research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of the mercury chloride complex of 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­­(1-methyl-1H-benzimidazole)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by M. Zeller, Purdue University, USA (Received 30 January 2017; accepted 2 February 2017; online 10 February 2017)

In the title mercury complex, catena-poly[[di­chlorido­mercury(II)]-μ-2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole)-κ2N3:N3′], [HgCl2(C26H25BrN4)]n, the HgII atom is coordinated by two Cl atoms and by two N atoms from two 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole) ligands. The metal cation adopts a distorted tetrahedral coordination geometry with with bond angles around mercury of 100.59 (15)° [N—Hg—N] and 126.35 (7)° [Cl—Hg—Cl]. This arrangement gives rise to a zigzag helical 1-D polymer propagating along the b-axis direction.

1. Chemical context

In the last one decade, 1,3-bis­(benzimidazol-2-yl)benzene-based ligands have been studied extensively due to the presence of active sites for binding of metal atoms (Yang et al., 2012[Yang, W. W., Zhong, Y. W., Yoshikawa, S., Shao, J. Y., Masaoka, S., Sakai, K., Yao, J. & Haga, M. (2012). Inorg. Chem. 51, 890-899.]; Tam et al., 2011[Tam, A. Y. Y., Tsang, D. P. K., Chan, M. Y., Zhu, N. & Yam, V. W. W. (2011). Chem. Commun. 47, 3383-3385.]; Dorazco-Gonzalez, 2014[Dorazco-Gonzalez, A. (2014). Organometallics, 33, 868-875.]). Very recently, dinuclear zinc complexes containing (benzimidazol-2-yl)benzene-based ligands have shown remarkable anti­cancer activities (Xie et al., 2014[Xie, Q., Liu, S., Li, X., Wu, Q., Luo, Z., Fu, X., Cao, W., Lan, G., Li, D., Zheng, W. & Chen, T. (2014). Dalton Trans. 43, 6973-6976.]). Helical and non-helical complexes with copper(I) have been reported by Ruettimann et al. (1992[Ruettimann, S., Piguet, C., Bernardinelli, G., Bocquet, B. & Williams, A. F. (1992). J. Am. Chem. Soc. 114, 4230-4237.]). Palladium complexes with bromo-functionalized benzimid­azole derivatives have been utilized for Heck reactions (Reddy & Krishna, 2005[Reddy, K. R. & Krishna, G. G. (2005). Tetrahedron Lett. 46, 661-663.]).

A survey of the structural investigations of mercury halide complexes with benzimidazole derivatives have shown that they come in two main types, viz. polymeric, bridging either through the halide (Zhang et al., 2015[Zhang, Z., Feng, Y.-F., Wei, Q.-Y., Hu, K., Chen, Z.-L. & Liang, F.-P. (2015). CrystEngComm, 17, 6724-6735.]; Li et al., 2007[Li, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990-2996.]; Shen et al., 2005[Shen, Y.-H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m1880-m1882.]) or through alternative N atoms from the benzimidazole moieties (Xiao et al., 2009[Xiao, B., Li, W., Hou, H. & Fan, Y. (2009). J. Coord. Chem. 62, 1630-1637.], 2011[Xiao, B., Yang, L.-J., Xiao, H.-Y. & Fang, S.-M. (2011). J. Coord. Chem. 64, 4408-4420.]; Huang et al., 2006[Huang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211-217.]; Li et al., 2007[Li, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990-2996.], 2012a[Li, Y., Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2012a). Acta Cryst. C68, m152-m155.],b[Li, J., Li, X., Lü, H., Zhu, Y., Sun, H., Guo, Y., Yue, Z., Zhao, J., Tang, M., Hou, H., Fan, Y. & Chang, J. (2012b). Inorg. Chim. Acta, 384, 163-169.]; Dey et al., 2013[Dey, A., Mandal, S. K. & Biradha, K. (2013). CrystEngComm, 15, 9769-9778.]; Du et al., 2011[Du, J.-L., Wei, Z.-Z. & Hu, T.-L. (2011). Solid State Sci. 13, 1256-1260.]; Chen et al., 2013[Chen, Y., Chen, C., Chen, H., Cao, T., Yue, Z., Liu, X. & Niu, Y. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1307-1310.]; Su et al., 2003[Su, C.-Y., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5685-5692.]; Xu et al., 2011[Xu, C., Wang, X., Ding, D., Hou, H. & Fan, Y. (2011). Inorg. Chem. Commun. 14, 1410-1413.]), or discrete mol­ecules, i.e. non-polymeric (Xiao et al., 2011[Xiao, B., Yang, L.-J., Xiao, H.-Y. & Fang, S.-M. (2011). J. Coord. Chem. 64, 4408-4420.]; Wu et al., 2009[Wu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829.]; Zhao et al., 2012[Zhao, J., Li, S., Chen, S., Bai, Y. & Hu, J. (2012). J. Coord. Chem. 65, 1201-1211.]; Lou et al., 2012[Lou, S.-F., Wang, Q. & Ding, J. (2012). Z. Kristallogr. New Cryst. Struct. 227, 105-106.]; Zhu et al., 2009[Zhu, X.-W., Xiao, B., Yin, Z.-G., Qian, H.-Y. & Li, G.-S. (2009). Acta Cryst. E65, m912.]; Carballo et al., 1993[Carballo, R., Castiñeiras, A., Conde, M. C. G. & Hiller, W. (1993). Polyhedron, 12, 1655-1660.]; Yan et al., 2012[Yan, S., Jin, G., Yang, Y., Su, X. & Meng, X. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 678-684.]; Hu et al., 2012[Hu, J., Liao, C., Zhao, J. & Haipeng Zhao, H. (2012). Z. Kristallogr. New Cryst. Struct. 227, 69-70.], 2015[Hu, J. Y., Liao, C. L., Hu, L. L., Zhang, C. C., Chen, S. F. & Zhao, J. (2015). Russ. J. Coord. Chem. 41, 212-219.]; Ding et al., 2012[Ding, Y., Zhou, X., Jin, G., Zhao, D. & Meng, X. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 438-443.]; Matthews et al., 1998[Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hill, M. N. S. & Lockhart, J. C. (1998). Inorg. Chem. 37, 199-207.]; Manjunatha et al., 2011[Manjunatha, M. N., Dikundwar, A. G. & Nagasundara, K. R. (2011). Polyhedron, 30, 1299-1304.]; Wang et al., 2007[Wang, X.-F., Lv, Y., Su, Z., Okamura, T., Wu, G., Sun, W.-Y. & Ueyama, N. (2007). Z. Anorg. Allg. Chem. 633, 2695-2700.], 2009[Wang, J.-J., Yan, L.-F., Li, Z.-X., Chang, Z., Hu, T.-L. & Bu, X.-H. (2009). Inorg. Chim. Acta, 362, 3147-3154.], 2012[Wang, Q., Fu, Z.-Y. & Yu, L.-M. (2012). Acta Cryst. E68, m44.], 2015[Wang, X., Yang, H.-Y., Zhang, C., Yuan, J. & Yang, H.-X. (2015). Z. Kristallogr. New Cryst. Struct. 230, 361-362.]; Chen et al., 2014[Chen, S., Fan, R.-Q., Wang, X.-M. & Yang, Y.-L. (2014). CrystEngComm, 16, 6114-6125.]; Su et al., 2003[Su, C.-Y., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5685-5692.]; Quiroz-Castro et al., 2000[Quiroz-Castro, E., Bernès, S., Barba-Behrens, N., Tapia-Benavides, R., Contreras, R. & Nöth, H. (2000). Polyhedron, 19, 1479-1484.]; Yang & Luo, 2012[Yang, G.-J. & Luo, L.-X. (2012). Z. Kristallogr. New Cryst. Struct. 227, 441-442.]; He et al., 2012[He, C.-J., Zu, E.-P. & Zhou, X.-J. (2012). Z. Kristallogr. New Cryst. Struct. 227, 445-446.]; Bouchouit et al., 2015[Bouchouit, M., Benzerka, S., Bouraiou, A., Merazig, H., Belfaitah, A. & Bouacida, S. (2015). Acta Cryst. E71, m253-m254.]).

In the present case, during the attempted synthesis of the C-2 mercurated derivative 3 from 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole), 1, using n-BuLi and mercuric chloride, the mercury complex 2 was isolated unexpectedly (Fig. 1[link]).

[Figure 1]
Figure 1
Diagram showing the the starting compound, 1, the title compound, 2, and the expected product, 3.

2. Structural commentary

The structure of 2 with empirical formula, C26H25BrCl2HgN4, is reported in this paper. As a result of the presence of the Br and t-butyl substituents on the central ring, coordination of the HgII atom to this ring is prevented and thus a monomeric complex is formed, as has previously been observed for an HgCl2 complex with a similar ligand but with a central pyridine ring rather than a phenyl ring (Liu et al., 2007[Liu, X.-M., Mu, X.-Y., Xia, H., Su, Q., Ye, L., Chen, C., Gao, W. & Mu, Y. (2007). Chem. Res. Chin. Univ. 23, 159-162.]).

Another related structure has recently been reported of a dinuclear structure of HgCl2 with a similar ligand to 1 where there is a methyl substituent on the C1 atom of the imidazole ring (Hu et al., 2015[Hu, J. Y., Liao, C. L., Hu, L. L., Zhang, C. C., Chen, S. F. & Zhao, J. (2015). Russ. J. Coord. Chem. 41, 212-219.]). In the case of 2, however, a zigzag polymeric structure forms in the b-axis direction, in which the HgCl2 moiety is linked by atoms N1 from one ligand and N3 from an adjoining ligand. The coordination environment around the mercury atom is distorted tetra­hedral with bond angles ranging from 100.6 (2) to 126.35 (7)° (Fig. 2[link]). The two Hg—N bond lengths are equivalent at 2.333 (4) and 2.338 (4) Å. However, the metal–halogen bonds are not similar [Hg—Cl1 = 2.4424 (13) and Hg—Cl2 = 2.4020 (15) Å]. The ligand adopts a conformation whereby the two benzimidazole moieties are not coplanar with each other or the central phenyl ring. The dihedral angles between the benzimidazole moieties N1/N2/C1–C7 and N3/N4/C19–C24 are 60.9 (2)° while they make dihedral angles of 55.6 (2) and 84.2 (2)°, respectively, with the central ring.

[Scheme 1]
[Figure 2]
Figure 2
Diagram showing the three units which assemble to form a coordination polymer and illustrating its zigzag helical nature (with H atoms omitted for clarity). Displacement parameters are drawn at the 30% probability level. [Symmetry codes: (A) 1 − x, [{1\over 2}] + y, z − [{1\over 2}]; (B) 1 − x, y − [{1\over 2}], z − [{1\over 2}].]

3. Supra­molecular features

The combination of HgCl2 with 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole) results in a zigzag helical 1-D coordination polymer that propagates along the b-axis direction. This is mediated by the HgCl2 moiety, which is linked by atoms N1 from one ligand and N3 from an adjoining ligand (Fig. 2[link]). Although helices are inherently chiral in nature, the overall structure is not chiral as the individual helices are related by a center of inversion. The inter­nal structure of this polymer is stabilized by both C—H⋯Cl and C—H⋯N inter­actions (Table 1[link]). In addition, there are both C—H⋯π (Table 1[link]) and ππ inter­actions [Cg6⋯Cg6(1 − x, −y, −z) = 3.531 (2) Å, where Cg6 is the centroid of the benzimidazole ring system N3/N4/C19–C24 and C25]. There are no halogen bonds or C—H⋯Br inter­actions present. Apart from van der Waals inter­actions, there are no significant inter­actions between the zigzag chains of the coordination polymer (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the imidazole ring N1/N2/C1/C2/C7.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N3i 0.95 2.65 3.459 (7) 144
C8—H8A⋯Cl2ii 0.98 2.71 3.643 (6) 160
C8—H8B⋯Cl1iii 0.98 2.82 3.719 (6) 152
C21—H21B⋯Cl1ii 0.95 2.77 3.616 (3) 149
C16—H16BCg1ii 0.98 2.91 3.671 (8) 135
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.
[Figure 3]
Figure 3
Packing diagram showing two units of the polymer, which repeat in the b-axis direction, viewed along the a axis.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with updates May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there is no report in the literature for a mercury complex with 2,2′-(2-bromo-5-tert-butyl-1,3-phenyl­ene)bis­(1-methyl-1H-benzimidazole) that has been structurally characterized. A cadmium complex, bis­[1,3-bis­(benzimidazol-2-yl)benzene]­dichlorido­cadmium(II), in which the Cd is coordinated by two Cl atoms and two N atoms in a distorted tetra­hedral configuration has been reported (Jiang et al., 2010[Jiang, B. L., Meng, F. Y., Wang, L. & Lin, C. W. (2010). Z. Kristallogr. New Cryst. Struct. 225, 313-314.]). In the title complex 2, cadmium is replaced by an HgII atom along with a slight modification of the ligand.

5. Synthesis and crystallization

To a solution of 1 (0.2 g, 0.42 mmol) in THF (15 ml) was added dropwise a solution of n-BuLi (0.3 ml, 0.47 mmol) at 195 K. The synthesis of compound 1 will be published elsewhere. The reaction mixture turned blue after immediate addition of n-BuLi. The reaction mixture was stirred for 30 min at 195 K followed by the addition of HgCl2 (0.126 g, 0.466 mmol). The reaction mixture was warmed to room temperature and stirred for 16 h. The reaction mixture was then filtered through Whatman filter paper and the solvent was evaporated on a rotary evaporator. Colourless plate-shaped crystals were obtained by the slow evaporation of an ethyl acetate solution of the compound at room temperature.

Yield 44% (0.138 g), 1H NMR (400 MHz, CDCl3): δ 7.88–7.86 (m, 3H), 7.45–7.34 (m, 7H), 3.98 (s, 6H), 1.46 (s, 9H). 13C NMR (100 MHz, DMSO): 152.3, 151.2, 141.6, 135.2, 131.8, 131.4, 123.3, 122.7, 121.6, 119.1, 111.0, 34.9, 31.1, 30.8. Analysis calculated for C26H25N4Cl2BrHg: C, 41.92; H, 3.38; N, 7.52. Found C, 42.68; H, 4.14; N, 6.29.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geomet­ric­ally and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [HgCl2(C26H25BrN4)]
Mr 744.90
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 9.50481 (18), 13.3872 (2), 20.3322 (4)
β (°) 93.0955 (19)
V3) 2583.36 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 14.57
Crystal size (mm) 0.37 × 0.09 × 0.03
 
Data collection
Diffractometer Agilent Xcalibur, Ruby, Gemini
Absorption correction Analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.331, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9778, 5217, 4596
Rint 0.034
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.07
No. of reflections 5217
No. of parameters 300
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.34, −1.88
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[dichloridomercury(II)]-µ-2,2'-(2-bromo-5-tert-butyl-1,3-phenylene)bis(1-methyl-1H-benzimidazole)-κ2N3:N3'] top
Crystal data top
[HgCl2(C26H25BrN4)]F(000) = 1432
Mr = 744.90Dx = 1.915 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.50481 (18) ÅCell parameters from 4457 reflections
b = 13.3872 (2) Åθ = 3.9–74.8°
c = 20.3322 (4) ŵ = 14.57 mm1
β = 93.0955 (19)°T = 123 K
V = 2583.36 (9) Å3Plate, colorless
Z = 40.37 × 0.09 × 0.03 mm
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
5217 independent reflections
Radiation source: Enhance (Cu) X-ray Source4596 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.034
ω scansθmax = 75.6°, θmin = 4.0°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) based on expressions derived by Clark & Reid (1995)]
h = 1111
Tmin = 0.331, Tmax = 1.000k = 1016
9778 measured reflectionsl = 2520
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5217 reflectionsΔρmax = 1.34 e Å3
300 parametersΔρmin = 1.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.26669 (2)0.15196 (2)0.17398 (2)0.03689 (9)
Br10.78523 (7)0.01223 (6)0.26403 (4)0.05807 (19)
Cl10.07681 (12)0.04507 (10)0.12894 (8)0.0455 (3)
Cl20.3350 (3)0.17449 (13)0.28849 (7)0.0680 (5)
N10.4632 (4)0.0840 (3)0.12648 (19)0.0297 (8)
N20.6469 (4)0.0168 (3)0.1125 (2)0.0332 (8)
C10.5402 (5)0.0084 (4)0.1512 (2)0.0290 (9)
C20.5243 (5)0.1104 (4)0.0687 (2)0.0325 (10)
C30.4867 (6)0.1831 (4)0.0214 (2)0.0380 (11)
H3A0.4075990.2254110.0261760.046*
C40.5690 (7)0.1912 (5)0.0326 (3)0.0443 (13)
H4A0.5461520.2397430.0655350.053*
C50.6869 (7)0.1279 (5)0.0392 (3)0.0462 (13)
H5A0.7423760.1362440.0763190.055*
C60.7235 (6)0.0557 (4)0.0054 (3)0.0415 (12)
H6A0.8014800.0126760.0001530.050*
C70.6402 (5)0.0478 (4)0.0599 (2)0.0336 (10)
C80.7432 (5)0.1007 (4)0.1193 (3)0.0412 (11)
H8A0.7069340.1493290.1502480.062*
H8B0.8359600.0770710.1360670.062*
H8C0.7518250.1325190.0763250.062*
C90.5103 (5)0.0449 (4)0.2128 (2)0.0295 (9)
C100.6114 (5)0.0530 (4)0.2651 (2)0.0328 (9)
C110.5801 (5)0.1064 (4)0.3208 (2)0.0347 (10)
C120.4486 (6)0.1492 (4)0.3257 (2)0.0340 (10)
H12A0.4295360.1868160.3637690.041*
C130.3436 (5)0.1382 (4)0.2757 (2)0.0326 (10)
C140.3774 (5)0.0858 (4)0.2192 (2)0.0301 (9)
H14A0.3077010.0780040.1842530.036*
C150.1946 (6)0.1774 (5)0.2844 (3)0.0446 (13)
C160.1931 (7)0.2560 (6)0.3375 (3)0.0569 (16)
H16A0.2502430.3132000.3250660.085*
H16B0.0960060.2779000.3428840.085*
H16C0.2321170.2279920.3791610.085*
C170.1086 (9)0.0864 (7)0.3074 (4)0.069 (2)
H17A0.0149730.1086540.3190730.103*
H17B0.0989120.0372820.2716790.103*
H17C0.1577010.0557020.3459300.103*
C180.1272 (7)0.2131 (5)0.2188 (3)0.0504 (14)
H18A0.1899180.2610070.1987420.076*
H18B0.1115040.1557830.1893160.076*
H18C0.0368590.2453120.2262420.076*
N30.7624 (4)0.2007 (3)0.3870 (2)0.0334 (8)
N40.7052 (7)0.0512 (4)0.4249 (3)0.0574 (15)
C190.6851 (6)0.1200 (4)0.3764 (3)0.0389 (11)
C200.8389 (4)0.1846 (3)0.44605 (14)0.0393 (11)
C210.9323 (4)0.2448 (2)0.48302 (18)0.0436 (12)
H21B0.9584420.3082510.4666060.052*
C220.9875 (5)0.2123 (3)0.54401 (18)0.0604 (18)
H22B1.0513540.2535230.5692800.073*
C230.9493 (6)0.1196 (4)0.56803 (19)0.085 (3)
H23B0.9870230.0973430.6097140.102*
C240.8559 (6)0.0593 (3)0.5311 (2)0.092 (4)
H24B0.8297790.0041110.5474740.111*
C250.8007 (5)0.0918 (3)0.4701 (2)0.0562 (17)
C260.6419 (11)0.0482 (6)0.4279 (4)0.080 (3)
H26D0.5606800.0521890.3961540.121*
H26E0.7116280.0987070.4170590.121*
H26F0.6109130.0603330.4723660.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.03625 (13)0.03134 (14)0.04333 (13)0.00299 (7)0.00463 (8)0.00013 (8)
Br10.0463 (3)0.0589 (4)0.0671 (4)0.0147 (3)0.0146 (3)0.0142 (3)
Cl10.0290 (5)0.0381 (7)0.0696 (8)0.0006 (5)0.0036 (5)0.0048 (6)
Cl20.1242 (16)0.0414 (8)0.0383 (6)0.0101 (9)0.0035 (8)0.0041 (6)
N10.0269 (18)0.030 (2)0.0319 (17)0.0004 (15)0.0016 (14)0.0021 (15)
N20.0281 (18)0.034 (2)0.0383 (19)0.0019 (16)0.0042 (15)0.0003 (17)
C10.0243 (19)0.030 (2)0.033 (2)0.0040 (17)0.0014 (16)0.0013 (18)
C20.034 (2)0.034 (3)0.0289 (19)0.0077 (19)0.0034 (17)0.0009 (19)
C30.044 (3)0.034 (3)0.035 (2)0.010 (2)0.002 (2)0.005 (2)
C40.061 (3)0.039 (3)0.033 (2)0.018 (3)0.001 (2)0.003 (2)
C50.051 (3)0.053 (3)0.035 (2)0.023 (3)0.009 (2)0.006 (2)
C60.041 (3)0.042 (3)0.042 (2)0.011 (2)0.010 (2)0.008 (2)
C70.032 (2)0.032 (2)0.037 (2)0.0111 (19)0.0068 (18)0.0054 (19)
C80.030 (2)0.037 (3)0.057 (3)0.002 (2)0.008 (2)0.003 (2)
C90.030 (2)0.026 (2)0.032 (2)0.0013 (17)0.0007 (17)0.0030 (17)
C100.029 (2)0.026 (2)0.042 (2)0.0050 (18)0.0071 (18)0.0024 (19)
C110.039 (2)0.032 (3)0.032 (2)0.001 (2)0.0086 (18)0.0024 (19)
C120.039 (3)0.032 (3)0.030 (2)0.0009 (19)0.0011 (19)0.0045 (18)
C130.031 (2)0.036 (3)0.032 (2)0.0023 (19)0.0047 (18)0.0002 (18)
C140.027 (2)0.033 (2)0.0302 (19)0.0032 (18)0.0007 (16)0.0002 (17)
C150.032 (3)0.060 (4)0.042 (3)0.003 (2)0.006 (2)0.015 (3)
C160.057 (4)0.061 (4)0.053 (3)0.016 (3)0.005 (3)0.009 (3)
C170.060 (4)0.073 (5)0.075 (5)0.013 (4)0.027 (3)0.007 (4)
C180.047 (3)0.050 (4)0.054 (3)0.020 (3)0.004 (2)0.011 (3)
N30.0333 (19)0.027 (2)0.0393 (19)0.0024 (16)0.0082 (16)0.0031 (16)
N40.074 (4)0.044 (3)0.051 (3)0.019 (3)0.027 (3)0.016 (2)
C190.045 (3)0.034 (3)0.037 (2)0.001 (2)0.011 (2)0.003 (2)
C200.043 (3)0.039 (3)0.035 (2)0.001 (2)0.004 (2)0.002 (2)
C210.042 (3)0.042 (3)0.045 (3)0.004 (2)0.006 (2)0.007 (2)
C220.055 (4)0.077 (5)0.048 (3)0.012 (3)0.018 (3)0.002 (3)
C230.106 (7)0.090 (6)0.055 (4)0.031 (5)0.043 (5)0.027 (4)
C240.124 (8)0.075 (6)0.070 (5)0.039 (5)0.057 (5)0.037 (4)
C250.070 (4)0.049 (4)0.048 (3)0.013 (3)0.021 (3)0.005 (3)
C260.110 (7)0.047 (4)0.079 (5)0.035 (4)0.042 (5)0.021 (4)
Geometric parameters (Å, º) top
Hg—N12.333 (4)C13—C151.530 (7)
Hg—N3i2.338 (4)C14—H14A0.9500
Hg—Cl22.4020 (15)C15—C161.508 (8)
Hg—Cl12.4424 (13)C15—C181.525 (8)
Br1—C101.870 (5)C15—C171.553 (10)
N1—C11.331 (6)C16—H16A0.9800
N1—C21.383 (6)C16—H16B0.9800
N2—C11.359 (6)C16—H16C0.9800
N2—C71.374 (7)C17—H17A0.9800
N2—C81.452 (7)C17—H17B0.9800
C1—C91.483 (6)C17—H17C0.9800
C2—C31.401 (7)C18—H18A0.9800
C2—C71.404 (7)C18—H18B0.9800
C3—C41.387 (8)C18—H18C0.9800
C3—H3A0.9500N3—C191.318 (7)
C4—C51.417 (10)N3—C201.387 (4)
C4—H4A0.9500N4—C191.355 (7)
C5—C61.358 (9)N4—C251.369 (6)
C5—H5A0.9500N4—C261.463 (9)
C6—C71.401 (7)C20—C211.3900
C6—H6A0.9500C20—C251.3900
C8—H8A0.9800C21—C221.3900
C8—H8B0.9800C21—H21B0.9500
C8—H8C0.9800C22—C231.3900
C9—C141.389 (7)C22—H22B0.9500
C9—C101.398 (6)C23—C241.3900
C10—C111.387 (7)C23—H23B0.9500
C11—C121.383 (8)C24—C251.3900
C11—C191.478 (6)C24—H24B0.9500
C12—C131.392 (7)C26—H26D0.9800
C12—H12A0.9500C26—H26E0.9800
C13—C141.399 (7)C26—H26F0.9800
N1—Hg—N3i100.59 (15)C16—C15—C18112.8 (6)
N1—Hg—Cl2105.64 (11)C16—C15—C13111.5 (5)
N3i—Hg—Cl2115.22 (11)C18—C15—C13110.7 (5)
N1—Hg—Cl1102.02 (10)C16—C15—C17107.9 (6)
N3i—Hg—Cl1103.38 (10)C18—C15—C17107.8 (6)
Cl2—Hg—Cl1126.35 (7)C13—C15—C17105.7 (6)
C1—N1—C2105.5 (4)C15—C16—H16A109.5
C1—N1—Hg125.2 (3)C15—C16—H16B109.5
C2—N1—Hg129.3 (3)H16A—C16—H16B109.5
C1—N2—C7106.8 (4)C15—C16—H16C109.5
C1—N2—C8128.6 (4)H16A—C16—H16C109.5
C7—N2—C8124.4 (4)H16B—C16—H16C109.5
N1—C1—N2112.5 (4)C15—C17—H17A109.5
N1—C1—C9123.9 (4)C15—C17—H17B109.5
N2—C1—C9123.5 (4)H17A—C17—H17B109.5
N1—C2—C3131.1 (5)C15—C17—H17C109.5
N1—C2—C7108.9 (4)H17A—C17—H17C109.5
C3—C2—C7120.0 (5)H17B—C17—H17C109.5
C4—C3—C2117.6 (6)C15—C18—H18A109.5
C4—C3—H3A121.2C15—C18—H18B109.5
C2—C3—H3A121.2H18A—C18—H18B109.5
C3—C4—C5120.8 (5)C15—C18—H18C109.5
C3—C4—H4A119.6H18A—C18—H18C109.5
C5—C4—H4A119.6H18B—C18—H18C109.5
C6—C5—C4122.5 (5)C19—N3—C20106.0 (4)
C6—C5—H5A118.7C19—N3—Hgii123.8 (3)
C4—C5—H5A118.7C20—N3—Hgii129.2 (3)
C5—C6—C7116.5 (6)C19—N4—C25106.3 (5)
C5—C6—H6A121.7C19—N4—C26127.3 (5)
C7—C6—H6A121.7C25—N4—C26126.4 (5)
N2—C7—C6131.2 (5)N3—C19—N4112.5 (4)
N2—C7—C2106.3 (4)N3—C19—C11125.0 (5)
C6—C7—C2122.5 (5)N4—C19—C11122.4 (5)
N2—C8—H8A109.5N3—C20—C21131.9 (3)
N2—C8—H8B109.5N3—C20—C25108.0 (3)
H8A—C8—H8B109.5C21—C20—C25120.0
N2—C8—H8C109.5C20—C21—C22120.0
H8A—C8—H8C109.5C20—C21—H21B120.0
H8B—C8—H8C109.5C22—C21—H21B120.0
C14—C9—C10119.3 (4)C23—C22—C21120.0
C14—C9—C1119.0 (4)C23—C22—H22B120.0
C10—C9—C1121.6 (4)C21—C22—H22B120.0
C11—C10—C9119.5 (4)C22—C23—C24120.0
C11—C10—Br1118.6 (3)C22—C23—H23B120.0
C9—C10—Br1121.8 (4)C24—C23—H23B120.0
C12—C11—C10120.4 (4)C23—C24—C25120.0
C12—C11—C19118.0 (5)C23—C24—H24B120.0
C10—C11—C19121.6 (5)C25—C24—H24B120.0
C11—C12—C13121.3 (5)N4—C25—C24132.8 (3)
C11—C12—H12A119.4N4—C25—C20107.2 (3)
C13—C12—H12A119.4C24—C25—C20120.0
C12—C13—C14117.7 (5)N4—C26—H26D109.5
C12—C13—C15120.7 (5)N4—C26—H26E109.5
C14—C13—C15121.5 (4)H26D—C26—H26E109.5
C9—C14—C13121.6 (4)N4—C26—H26F109.5
C9—C14—H14A119.2H26D—C26—H26F109.5
C13—C14—H14A119.2H26E—C26—H26F109.5
C2—N1—C1—N20.7 (5)C11—C12—C13—C15174.2 (5)
Hg—N1—C1—N2178.9 (3)C10—C9—C14—C132.4 (8)
C2—N1—C1—C9178.7 (4)C1—C9—C14—C13179.1 (5)
Hg—N1—C1—C90.8 (6)C12—C13—C14—C90.7 (8)
C7—N2—C1—N11.1 (5)C15—C13—C14—C9176.1 (5)
C8—N2—C1—N1173.1 (5)C12—C13—C15—C1620.5 (8)
C7—N2—C1—C9179.1 (4)C14—C13—C15—C16162.8 (5)
C8—N2—C1—C94.9 (8)C12—C13—C15—C18147.0 (5)
C1—N1—C2—C3178.3 (5)C14—C13—C15—C1836.3 (8)
Hg—N1—C2—C31.2 (8)C12—C13—C15—C1796.5 (6)
C1—N1—C2—C70.0 (5)C14—C13—C15—C1780.2 (7)
Hg—N1—C2—C7179.5 (3)C20—N3—C19—N40.1 (7)
N1—C2—C3—C4179.2 (5)Hgii—N3—C19—N4169.2 (4)
C7—C2—C3—C41.1 (7)C20—N3—C19—C11176.2 (5)
C2—C3—C4—C50.1 (8)Hgii—N3—C19—C116.9 (8)
C3—C4—C5—C61.4 (8)C25—N4—C19—N31.0 (8)
C4—C5—C6—C71.4 (8)C26—N4—C19—N3177.1 (8)
C1—N2—C7—C6179.8 (5)C25—N4—C19—C11175.2 (6)
C8—N2—C7—C65.3 (8)C26—N4—C19—C116.6 (12)
C1—N2—C7—C21.0 (5)C12—C11—C19—N380.3 (8)
C8—N2—C7—C2173.5 (4)C10—C11—C19—N399.4 (7)
C5—C6—C7—N2178.9 (5)C12—C11—C19—N495.5 (7)
C5—C6—C7—C20.2 (7)C10—C11—C19—N484.8 (8)
N1—C2—C7—N20.6 (5)C19—N3—C20—C21176.7 (4)
C3—C2—C7—N2177.9 (4)Hgii—N3—C20—C218.2 (7)
N1—C2—C7—C6179.5 (4)C19—N3—C20—C251.1 (5)
C3—C2—C7—C61.0 (7)Hgii—N3—C20—C25167.4 (3)
N1—C1—C9—C1454.6 (7)N3—C20—C21—C22175.2 (5)
N2—C1—C9—C14123.2 (5)C25—C20—C21—C220.0
N1—C1—C9—C10123.9 (5)C20—C21—C22—C230.0
N2—C1—C9—C1058.3 (7)C21—C22—C23—C240.0
C14—C9—C10—C113.6 (8)C22—C23—C24—C250.0
C1—C9—C10—C11177.8 (5)C19—N4—C25—C24175.9 (4)
C14—C9—C10—Br1173.0 (4)C26—N4—C25—C245.9 (12)
C1—C9—C10—Br15.5 (7)C19—N4—C25—C201.7 (7)
C9—C10—C11—C121.8 (8)C26—N4—C25—C20176.5 (8)
Br1—C10—C11—C12175.0 (4)C23—C24—C25—N4177.4 (7)
C9—C10—C11—C19177.9 (5)C23—C24—C25—C200.0
Br1—C10—C11—C195.4 (7)N3—C20—C25—N41.8 (5)
C10—C11—C12—C131.4 (8)C21—C20—C25—N4178.0 (5)
C19—C11—C12—C13178.9 (5)N3—C20—C25—C24176.2 (4)
C11—C12—C13—C142.6 (8)C21—C20—C25—C240.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the imidazole ring N1/N2/C1/C2/C7.
D—H···AD—HH···AD···AD—H···A
C3—H3A···N3i0.952.653.459 (7)144
C8—H8A···Cl2ii0.982.713.643 (6)160
C8—H8B···Cl1iii0.982.823.719 (6)152
C21—H21B···Cl1ii0.952.773.616 (3)149
C16—H16B···Cg1ii0.982.913.671 (8)135
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

RJB is grateful for funding from NSF (award 1205608) and the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University Nanoscience Facility for access to liquid nitro­gen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award Nos. CHE0619278, 1205608).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBouchouit, M., Benzerka, S., Bouraiou, A., Merazig, H., Belfaitah, A. & Bouacida, S. (2015). Acta Cryst. E71, m253–m254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarballo, R., Castiñeiras, A., Conde, M. C. G. & Hiller, W. (1993). Polyhedron, 12, 1655–1660.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, Y., Chen, C., Chen, H., Cao, T., Yue, Z., Liu, X. & Niu, Y. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1307–1310.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, S., Fan, R.-Q., Wang, X.-M. & Yang, Y.-L. (2014). CrystEngComm, 16, 6114–6125.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDey, A., Mandal, S. K. & Biradha, K. (2013). CrystEngComm, 15, 9769–9778.  Web of Science CSD CrossRef CAS Google Scholar
First citationDing, Y., Zhou, X., Jin, G., Zhao, D. & Meng, X. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 438–443.  Web of Science CSD CrossRef CAS Google Scholar
First citationDorazco-Gonzalez, A. (2014). Organometallics, 33, 868–875.  CAS Google Scholar
First citationDu, J.-L., Wei, Z.-Z. & Hu, T.-L. (2011). Solid State Sci. 13, 1256–1260.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, C.-J., Zu, E.-P. & Zhou, X.-J. (2012). Z. Kristallogr. New Cryst. Struct. 227, 445–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, J. Y., Liao, C. L., Hu, L. L., Zhang, C. C., Chen, S. F. & Zhao, J. (2015). Russ. J. Coord. Chem. 41, 212–219.  Web of Science CrossRef CAS Google Scholar
First citationHu, J., Liao, C., Zhao, J. & Haipeng Zhao, H. (2012). Z. Kristallogr. New Cryst. Struct. 227, 69–70.  CAS Google Scholar
First citationHuang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, B. L., Meng, F. Y., Wang, L. & Lin, C. W. (2010). Z. Kristallogr. New Cryst. Struct. 225, 313–314.  CAS Google Scholar
First citationLi, J., Li, X., Lü, H., Zhu, Y., Sun, H., Guo, Y., Yue, Z., Zhao, J., Tang, M., Hou, H., Fan, Y. & Chang, J. (2012b). Inorg. Chim. Acta, 384, 163–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2012a). Acta Cryst. C68, m152–m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990–2996.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-M., Mu, X.-Y., Xia, H., Su, Q., Ye, L., Chen, C., Gao, W. & Mu, Y. (2007). Chem. Res. Chin. Univ. 23, 159–162.  Web of Science CSD CrossRef Google Scholar
First citationLou, S.-F., Wang, Q. & Ding, J. (2012). Z. Kristallogr. New Cryst. Struct. 227, 105–106.  CAS Google Scholar
First citationManjunatha, M. N., Dikundwar, A. G. & Nagasundara, K. R. (2011). Polyhedron, 30, 1299–1304.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hill, M. N. S. & Lockhart, J. C. (1998). Inorg. Chem. 37, 199–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuiroz-Castro, E., Bernès, S., Barba-Behrens, N., Tapia-Benavides, R., Contreras, R. & Nöth, H. (2000). Polyhedron, 19, 1479–1484.  CAS Google Scholar
First citationReddy, K. R. & Krishna, G. G. (2005). Tetrahedron Lett. 46, 661–663.  Web of Science CrossRef CAS Google Scholar
First citationRuettimann, S., Piguet, C., Bernardinelli, G., Bocquet, B. & Williams, A. F. (1992). J. Am. Chem. Soc. 114, 4230–4237.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Y.-H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m1880–m1882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, C.-Y., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5685–5692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTam, A. Y. Y., Tsang, D. P. K., Chan, M. Y., Zhu, N. & Yam, V. W. W. (2011). Chem. Commun. 47, 3383–3385.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Q., Fu, Z.-Y. & Yu, L.-M. (2012). Acta Cryst. E68, m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-F., Lv, Y., Su, Z., Okamura, T., Wu, G., Sun, W.-Y. & Ueyama, N. (2007). Z. Anorg. Allg. Chem. 633, 2695–2700.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J.-J., Yan, L.-F., Li, Z.-X., Chang, Z., Hu, T.-L. & Bu, X.-H. (2009). Inorg. Chim. Acta, 362, 3147–3154.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X., Yang, H.-Y., Zhang, C., Yuan, J. & Yang, H.-X. (2015). Z. Kristallogr. New Cryst. Struct. 230, 361–362.  CAS Google Scholar
First citationWu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, B., Li, W., Hou, H. & Fan, Y. (2009). J. Coord. Chem. 62, 1630–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, B., Yang, L.-J., Xiao, H.-Y. & Fang, S.-M. (2011). J. Coord. Chem. 64, 4408–4420.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Q., Liu, S., Li, X., Wu, Q., Luo, Z., Fu, X., Cao, W., Lan, G., Li, D., Zheng, W. & Chen, T. (2014). Dalton Trans. 43, 6973–6976.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, C., Wang, X., Ding, D., Hou, H. & Fan, Y. (2011). Inorg. Chem. Commun. 14, 1410–1413.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, S., Jin, G., Yang, Y., Su, X. & Meng, X. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 678–684.  CAS Google Scholar
First citationYang, G.-J. & Luo, L.-X. (2012). Z. Kristallogr. New Cryst. Struct. 227, 441–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, W. W., Zhong, Y. W., Yoshikawa, S., Shao, J. Y., Masaoka, S., Sakai, K., Yao, J. & Haga, M. (2012). Inorg. Chem. 51, 890–899.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Z., Feng, Y.-F., Wei, Q.-Y., Hu, K., Chen, Z.-L. & Liang, F.-P. (2015). CrystEngComm, 17, 6724–6735.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, J., Li, S., Chen, S., Bai, Y. & Hu, J. (2012). J. Coord. Chem. 65, 1201–1211.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, X.-W., Xiao, B., Yin, Z.-G., Qian, H.-Y. & Li, G.-S. (2009). Acta Cryst. E65, m912.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds