research communications
Synthesis and structure of the mercury chloride complex of 2,2′-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole)
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title mercury complex, catena-poly[[dichloridomercury(II)]-μ-2,2′-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole)-κ2N3:N3′], [HgCl2(C26H25BrN4)]n, the HgII atom is coordinated by two Cl atoms and by two N atoms from two 2,2′-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole) ligands. The metal cation adopts a distorted tetrahedral coordination geometry with with bond angles around mercury of 100.59 (15)° [N—Hg—N] and 126.35 (7)° [Cl—Hg—Cl]. This arrangement gives rise to a zigzag helical 1-D polymer propagating along the b-axis direction.
CCDC reference: 1530778
1. Chemical context
In the last one decade, 1,3-bis(benzimidazol-2-yl)benzene-based ligands have been studied extensively due to the presence of active sites for binding of metal atoms (Yang et al., 2012; Tam et al., 2011; Dorazco-Gonzalez, 2014). Very recently, dinuclear zinc complexes containing (benzimidazol-2-yl)benzene-based ligands have shown remarkable anticancer activities (Xie et al., 2014). Helical and non-helical complexes with copper(I) have been reported by Ruettimann et al. (1992). Palladium complexes with bromo-functionalized benzimidazole derivatives have been utilized for Heck reactions (Reddy & Krishna, 2005).
A survey of the structural investigations of mercury halide complexes with benzimidazole derivatives have shown that they come in two main types, viz. polymeric, bridging either through the halide (Zhang et al., 2015; Li et al., 2007; Shen et al., 2005) or through alternative N atoms from the benzimidazole moieties (Xiao et al., 2009, 2011; Huang et al., 2006; Li et al., 2007, 2012a,b; Dey et al., 2013; Du et al., 2011; Chen et al., 2013; Su et al., 2003; Xu et al., 2011), or discrete molecules, i.e. non-polymeric (Xiao et al., 2011; Wu et al., 2009; Zhao et al., 2012; Lou et al., 2012; Zhu et al., 2009; Carballo et al., 1993; Yan et al., 2012; Hu et al., 2012, 2015; Ding et al., 2012; Matthews et al., 1998; Manjunatha et al., 2011; Wang et al., 2007, 2009, 2012, 2015; Chen et al., 2014; Su et al., 2003; Quiroz-Castro et al., 2000; Yang & Luo, 2012; He et al., 2012; Bouchouit et al., 2015).
In the present case, during the attempted synthesis of the C-2 mercurated derivative 3 from 2,2′-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole), 1, using n-BuLi and mercuric chloride, the mercury complex 2 was isolated unexpectedly (Fig. 1).
2. Structural commentary
The structure of 2 with C26H25BrCl2HgN4, is reported in this paper. As a result of the presence of the Br and t-butyl substituents on the central ring, coordination of the HgII atom to this ring is prevented and thus a monomeric complex is formed, as has previously been observed for an HgCl2 complex with a similar ligand but with a central pyridine ring rather than a phenyl ring (Liu et al., 2007).
Another related structure has recently been reported of a dinuclear structure of HgCl2 with a similar ligand to 1 where there is a methyl substituent on the C1 atom of the imidazole ring (Hu et al., 2015). In the case of 2, however, a zigzag polymeric structure forms in the b-axis direction, in which the HgCl2 moiety is linked by atoms N1 from one ligand and N3 from an adjoining ligand. The coordination environment around the mercury atom is distorted tetrahedral with bond angles ranging from 100.6 (2) to 126.35 (7)° (Fig. 2). The two Hg—N bond lengths are equivalent at 2.333 (4) and 2.338 (4) Å. However, the metal–halogen bonds are not similar [Hg—Cl1 = 2.4424 (13) and Hg—Cl2 = 2.4020 (15) Å]. The ligand adopts a conformation whereby the two benzimidazole moieties are not coplanar with each other or the central phenyl ring. The dihedral angles between the benzimidazole moieties N1/N2/C1–C7 and N3/N4/C19–C24 are 60.9 (2)° while they make dihedral angles of 55.6 (2) and 84.2 (2)°, respectively, with the central ring.
3. Supramolecular features
The combination of HgCl2 with 2,2′-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole) results in a zigzag helical 1-D coordination polymer that propagates along the b-axis direction. This is mediated by the HgCl2 moiety, which is linked by atoms N1 from one ligand and N3 from an adjoining ligand (Fig. 2). Although helices are inherently chiral in nature, the overall structure is not chiral as the individual helices are related by a center of inversion. The internal structure of this polymer is stabilized by both C—H⋯Cl and C—H⋯N interactions (Table 1). In addition, there are both C—H⋯π (Table 1) and π–π interactions [Cg6⋯Cg6(1 − x, −y, −z) = 3.531 (2) Å, where Cg6 is the centroid of the benzimidazole ring system N3/N4/C19–C24 and C25]. There are no halogen bonds or C—H⋯Br interactions present. Apart from van der Waals interactions, there are no significant interactions between the zigzag chains of the coordination polymer (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37 with updates May 2016; Groom et al., 2016) reveals that there is no report in the literature for a mercury complex with 2,2′-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole) that has been structurally characterized. A cadmium complex, bis[1,3-bis(benzimidazol-2-yl)benzene]dichloridocadmium(II), in which the Cd is coordinated by two Cl atoms and two N atoms in a distorted tetrahedral configuration has been reported (Jiang et al., 2010). In the title complex 2, cadmium is replaced by an HgII atom along with a slight modification of the ligand.
5. Synthesis and crystallization
To a solution of 1 (0.2 g, 0.42 mmol) in THF (15 ml) was added dropwise a solution of n-BuLi (0.3 ml, 0.47 mmol) at 195 K. The synthesis of compound 1 will be published elsewhere. The reaction mixture turned blue after immediate addition of n-BuLi. The reaction mixture was stirred for 30 min at 195 K followed by the addition of HgCl2 (0.126 g, 0.466 mmol). The reaction mixture was warmed to room temperature and stirred for 16 h. The reaction mixture was then filtered through Whatman filter paper and the solvent was evaporated on a rotary evaporator. Colourless plate-shaped crystals were obtained by the slow evaporation of an ethyl acetate solution of the compound at room temperature.
Yield 44% (0.138 g), 1H NMR (400 MHz, CDCl3): δ 7.88–7.86 (m, 3H), 7.45–7.34 (m, 7H), 3.98 (s, 6H), 1.46 (s, 9H). 13C NMR (100 MHz, DMSO): 152.3, 151.2, 141.6, 135.2, 131.8, 131.4, 123.3, 122.7, 121.6, 119.1, 111.0, 34.9, 31.1, 30.8. Analysis calculated for C26H25N4Cl2BrHg: C, 41.92; H, 3.38; N, 7.52. Found C, 42.68; H, 4.14; N, 6.29.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1530778
https://doi.org/10.1107/S2056989017001888/zl2694sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017001888/zl2694Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[HgCl2(C26H25BrN4)] | F(000) = 1432 |
Mr = 744.90 | Dx = 1.915 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.50481 (18) Å | Cell parameters from 4457 reflections |
b = 13.3872 (2) Å | θ = 3.9–74.8° |
c = 20.3322 (4) Å | µ = 14.57 mm−1 |
β = 93.0955 (19)° | T = 123 K |
V = 2583.36 (9) Å3 | Plate, colorless |
Z = 4 | 0.37 × 0.09 × 0.03 mm |
Agilent Xcalibur, Ruby, Gemini diffractometer | 5217 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4596 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.034 |
ω scans | θmax = 75.6°, θmin = 4.0° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012) based on expressions derived by Clark & Reid (1995)] | h = −11→11 |
Tmin = 0.331, Tmax = 1.000 | k = −10→16 |
9778 measured reflections | l = −25→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0583P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5217 reflections | Δρmax = 1.34 e Å−3 |
300 parameters | Δρmin = −1.88 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg | 0.26669 (2) | 0.15196 (2) | 0.17398 (2) | 0.03689 (9) | |
Br1 | 0.78523 (7) | 0.01223 (6) | 0.26403 (4) | 0.05807 (19) | |
Cl1 | 0.07681 (12) | 0.04507 (10) | 0.12894 (8) | 0.0455 (3) | |
Cl2 | 0.3350 (3) | 0.17449 (13) | 0.28849 (7) | 0.0680 (5) | |
N1 | 0.4632 (4) | 0.0840 (3) | 0.12648 (19) | 0.0297 (8) | |
N2 | 0.6469 (4) | −0.0168 (3) | 0.1125 (2) | 0.0332 (8) | |
C1 | 0.5402 (5) | 0.0084 (4) | 0.1512 (2) | 0.0290 (9) | |
C2 | 0.5243 (5) | 0.1104 (4) | 0.0687 (2) | 0.0325 (10) | |
C3 | 0.4867 (6) | 0.1831 (4) | 0.0214 (2) | 0.0380 (11) | |
H3A | 0.407599 | 0.225411 | 0.026176 | 0.046* | |
C4 | 0.5690 (7) | 0.1912 (5) | −0.0326 (3) | 0.0443 (13) | |
H4A | 0.546152 | 0.239743 | −0.065535 | 0.053* | |
C5 | 0.6869 (7) | 0.1279 (5) | −0.0392 (3) | 0.0462 (13) | |
H5A | 0.742376 | 0.136244 | −0.076319 | 0.055* | |
C6 | 0.7235 (6) | 0.0557 (4) | 0.0054 (3) | 0.0415 (12) | |
H6A | 0.801480 | 0.012676 | −0.000153 | 0.050* | |
C7 | 0.6402 (5) | 0.0478 (4) | 0.0599 (2) | 0.0336 (10) | |
C8 | 0.7432 (5) | −0.1007 (4) | 0.1193 (3) | 0.0412 (11) | |
H8A | 0.706934 | −0.149329 | 0.150248 | 0.062* | |
H8B | 0.835960 | −0.077071 | 0.136067 | 0.062* | |
H8C | 0.751825 | −0.132519 | 0.076325 | 0.062* | |
C9 | 0.5103 (5) | −0.0449 (4) | 0.2128 (2) | 0.0295 (9) | |
C10 | 0.6114 (5) | −0.0530 (4) | 0.2651 (2) | 0.0328 (9) | |
C11 | 0.5801 (5) | −0.1064 (4) | 0.3208 (2) | 0.0347 (10) | |
C12 | 0.4486 (6) | −0.1492 (4) | 0.3257 (2) | 0.0340 (10) | |
H12A | 0.429536 | −0.186816 | 0.363769 | 0.041* | |
C13 | 0.3436 (5) | −0.1382 (4) | 0.2757 (2) | 0.0326 (10) | |
C14 | 0.3774 (5) | −0.0858 (4) | 0.2192 (2) | 0.0301 (9) | |
H14A | 0.307701 | −0.078004 | 0.184253 | 0.036* | |
C15 | 0.1946 (6) | −0.1774 (5) | 0.2844 (3) | 0.0446 (13) | |
C16 | 0.1931 (7) | −0.2560 (6) | 0.3375 (3) | 0.0569 (16) | |
H16A | 0.250243 | −0.313200 | 0.325066 | 0.085* | |
H16B | 0.096006 | −0.277900 | 0.342884 | 0.085* | |
H16C | 0.232117 | −0.227992 | 0.379161 | 0.085* | |
C17 | 0.1086 (9) | −0.0864 (7) | 0.3074 (4) | 0.069 (2) | |
H17A | 0.014973 | −0.108654 | 0.319073 | 0.103* | |
H17B | 0.098912 | −0.037282 | 0.271679 | 0.103* | |
H17C | 0.157701 | −0.055702 | 0.345930 | 0.103* | |
C18 | 0.1272 (7) | −0.2131 (5) | 0.2188 (3) | 0.0504 (14) | |
H18A | 0.189918 | −0.261007 | 0.198742 | 0.076* | |
H18B | 0.111504 | −0.155783 | 0.189316 | 0.076* | |
H18C | 0.036859 | −0.245312 | 0.226242 | 0.076* | |
N3 | 0.7624 (4) | −0.2007 (3) | 0.3870 (2) | 0.0334 (8) | |
N4 | 0.7052 (7) | −0.0512 (4) | 0.4249 (3) | 0.0574 (15) | |
C19 | 0.6851 (6) | −0.1200 (4) | 0.3764 (3) | 0.0389 (11) | |
C20 | 0.8389 (4) | −0.1846 (3) | 0.44605 (14) | 0.0393 (11) | |
C21 | 0.9323 (4) | −0.2448 (2) | 0.48302 (18) | 0.0436 (12) | |
H21B | 0.958442 | −0.308251 | 0.466606 | 0.052* | |
C22 | 0.9875 (5) | −0.2123 (3) | 0.54401 (18) | 0.0604 (18) | |
H22B | 1.051354 | −0.253523 | 0.569280 | 0.073* | |
C23 | 0.9493 (6) | −0.1196 (4) | 0.56803 (19) | 0.085 (3) | |
H23B | 0.987023 | −0.097343 | 0.609714 | 0.102* | |
C24 | 0.8559 (6) | −0.0593 (3) | 0.5311 (2) | 0.092 (4) | |
H24B | 0.829779 | 0.004111 | 0.547474 | 0.111* | |
C25 | 0.8007 (5) | −0.0918 (3) | 0.4701 (2) | 0.0562 (17) | |
C26 | 0.6419 (11) | 0.0482 (6) | 0.4279 (4) | 0.080 (3) | |
H26D | 0.560680 | 0.052189 | 0.396154 | 0.121* | |
H26E | 0.711628 | 0.098707 | 0.417059 | 0.121* | |
H26F | 0.610913 | 0.060333 | 0.472366 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg | 0.03625 (13) | 0.03134 (14) | 0.04333 (13) | 0.00299 (7) | 0.00463 (8) | 0.00013 (8) |
Br1 | 0.0463 (3) | 0.0589 (4) | 0.0671 (4) | −0.0147 (3) | −0.0146 (3) | 0.0142 (3) |
Cl1 | 0.0290 (5) | 0.0381 (7) | 0.0696 (8) | −0.0006 (5) | 0.0036 (5) | 0.0048 (6) |
Cl2 | 0.1242 (16) | 0.0414 (8) | 0.0383 (6) | 0.0101 (9) | 0.0035 (8) | −0.0041 (6) |
N1 | 0.0269 (18) | 0.030 (2) | 0.0319 (17) | −0.0004 (15) | 0.0016 (14) | 0.0021 (15) |
N2 | 0.0281 (18) | 0.034 (2) | 0.0383 (19) | −0.0019 (16) | 0.0042 (15) | −0.0003 (17) |
C1 | 0.0243 (19) | 0.030 (2) | 0.033 (2) | −0.0040 (17) | 0.0014 (16) | −0.0013 (18) |
C2 | 0.034 (2) | 0.034 (3) | 0.0289 (19) | −0.0077 (19) | −0.0034 (17) | −0.0009 (19) |
C3 | 0.044 (3) | 0.034 (3) | 0.035 (2) | −0.010 (2) | −0.002 (2) | 0.005 (2) |
C4 | 0.061 (3) | 0.039 (3) | 0.033 (2) | −0.018 (3) | −0.001 (2) | 0.003 (2) |
C5 | 0.051 (3) | 0.053 (3) | 0.035 (2) | −0.023 (3) | 0.009 (2) | −0.006 (2) |
C6 | 0.041 (3) | 0.042 (3) | 0.042 (2) | −0.011 (2) | 0.010 (2) | −0.008 (2) |
C7 | 0.032 (2) | 0.032 (2) | 0.037 (2) | −0.0111 (19) | 0.0068 (18) | −0.0054 (19) |
C8 | 0.030 (2) | 0.037 (3) | 0.057 (3) | 0.002 (2) | 0.008 (2) | −0.003 (2) |
C9 | 0.030 (2) | 0.026 (2) | 0.032 (2) | 0.0013 (17) | −0.0007 (17) | 0.0030 (17) |
C10 | 0.029 (2) | 0.026 (2) | 0.042 (2) | −0.0050 (18) | −0.0071 (18) | 0.0024 (19) |
C11 | 0.039 (2) | 0.032 (3) | 0.032 (2) | 0.001 (2) | −0.0086 (18) | −0.0024 (19) |
C12 | 0.039 (3) | 0.032 (3) | 0.030 (2) | 0.0009 (19) | 0.0011 (19) | 0.0045 (18) |
C13 | 0.031 (2) | 0.036 (3) | 0.032 (2) | 0.0023 (19) | 0.0047 (18) | −0.0002 (18) |
C14 | 0.027 (2) | 0.033 (2) | 0.0302 (19) | 0.0032 (18) | 0.0007 (16) | −0.0002 (17) |
C15 | 0.032 (3) | 0.060 (4) | 0.042 (3) | −0.003 (2) | 0.006 (2) | 0.015 (3) |
C16 | 0.057 (4) | 0.061 (4) | 0.053 (3) | −0.016 (3) | 0.005 (3) | 0.009 (3) |
C17 | 0.060 (4) | 0.073 (5) | 0.075 (5) | 0.013 (4) | 0.027 (3) | 0.007 (4) |
C18 | 0.047 (3) | 0.050 (4) | 0.054 (3) | −0.020 (3) | −0.004 (2) | 0.011 (3) |
N3 | 0.0333 (19) | 0.027 (2) | 0.0393 (19) | −0.0024 (16) | −0.0082 (16) | 0.0031 (16) |
N4 | 0.074 (4) | 0.044 (3) | 0.051 (3) | 0.019 (3) | −0.027 (3) | −0.016 (2) |
C19 | 0.045 (3) | 0.034 (3) | 0.037 (2) | −0.001 (2) | −0.011 (2) | 0.003 (2) |
C20 | 0.043 (3) | 0.039 (3) | 0.035 (2) | −0.001 (2) | −0.004 (2) | 0.002 (2) |
C21 | 0.042 (3) | 0.042 (3) | 0.045 (3) | 0.004 (2) | −0.006 (2) | 0.007 (2) |
C22 | 0.055 (4) | 0.077 (5) | 0.048 (3) | 0.012 (3) | −0.018 (3) | 0.002 (3) |
C23 | 0.106 (7) | 0.090 (6) | 0.055 (4) | 0.031 (5) | −0.043 (5) | −0.027 (4) |
C24 | 0.124 (8) | 0.075 (6) | 0.070 (5) | 0.039 (5) | −0.057 (5) | −0.037 (4) |
C25 | 0.070 (4) | 0.049 (4) | 0.048 (3) | 0.013 (3) | −0.021 (3) | −0.005 (3) |
C26 | 0.110 (7) | 0.047 (4) | 0.079 (5) | 0.035 (4) | −0.042 (5) | −0.021 (4) |
Hg—N1 | 2.333 (4) | C13—C15 | 1.530 (7) |
Hg—N3i | 2.338 (4) | C14—H14A | 0.9500 |
Hg—Cl2 | 2.4020 (15) | C15—C16 | 1.508 (8) |
Hg—Cl1 | 2.4424 (13) | C15—C18 | 1.525 (8) |
Br1—C10 | 1.870 (5) | C15—C17 | 1.553 (10) |
N1—C1 | 1.331 (6) | C16—H16A | 0.9800 |
N1—C2 | 1.383 (6) | C16—H16B | 0.9800 |
N2—C1 | 1.359 (6) | C16—H16C | 0.9800 |
N2—C7 | 1.374 (7) | C17—H17A | 0.9800 |
N2—C8 | 1.452 (7) | C17—H17B | 0.9800 |
C1—C9 | 1.483 (6) | C17—H17C | 0.9800 |
C2—C3 | 1.401 (7) | C18—H18A | 0.9800 |
C2—C7 | 1.404 (7) | C18—H18B | 0.9800 |
C3—C4 | 1.387 (8) | C18—H18C | 0.9800 |
C3—H3A | 0.9500 | N3—C19 | 1.318 (7) |
C4—C5 | 1.417 (10) | N3—C20 | 1.387 (4) |
C4—H4A | 0.9500 | N4—C19 | 1.355 (7) |
C5—C6 | 1.358 (9) | N4—C25 | 1.369 (6) |
C5—H5A | 0.9500 | N4—C26 | 1.463 (9) |
C6—C7 | 1.401 (7) | C20—C21 | 1.3900 |
C6—H6A | 0.9500 | C20—C25 | 1.3900 |
C8—H8A | 0.9800 | C21—C22 | 1.3900 |
C8—H8B | 0.9800 | C21—H21B | 0.9500 |
C8—H8C | 0.9800 | C22—C23 | 1.3900 |
C9—C14 | 1.389 (7) | C22—H22B | 0.9500 |
C9—C10 | 1.398 (6) | C23—C24 | 1.3900 |
C10—C11 | 1.387 (7) | C23—H23B | 0.9500 |
C11—C12 | 1.383 (8) | C24—C25 | 1.3900 |
C11—C19 | 1.478 (6) | C24—H24B | 0.9500 |
C12—C13 | 1.392 (7) | C26—H26D | 0.9800 |
C12—H12A | 0.9500 | C26—H26E | 0.9800 |
C13—C14 | 1.399 (7) | C26—H26F | 0.9800 |
N1—Hg—N3i | 100.59 (15) | C16—C15—C18 | 112.8 (6) |
N1—Hg—Cl2 | 105.64 (11) | C16—C15—C13 | 111.5 (5) |
N3i—Hg—Cl2 | 115.22 (11) | C18—C15—C13 | 110.7 (5) |
N1—Hg—Cl1 | 102.02 (10) | C16—C15—C17 | 107.9 (6) |
N3i—Hg—Cl1 | 103.38 (10) | C18—C15—C17 | 107.8 (6) |
Cl2—Hg—Cl1 | 126.35 (7) | C13—C15—C17 | 105.7 (6) |
C1—N1—C2 | 105.5 (4) | C15—C16—H16A | 109.5 |
C1—N1—Hg | 125.2 (3) | C15—C16—H16B | 109.5 |
C2—N1—Hg | 129.3 (3) | H16A—C16—H16B | 109.5 |
C1—N2—C7 | 106.8 (4) | C15—C16—H16C | 109.5 |
C1—N2—C8 | 128.6 (4) | H16A—C16—H16C | 109.5 |
C7—N2—C8 | 124.4 (4) | H16B—C16—H16C | 109.5 |
N1—C1—N2 | 112.5 (4) | C15—C17—H17A | 109.5 |
N1—C1—C9 | 123.9 (4) | C15—C17—H17B | 109.5 |
N2—C1—C9 | 123.5 (4) | H17A—C17—H17B | 109.5 |
N1—C2—C3 | 131.1 (5) | C15—C17—H17C | 109.5 |
N1—C2—C7 | 108.9 (4) | H17A—C17—H17C | 109.5 |
C3—C2—C7 | 120.0 (5) | H17B—C17—H17C | 109.5 |
C4—C3—C2 | 117.6 (6) | C15—C18—H18A | 109.5 |
C4—C3—H3A | 121.2 | C15—C18—H18B | 109.5 |
C2—C3—H3A | 121.2 | H18A—C18—H18B | 109.5 |
C3—C4—C5 | 120.8 (5) | C15—C18—H18C | 109.5 |
C3—C4—H4A | 119.6 | H18A—C18—H18C | 109.5 |
C5—C4—H4A | 119.6 | H18B—C18—H18C | 109.5 |
C6—C5—C4 | 122.5 (5) | C19—N3—C20 | 106.0 (4) |
C6—C5—H5A | 118.7 | C19—N3—Hgii | 123.8 (3) |
C4—C5—H5A | 118.7 | C20—N3—Hgii | 129.2 (3) |
C5—C6—C7 | 116.5 (6) | C19—N4—C25 | 106.3 (5) |
C5—C6—H6A | 121.7 | C19—N4—C26 | 127.3 (5) |
C7—C6—H6A | 121.7 | C25—N4—C26 | 126.4 (5) |
N2—C7—C6 | 131.2 (5) | N3—C19—N4 | 112.5 (4) |
N2—C7—C2 | 106.3 (4) | N3—C19—C11 | 125.0 (5) |
C6—C7—C2 | 122.5 (5) | N4—C19—C11 | 122.4 (5) |
N2—C8—H8A | 109.5 | N3—C20—C21 | 131.9 (3) |
N2—C8—H8B | 109.5 | N3—C20—C25 | 108.0 (3) |
H8A—C8—H8B | 109.5 | C21—C20—C25 | 120.0 |
N2—C8—H8C | 109.5 | C20—C21—C22 | 120.0 |
H8A—C8—H8C | 109.5 | C20—C21—H21B | 120.0 |
H8B—C8—H8C | 109.5 | C22—C21—H21B | 120.0 |
C14—C9—C10 | 119.3 (4) | C23—C22—C21 | 120.0 |
C14—C9—C1 | 119.0 (4) | C23—C22—H22B | 120.0 |
C10—C9—C1 | 121.6 (4) | C21—C22—H22B | 120.0 |
C11—C10—C9 | 119.5 (4) | C22—C23—C24 | 120.0 |
C11—C10—Br1 | 118.6 (3) | C22—C23—H23B | 120.0 |
C9—C10—Br1 | 121.8 (4) | C24—C23—H23B | 120.0 |
C12—C11—C10 | 120.4 (4) | C23—C24—C25 | 120.0 |
C12—C11—C19 | 118.0 (5) | C23—C24—H24B | 120.0 |
C10—C11—C19 | 121.6 (5) | C25—C24—H24B | 120.0 |
C11—C12—C13 | 121.3 (5) | N4—C25—C24 | 132.8 (3) |
C11—C12—H12A | 119.4 | N4—C25—C20 | 107.2 (3) |
C13—C12—H12A | 119.4 | C24—C25—C20 | 120.0 |
C12—C13—C14 | 117.7 (5) | N4—C26—H26D | 109.5 |
C12—C13—C15 | 120.7 (5) | N4—C26—H26E | 109.5 |
C14—C13—C15 | 121.5 (4) | H26D—C26—H26E | 109.5 |
C9—C14—C13 | 121.6 (4) | N4—C26—H26F | 109.5 |
C9—C14—H14A | 119.2 | H26D—C26—H26F | 109.5 |
C13—C14—H14A | 119.2 | H26E—C26—H26F | 109.5 |
C2—N1—C1—N2 | −0.7 (5) | C11—C12—C13—C15 | −174.2 (5) |
Hg—N1—C1—N2 | 178.9 (3) | C10—C9—C14—C13 | −2.4 (8) |
C2—N1—C1—C9 | −178.7 (4) | C1—C9—C14—C13 | 179.1 (5) |
Hg—N1—C1—C9 | 0.8 (6) | C12—C13—C14—C9 | −0.7 (8) |
C7—N2—C1—N1 | 1.1 (5) | C15—C13—C14—C9 | 176.1 (5) |
C8—N2—C1—N1 | −173.1 (5) | C12—C13—C15—C16 | −20.5 (8) |
C7—N2—C1—C9 | 179.1 (4) | C14—C13—C15—C16 | 162.8 (5) |
C8—N2—C1—C9 | 4.9 (8) | C12—C13—C15—C18 | −147.0 (5) |
C1—N1—C2—C3 | 178.3 (5) | C14—C13—C15—C18 | 36.3 (8) |
Hg—N1—C2—C3 | −1.2 (8) | C12—C13—C15—C17 | 96.5 (6) |
C1—N1—C2—C7 | 0.0 (5) | C14—C13—C15—C17 | −80.2 (7) |
Hg—N1—C2—C7 | −179.5 (3) | C20—N3—C19—N4 | −0.1 (7) |
N1—C2—C3—C4 | −179.2 (5) | Hgii—N3—C19—N4 | 169.2 (4) |
C7—C2—C3—C4 | −1.1 (7) | C20—N3—C19—C11 | −176.2 (5) |
C2—C3—C4—C5 | −0.1 (8) | Hgii—N3—C19—C11 | −6.9 (8) |
C3—C4—C5—C6 | 1.4 (8) | C25—N4—C19—N3 | −1.0 (8) |
C4—C5—C6—C7 | −1.4 (8) | C26—N4—C19—N3 | 177.1 (8) |
C1—N2—C7—C6 | −179.8 (5) | C25—N4—C19—C11 | 175.2 (6) |
C8—N2—C7—C6 | −5.3 (8) | C26—N4—C19—C11 | −6.6 (12) |
C1—N2—C7—C2 | −1.0 (5) | C12—C11—C19—N3 | 80.3 (8) |
C8—N2—C7—C2 | 173.5 (4) | C10—C11—C19—N3 | −99.4 (7) |
C5—C6—C7—N2 | 178.9 (5) | C12—C11—C19—N4 | −95.5 (7) |
C5—C6—C7—C2 | 0.2 (7) | C10—C11—C19—N4 | 84.8 (8) |
N1—C2—C7—N2 | 0.6 (5) | C19—N3—C20—C21 | 176.7 (4) |
C3—C2—C7—N2 | −177.9 (4) | Hgii—N3—C20—C21 | 8.2 (7) |
N1—C2—C7—C6 | 179.5 (4) | C19—N3—C20—C25 | 1.1 (5) |
C3—C2—C7—C6 | 1.0 (7) | Hgii—N3—C20—C25 | −167.4 (3) |
N1—C1—C9—C14 | 54.6 (7) | N3—C20—C21—C22 | −175.2 (5) |
N2—C1—C9—C14 | −123.2 (5) | C25—C20—C21—C22 | 0.0 |
N1—C1—C9—C10 | −123.9 (5) | C20—C21—C22—C23 | 0.0 |
N2—C1—C9—C10 | 58.3 (7) | C21—C22—C23—C24 | 0.0 |
C14—C9—C10—C11 | 3.6 (8) | C22—C23—C24—C25 | 0.0 |
C1—C9—C10—C11 | −177.8 (5) | C19—N4—C25—C24 | −175.9 (4) |
C14—C9—C10—Br1 | −173.0 (4) | C26—N4—C25—C24 | 5.9 (12) |
C1—C9—C10—Br1 | 5.5 (7) | C19—N4—C25—C20 | 1.7 (7) |
C9—C10—C11—C12 | −1.8 (8) | C26—N4—C25—C20 | −176.5 (8) |
Br1—C10—C11—C12 | 175.0 (4) | C23—C24—C25—N4 | 177.4 (7) |
C9—C10—C11—C19 | 177.9 (5) | C23—C24—C25—C20 | 0.0 |
Br1—C10—C11—C19 | −5.4 (7) | N3—C20—C25—N4 | −1.8 (5) |
C10—C11—C12—C13 | −1.4 (8) | C21—C20—C25—N4 | −178.0 (5) |
C19—C11—C12—C13 | 178.9 (5) | N3—C20—C25—C24 | 176.2 (4) |
C11—C12—C13—C14 | 2.6 (8) | C21—C20—C25—C24 | 0.0 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Cg1 is the centroid of the imidazole ring N1/N2/C1/C2/C7. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N3i | 0.95 | 2.65 | 3.459 (7) | 144 |
C8—H8A···Cl2ii | 0.98 | 2.71 | 3.643 (6) | 160 |
C8—H8B···Cl1iii | 0.98 | 2.82 | 3.719 (6) | 152 |
C21—H21B···Cl1ii | 0.95 | 2.77 | 3.616 (3) | 149 |
C16—H16B···Cg1ii | 0.98 | 2.91 | 3.671 (8) | 135 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, y, z. |
Acknowledgements
RJB is grateful for funding from NSF (award 1205608) and the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University Nanoscience Facility for access to liquid nitrogen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Scienceshttps://doi.org/10.13039/100000086 (award Nos. CHE0619278, 1205608).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bouchouit, M., Benzerka, S., Bouraiou, A., Merazig, H., Belfaitah, A. & Bouacida, S. (2015). Acta Cryst. E71, m253–m254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Carballo, R., Castiñeiras, A., Conde, M. C. G. & Hiller, W. (1993). Polyhedron, 12, 1655–1660. CSD CrossRef CAS Web of Science Google Scholar
Chen, Y., Chen, C., Chen, H., Cao, T., Yue, Z., Liu, X. & Niu, Y. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1307–1310. Web of Science CSD CrossRef CAS Google Scholar
Chen, S., Fan, R.-Q., Wang, X.-M. & Yang, Y.-L. (2014). CrystEngComm, 16, 6114–6125. Web of Science CSD CrossRef CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dey, A., Mandal, S. K. & Biradha, K. (2013). CrystEngComm, 15, 9769–9778. Web of Science CSD CrossRef CAS Google Scholar
Ding, Y., Zhou, X., Jin, G., Zhao, D. & Meng, X. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 438–443. Web of Science CSD CrossRef CAS Google Scholar
Dorazco-Gonzalez, A. (2014). Organometallics, 33, 868–875. CAS Google Scholar
Du, J.-L., Wei, Z.-Z. & Hu, T.-L. (2011). Solid State Sci. 13, 1256–1260. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, C.-J., Zu, E.-P. & Zhou, X.-J. (2012). Z. Kristallogr. New Cryst. Struct. 227, 445–446. Web of Science CSD CrossRef CAS Google Scholar
Hu, J. Y., Liao, C. L., Hu, L. L., Zhang, C. C., Chen, S. F. & Zhao, J. (2015). Russ. J. Coord. Chem. 41, 212–219. Web of Science CrossRef CAS Google Scholar
Hu, J., Liao, C., Zhao, J. & Haipeng Zhao, H. (2012). Z. Kristallogr. New Cryst. Struct. 227, 69–70. CAS Google Scholar
Huang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211–217. Web of Science CSD CrossRef CAS Google Scholar
Jiang, B. L., Meng, F. Y., Wang, L. & Lin, C. W. (2010). Z. Kristallogr. New Cryst. Struct. 225, 313–314. CAS Google Scholar
Li, J., Li, X., Lü, H., Zhu, Y., Sun, H., Guo, Y., Yue, Z., Zhao, J., Tang, M., Hou, H., Fan, Y. & Chang, J. (2012b). Inorg. Chim. Acta, 384, 163–169. Web of Science CSD CrossRef CAS Google Scholar
Li, Y., Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2012a). Acta Cryst. C68, m152–m155. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990–2996. Web of Science CSD CrossRef CAS Google Scholar
Liu, X.-M., Mu, X.-Y., Xia, H., Su, Q., Ye, L., Chen, C., Gao, W. & Mu, Y. (2007). Chem. Res. Chin. Univ. 23, 159–162. Web of Science CSD CrossRef Google Scholar
Lou, S.-F., Wang, Q. & Ding, J. (2012). Z. Kristallogr. New Cryst. Struct. 227, 105–106. CAS Google Scholar
Manjunatha, M. N., Dikundwar, A. G. & Nagasundara, K. R. (2011). Polyhedron, 30, 1299–1304. Web of Science CSD CrossRef CAS Google Scholar
Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hill, M. N. S. & Lockhart, J. C. (1998). Inorg. Chem. 37, 199–207. Web of Science CSD CrossRef CAS Google Scholar
Quiroz-Castro, E., Bernès, S., Barba-Behrens, N., Tapia-Benavides, R., Contreras, R. & Nöth, H. (2000). Polyhedron, 19, 1479–1484. CAS Google Scholar
Reddy, K. R. & Krishna, G. G. (2005). Tetrahedron Lett. 46, 661–663. Web of Science CrossRef CAS Google Scholar
Ruettimann, S., Piguet, C., Bernardinelli, G., Bocquet, B. & Williams, A. F. (1992). J. Am. Chem. Soc. 114, 4230–4237. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, Y.-H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m1880–m1882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Su, C.-Y., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5685–5692. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tam, A. Y. Y., Tsang, D. P. K., Chan, M. Y., Zhu, N. & Yam, V. W. W. (2011). Chem. Commun. 47, 3383–3385. Web of Science CSD CrossRef CAS Google Scholar
Wang, Q., Fu, Z.-Y. & Yu, L.-M. (2012). Acta Cryst. E68, m44. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, X.-F., Lv, Y., Su, Z., Okamura, T., Wu, G., Sun, W.-Y. & Ueyama, N. (2007). Z. Anorg. Allg. Chem. 633, 2695–2700. Web of Science CSD CrossRef CAS Google Scholar
Wang, J.-J., Yan, L.-F., Li, Z.-X., Chang, Z., Hu, T.-L. & Bu, X.-H. (2009). Inorg. Chim. Acta, 362, 3147–3154. Web of Science CSD CrossRef CAS Google Scholar
Wang, X., Yang, H.-Y., Zhang, C., Yuan, J. & Yang, H.-X. (2015). Z. Kristallogr. New Cryst. Struct. 230, 361–362. CAS Google Scholar
Wu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, B., Li, W., Hou, H. & Fan, Y. (2009). J. Coord. Chem. 62, 1630–1637. Web of Science CSD CrossRef CAS Google Scholar
Xiao, B., Yang, L.-J., Xiao, H.-Y. & Fang, S.-M. (2011). J. Coord. Chem. 64, 4408–4420. Web of Science CSD CrossRef CAS Google Scholar
Xie, Q., Liu, S., Li, X., Wu, Q., Luo, Z., Fu, X., Cao, W., Lan, G., Li, D., Zheng, W. & Chen, T. (2014). Dalton Trans. 43, 6973–6976. Web of Science CSD CrossRef CAS PubMed Google Scholar
Xu, C., Wang, X., Ding, D., Hou, H. & Fan, Y. (2011). Inorg. Chem. Commun. 14, 1410–1413. Web of Science CSD CrossRef CAS Google Scholar
Yan, S., Jin, G., Yang, Y., Su, X. & Meng, X. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 678–684. CAS Google Scholar
Yang, G.-J. & Luo, L.-X. (2012). Z. Kristallogr. New Cryst. Struct. 227, 441–442. Web of Science CSD CrossRef CAS Google Scholar
Yang, W. W., Zhong, Y. W., Yoshikawa, S., Shao, J. Y., Masaoka, S., Sakai, K., Yao, J. & Haga, M. (2012). Inorg. Chem. 51, 890–899. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Z., Feng, Y.-F., Wei, Q.-Y., Hu, K., Chen, Z.-L. & Liang, F.-P. (2015). CrystEngComm, 17, 6724–6735. Web of Science CSD CrossRef CAS Google Scholar
Zhao, J., Li, S., Chen, S., Bai, Y. & Hu, J. (2012). J. Coord. Chem. 65, 1201–1211. Web of Science CSD CrossRef CAS Google Scholar
Zhu, X.-W., Xiao, B., Yin, Z.-G., Qian, H.-Y. & Li, G.-S. (2009). Acta Cryst. E65, m912. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.