096*
H18C1.58151.35480.76880.096*
C191.3174 (7)1.2043 (6)0.76391 (19)0.0893 (16)
H19A1.31581.25580.72860.107*
H19B1.25191.12750.76770.107*
O11.3989 (3)0.7432 (3)0.99078 (11)0.0602 (7)
O21.2835 (3)0.6918 (3)0.81346 (11)0.0502 (6)
H21.245 (5)0.681 (5)0.779 (2)0.075*
O30.9867 (3)0.9803 (2)0.80995 (9)0.0466 (6)
O40.8276 (4)1.1601 (3)0.80088 (13)0.0800 (10)
O51.2672 (3)1.1032 (2)0.87473 (10)0.0472 (6)
O61.4016 (4)1.2734 (3)0.91723 (13)0.0680 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (16)0.0556 (19)0.0370 (15)0.0101 (15)0.0056 (13)0.0065 (14)
C20.060 (2)0.0514 (18)0.057 (2)0.0157 (18)0.0042 (17)0.0038 (17)
C30.0514 (18)0.0456 (16)0.0488 (19)0.0022 (15)0.0046 (15)0.0048 (15)
C40.0465 (16)0.0476 (17)0.0389 (16)0.0089 (14)0.0022 (14)0.0047 (14)
C50.0334 (13)0.0507 (17)0.0411 (16)0.0036 (13)0.0012 (12)0.0064 (15)
C60.0364 (14)0.0408 (15)0.0377 (15)0.0020 (12)0.0030 (12)0.0026 (13)
C70.0344 (14)0.0395 (15)0.0358 (14)0.0005 (12)0.0007 (11)0.0006 (12)
C80.0416 (16)0.0474 (16)0.0358 (15)0.0056 (14)0.0033 (12)0.0008 (13)
C90.0445 (17)0.061 (2)0.0380 (15)0.0040 (16)0.0091 (13)0.0004 (15)
C100.0368 (16)0.061 (2)0.0407 (17)0.0054 (14)0.0096 (13)0.0035 (14)
C110.0431 (17)0.0443 (16)0.0389 (15)0.0035 (14)0.0012 (13)0.0028 (13)
C120.0521 (19)0.059 (2)0.0420 (17)0.0135 (17)0.0024 (14)0.0072 (16)
C130.056 (2)0.057 (2)0.055 (2)0.0140 (17)0.0025 (16)0.0002 (17)
C140.072 (2)0.056 (2)0.063 (2)0.0208 (19)0.0096 (19)0.0086 (19)
C150.0373 (18)0.085 (3)0.065 (2)0.0032 (18)0.0051 (16)0.003 (2)
C160.0453 (17)0.0383 (15)0.0547 (19)0.0019 (13)0.0024 (14)0.0011 (16)
C170.064 (2)0.065 (2)0.063 (2)0.019 (2)0.0036 (18)0.013 (2)
C180.049 (2)0.057 (2)0.085 (3)0.0022 (17)0.014 (2)0.000 (2)
C190.110 (4)0.114 (4)0.045 (2)0.046 (3)0.005 (2)0.005 (2)
O10.0578 (14)0.0738 (16)0.0491 (14)0.0128 (13)0.0181 (11)0.0102 (12)
O20.0420 (12)0.0630 (14)0.0458 (12)0.0000 (11)0.0056 (10)0.0082 (11)
O30.0506 (12)0.0543 (13)0.0349 (11)0.0070 (11)0.0031 (9)0.0019 (10)
O40.090 (2)0.097 (2)0.0535 (16)0.0422 (18)0.0130 (15)0.0130 (16)
O50.0506 (13)0.0508 (12)0.0402 (11)0.0137 (11)0.0016 (9)0.0038 (10)
O60.0806 (18)0.0558 (14)0.0675 (17)0.0177 (14)0.0062 (14)0.0152 (14)
Geometric parameters (Å, º) top
C1—O11.449 (4)C10—O11.467 (4)
C1—C101.475 (5)C10—C151.503 (5)
C1—C21.499 (5)C11—C131.311 (5)
C1—H10.9900C11—C121.474 (5)
C2—C31.532 (5)C12—O41.213 (4)
C2—H2A0.9800C12—O31.327 (4)
C2—H2B0.9800C13—H13A0.9400
C3—O21.418 (4)C13—H13B0.9400
C3—C41.516 (5)C14—H14A0.9700
C3—H30.9900C14—H14B0.9700
C4—C51.326 (4)C14—H14C0.9700
C4—C141.501 (5)C15—H15A0.9700
C5—C61.484 (4)C15—H15B0.9700
C5—H50.9400C15—H15C0.9700
C6—O31.483 (3)C16—O61.199 (4)
C6—C71.557 (4)C16—O51.338 (4)
C6—H60.9900C16—C171.499 (5)
C7—C111.505 (4)C17—C191.421 (6)
C7—C81.533 (4)C17—C181.467 (5)
C7—H70.9900C18—H18A0.9700
C8—O51.455 (4)C18—H18B0.9700
C8—C91.519 (4)C18—H18C0.9700
C8—H80.9900C19—H19A0.9400
C9—C101.511 (5)C19—H19B0.9400
C9—H9A0.9800O2—H20.85 (5)
C9—H9B0.9800
O1—C1—C1060.2 (2)H9A—C9—H9B107.1
O1—C1—C2115.7 (3)O1—C10—C159.0 (2)
C10—C1—C2125.7 (3)O1—C10—C15113.9 (3)
O1—C1—H1114.5C1—C10—C15122.7 (3)
C10—C1—H1114.5O1—C10—C9111.1 (3)
C2—C1—H1114.5C1—C10—C9118.2 (3)
C1—C2—C3114.7 (3)C15—C10—C9116.4 (3)
C1—C2—H2A108.6C13—C11—C12123.3 (3)
C3—C2—H2A108.6C13—C11—C7129.2 (3)
C1—C2—H2B108.6C12—C11—C7107.4 (3)
C3—C2—H2B108.6O4—C12—O3122.9 (3)
H2A—C2—H2B107.6O4—C12—C11126.6 (3)
O2—C3—C4114.6 (3)O3—C12—C11110.5 (3)
O2—C3—C2107.6 (3)C11—C13—H13A120.0
C4—C3—C2112.0 (3)C11—C13—H13B120.0
O2—C3—H3107.4H13A—C13—H13B120.0
C4—C3—H3107.4C4—C14—H14A109.5
C2—C3—H3107.4C4—C14—H14B109.5
C5—C4—C14120.8 (3)H14A—C14—H14B109.5
C5—C4—C3125.7 (3)C4—C14—H14C109.5
C14—C4—C3113.4 (3)H14A—C14—H14C109.5
C4—C5—C6127.5 (3)H14B—C14—H14C109.5
C4—C5—H5116.2C10—C15—H15A109.5
C6—C5—H5116.2C10—C15—H15B109.5
O3—C6—C5107.8 (2)H15A—C15—H15B109.5
O3—C6—C7104.5 (2)C10—C15—H15C109.5
C5—C6—C7113.9 (2)H15A—C15—H15C109.5
O3—C6—H6110.2H15B—C15—H15C109.5
C5—C6—H6110.2O6—C16—O5123.6 (3)
C7—C6—H6110.2O6—C16—C17124.7 (3)
C11—C7—C8111.1 (2)O5—C16—C17111.7 (3)
C11—C7—C6102.5 (2)C19—C17—C18119.6 (4)
C8—C7—C6113.4 (2)C19—C17—C16117.0 (3)
C11—C7—H7109.9C18—C17—C16115.9 (4)
C8—C7—H7109.9C17—C18—H18A109.5
C6—C7—H7109.9C17—C18—H18B109.5
O5—C8—C9112.6 (3)H18A—C18—H18B109.5
O5—C8—C7105.4 (2)C17—C18—H18C109.5
C9—C8—C7115.3 (3)H18A—C18—H18C109.5
O5—C8—H8107.7H18B—C18—H18C109.5
C9—C8—H8107.7C17—C19—H19A120.0
C7—C8—H8107.7C17—C19—H19B120.0
C10—C9—C8118.3 (3)H19A—C19—H19B120.0
C10—C9—H9A107.7C1—O1—C1060.8 (2)
C8—C9—H9A107.7C3—O2—H2106 (3)
C10—C9—H9B107.7C12—O3—C6111.4 (2)
C8—C9—H9B107.7C16—O5—C8119.4 (2)
O1—C1—C2—C3155.0 (3)C8—C9—C10—O1146.5 (3)
C10—C1—C2—C384.4 (4)C8—C9—C10—C181.3 (4)
C1—C2—C3—O272.5 (4)C8—C9—C10—C1580.9 (4)
C1—C2—C3—C454.4 (4)C8—C7—C11—C1376.3 (4)
O2—C3—C4—C536.3 (5)C6—C7—C11—C13162.3 (4)
C2—C3—C4—C586.7 (4)C8—C7—C11—C12104.9 (3)
O2—C3—C4—C14145.4 (3)C6—C7—C11—C1216.5 (3)
C2—C3—C4—C1491.6 (4)C13—C11—C12—O410.6 (7)
C14—C4—C5—C6178.4 (3)C7—C11—C12—O4170.5 (4)
C3—C4—C5—C60.3 (6)C13—C11—C12—O3170.9 (3)
C4—C5—C6—O3125.5 (3)C7—C11—C12—O37.9 (4)
C4—C5—C6—C7119.1 (4)O6—C16—C17—C19153.5 (5)
O3—C6—C7—C1119.0 (3)O5—C16—C17—C1928.4 (5)
C5—C6—C7—C1198.4 (3)O6—C16—C17—C183.8 (6)
O3—C6—C7—C8100.9 (3)O5—C16—C17—C18178.1 (3)
C5—C6—C7—C8141.8 (3)C2—C1—O1—C10118.1 (3)
C11—C7—C8—O574.8 (3)C15—C10—O1—C1115.1 (3)
C6—C7—C8—O540.0 (3)C9—C10—O1—C1111.1 (3)
C11—C7—C8—C9160.4 (3)O4—C12—O3—C6176.3 (4)
C6—C7—C8—C984.8 (3)C11—C12—O3—C65.2 (4)
O5—C8—C9—C1061.5 (4)C5—C6—O3—C12105.8 (3)
C7—C8—C9—C1059.5 (4)C7—C6—O3—C1215.7 (3)
C2—C1—C10—O1101.8 (3)O6—C16—O5—C83.0 (5)
O1—C1—C10—C15100.1 (3)C17—C16—O5—C8178.9 (3)
C2—C1—C10—C151.7 (5)C9—C8—O5—C1680.4 (3)
O1—C1—C10—C998.9 (3)C7—C8—O5—C16153.1 (3)
C2—C1—C10—C9159.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.992.473.456 (4)173
C6—H6···O20.992.222.954 (4)130
C7—H7···O1i0.992.383.341 (4)164
O2—H2···O4ii0.85 (5)1.90 (5)2.750 (4)176 (5)
C13—H13B···O6iii0.942.573.493 (5)167
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+5/2, z+2.
 

Acknowledgements

We thank Bernd Schmidt (University of Potsdam) for helpful discussions.

Funding information

Funding for this research was provided by: University of La Frontera (Temuco, Chile) (award No. DIUFRO DI15-0063); Deutsche ForschungsgemeinschaftOpen Access Publishing Fund of University Potsdam

References

First citationBautista, E., Calzada, F., Yepez-Mulia, I., Chavez-Soto, M. & Ortega, A. (2012). Planta Med. 78, 1698–1701.  CAS PubMed Google Scholar
First citationBlees, J. S., Bokesch, H. R., Rübsamen, D., Schulz, K., Milke, L., Bajer, M. M., Gustafson, K. R., Henrich, C. J., McMahon, J. B., Colburn, N. H., Schmid, T. & Brüne, B. (2012). PLoS One, 7, e46567–e46567.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationCea, G., Alarcón, M., Weigert, G. & Sepulveda, R. (1990). Bull. Environ. Contam. Toxicol. 44, 19–28.  CrossRef CAS PubMed Google Scholar
First citationDelgado, G., Romo de Vivar, A. & Herz, W. (1982). Phytochemistry, 21, 1305–1308.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N. A. & Darwiche, N. (2010). Drug Discov. Today, 15, 668–678.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGnecco, S., Poyser, J. P., Silva, M., Sammes, P. G. & Tyler, T. W. (1973). Phytochemistry, 12, 2469–2477.  CrossRef CAS Web of Science Google Scholar
First citationHoeneisen, M., Kodama, M. & Itô, S. (1981). Phytochemistry, 20, 1743.  CrossRef Web of Science Google Scholar
First citationHoeneisen, M., Sicva, M. & Bohlmann, F. (1980). Phytochemistry, 19, 2765–2766.  CrossRef CAS Web of Science Google Scholar
First citationHull, S. E. & Kennard, O. (1978). Cryst. Struct. Commun. 7, 85–90.  CAS Google Scholar
First citationKaur, K., Jain, M., Kaur, T. & Jain, R. (2009). Bioorg. Med. Chem. 17, 3229–3256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorimoto, H. & Oshio, H. (1981). J. Nat. Prod. 44, 748–749.  CrossRef CAS Web of Science Google Scholar
First citationNishikawa, M., Kamiya, K., Takabatake, A., Oshio, H., Tomie, Y. & Nitta, I. (1966). Tetrahedron, 22, 3601–3606.  CSD CrossRef CAS Google Scholar
First citationSchmidt, T. J. (1999). Current Org. Chem. 3, 577–608.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpring, O., Zipper, R., Klaiber, I., Reeb, S. & Vogler, B. (2000). Phytochemistry, 55, 255–261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStipanovic, R. D., Miller, R. B. & Hope, H. (1985). Phytochemistry, 24, 358–359.  CAS Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTorrance, S. J., Geissman, T. A. & Chedekel, N. R. (1969). Phytochemistry, 8, 2381–2392.  CrossRef CAS Web of Science Google Scholar
First citationWatson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds