research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and hydrogen-bonding patterns in 5-fluoro­cytosinium picrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bDepartment of Chemistry, Clemson University, 379 H.L. Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by G. Smith, Queensland University of Technology, Australia (Received 24 January 2017; accepted 9 February 2017; online 14 February 2017)

In the crystal structure of the title compound, 5-fluoro­cytosinium picrate, C4H5FN3O+·C6H2N3O7, one N heteroatom of the 5-fluoro­cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA) anion. In the crystal, the 5FC+ cation inter­acts with the PA anion through three-centre N—H⋯O hydrogen bonds, forming two conjoined rings having R21(6) and R12(6) motifs, and is extended by N—H⋯O hydrogen bonds and C—H⋯O inter­actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C—F⋯π inter­actions.

1. Chemical context

Crystal engineering is defined as the rational design of crystalline solids through control of inter­molecular inter­actions (hydrogen bonding, hydro­phobic forces, van der Waals forces, ππ inter­actions and electrostatic forces). New solid forms of pharmaceuticals are designed using the crystal engineering approach. These engineered solids have technological and legal importance. Among the inter­molecular inter­actions, hydrogen bonding is the master key for mol­ecular recognition in biological systems because of its strength and directionality (Almarsson & Zaworoko, 2004[Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]; Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). It plays a dominant role in mol­ecular aggregates (Samuel, 1997[Samuel, H. G. (1997). Chem. Rev. 5, 1231-1232.]; Tutughamiarso & Egert, 2012[Tutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444-452.]) and three-dimensional structure, stability and function of biomacromolecules (Gould, 1986[Gould, P. J. (1986). Int. J. Pharm. 33, 201-217.]). In particular, pyrimidine derivatives are used in the treatment of anti­viral, anti­fungal, anti­tumor and cardiovascular diseases. 5-fluoro­cytosine (5FC) is a synthetic anti­mycotic compound, first synthesized in 1957 and widely used as an anti­tumor agent it is also active against fungal infection (Heidelberger et al., 1957[Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E. & Scheiner, J. (1957). Nature, 179, 663-666.]; Portalone & Colapietro, 2007[Portalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141-145.]; Vermes et al., 2000[Vermes, A., Guchelaar, H. J. & Dankert, J. J. (2000). J. Antimicrob. Chemother. 46, 171-179.]). It becomes active by deamination of 5FC into 5-fluoro­uracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Morschhäuser, 2003[Morschhäuser, J. (2003). Pharm. Unserer Zeit, 32, 124-128.]). Picric acid forms charge-transfer complexes with many organic compounds. It functions not only as an acceptor to form π-stacking complexes with aromatic biomolecules, but also as an acidic ligand to form salts with polar biomolecules through specific electrostatic hydrogen-bonding inter­actions (In et al., 1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]). The present work is focused on the understanding of supra­molecular hydrogen-bonding patterns exhibited by the inter­action of 5FC and picric acid, giving the (1:1) title salt, C4H5FN3O+·C6H2N3O7 whose structure and hydrogen-bonding patterns are reported on herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit contains one 5-fluoro­cytosinium cation (5FC+) and one picrate anion (PA) (Fig. 1[link]). The 5-fluoro­cytosine cation is protonated at the N3 atom, as is evident from the widening of the corresponding inter­nal angle from 120.8 (5)° to 125.37 (17)° compared to neutral 5FC (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]). The dihedral angle between the planes of the rigs in the cation and anion is 19.97 (11)°. In the picrate (PA) anion, the nitro groups lie variously out of the parent benzene ring, with torsion angles C9—C8—N5—O4, C9—C10—N6—O7 and C11—C12—N7—O9 of 166.2 (2), −171.7 (2) and 147.2 (2)°, respectively.

[Figure 1]
Figure 1
The naming scheme for the 5FC+ cation and the PA anion in the title compound, showing 30% probability level displacement ellipsoids. Dashed lines represent hydrogen bonds.

3. Supra­molecular features

In this crystal structure, the N4-amino group and protonated N3 atom of the 5FC+ cation inter­act with atoms O3 and O9 of the picrate anion through three-centre N—H⋯O hydrogen bonds, forming two fused-ring motifs with graph-sets [R_{1}^{2}](6) and [R_{2}^{1}](6) (Fig. 1[link]). One of the N4-amino hydrogen atoms of the 5FC+ cation acts as a three-centre donor and the O3 atom of the PA anion acts as a three-centre acceptor. This type of inter­action has also been reported in the crystal structures of 2-amino-4,6-di­methyl­pyrimidinium picrate (Subashini et al., 2006[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847-o3849.]) and 2-amino-4,6- di­meth­oxy­pyrimidinium picrate, pyrimethaminium picrate dimethyl sulfoxide (Thanigaimani et al., 2009[Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42-o45.]). Similarly, the other hetero nitro­gen atom (N1) of the cation and both the phenolate O3i and a nitro O4i atom of a PA anion form an [R_{1}^{2}](6) ring motif through N—H⋯O hydrogen bonds with a second C—H⋯O4i inter­action, closing an [R_{2}^{1}](5) ring (Table 1[link]). A similar type of inter­action has also been observed in the crystal structure of cytosinium hydrogen chloro­anilate monohydrate (Gotoh et al., 2006[Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738-o4740.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 1.92 2.794 (3) 175
N1—H1⋯O4i 0.88 2.56 3.021 (3) 114
N3—H3⋯O3 0.88 2.22 2.915 (2) 136
N4—H4A⋯O3 0.88 2.10 2.828 (2) 139
N4—H4A⋯O9 0.88 2.18 2.782 (3) 125
N4—H4B⋯O2ii 0.88 1.96 2.832 (3) 171
C6—H6⋯O4i 0.95 2.51 3.003 (3) 113
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x-{\script{1\over 2}}, y-{\script{3\over 2}}, z].

Further, the symmetry-related O2ii atom and the amino group of the 5FC+ cation are connected through an N—H⋯O hydrogen bond, forming a two-dimensional supra­molecular network lying parallel to (001) (Fig. 2[link]). Also present in the crystal structure is a weak C5—F5⋯π inter­action (Fig. 3[link]) between 5FC+ cations [C5⋯Cgiv = 3.4002 (19) Å; C—F⋯Cg = 88.34 (12)°, where Cg is the centroid of the N1–C6 ring; symmetry code: (iv) −x, −y, −z + 1]. A similar angle [90.5 (2)°] has been reported for a C—F⋯Cg inter­action in an acridinium tri­fluoro­methane sulfonate compound (Sikorski et al., 2005[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690-o694.]).

[Figure 2]
Figure 2
A view of the supra­molecular network formed via N—H⋯O and C—H⋯O inter­actions. Dashed lines represent hydrogen bonds. For symmetry codes, see Table 1[link].
[Figure 3]
Figure 3
A view of the C5—F5⋯π inter­action between 5FC+ cations.

4. Database survey

The crystal structures of 5-fluoro­cytosine monohydrates (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]; Portalone & Colapietro, 2006[Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049-o1051.]; Portalone & Colapietro, 2007[Portalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141-145.]; Portalone, 2011[Portalone, G. (2011). Chem. Cent. J. 5, 1-8.]), polymorphs (Hulme & Tocher, 2006[Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481-487.]; Tutughamiarso & Egert, 2012[Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574-o578.]), salts (Perumalla et al., 2013[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Mol. Pharm. 10, 2462-2466.]) and co-crystals (Tutughamiarso et al., 2012[Tutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444-452.]; da Silva et al., 2014[Silva, C. C. P. da, Pepino, R. de O., de Melo, C. C., Tenorio, J. C. & Ellena, J. (2014). Cryst. Growth Des. 14, 4383-4393.]) have been reported in the literature. From our laboratory, 5-fluoro­cytosinium salicylate (Prabakaran et al., 2001[Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933-o936.]), 5-fluoro­cytosinium 3-hy­droxy­picolinate (Karthikeyan et al., 2014[Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328-330.]) and 5-fluoro­cytosine melamine (Mohana et al., 2016[Mohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552-555.]) have been reported. Various salts and co-crystals of picric acid have also been reported in the literature (Subashini et al., 2006[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847-o3849.]; Thanigaimani et al., 2009[Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42-o45.]; Nagata et al., 1995[Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051-1058.]; Smith et al., 2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.]; Gotoh et al., 2004[Gotoh, M., Kanno, H., Sugaya, E., Osa, Y. & Takayanagi, H. (2004). Anal. Sci. 20, x39-x40.]).

5. Synthesis and crystallization

A hot aqueous solution of 5-fluoro­cytosine (32 mg) and picric acid (57 mg) were mixed in a 1:1 molar ratio. The resulting solution was warmed to 353 K wrong symmetry description - inversion centre in central benzene ring over a water bath for half an hour and kept for slow evaporation. After a week, colourless prismatic crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were positioned geometrically (C—H = 0.95 Å and N—H = 0.88 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(parent atom).

Table 2
Experimental details

Crystal data
Chemical formula C4H5FN3O+·C6H2N3O7
Mr 358.22
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 200
a, b, c (Å) 7.7463 (15), 13.235 (3), 25.642 (5)
V3) 2628.9 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.65 × 0.58 × 0.20
 
Data collection
Diffractometer Rigaku AFC-8S
Absorption correction Multi-scan multi-scan
Tmin, Tmax 0.899, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 21815, 2779, 2367
Rint 0.041
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 1.09
No. of reflections 2779
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36
Computer programs: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt. Ltd, Victoria, Australia. URL: https://www.povray.org.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

5-Fluorocytosinium picrate top
Crystal data top
C4H5FN3O+·C6H2N3O7Dx = 1.810 Mg m3
Mr = 358.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2779 reflections
a = 7.7463 (15) Åθ = 3.1–26.7°
b = 13.235 (3) ŵ = 0.17 mm1
c = 25.642 (5) ÅT = 200 K
V = 2628.9 (9) Å3Prism, colorless
Z = 80.65 × 0.58 × 0.20 mm
F(000) = 1456
Data collection top
Rigaku AFC-8S
diffractometer
2779 independent reflections
Radiation source: fine focus sealed tube2367 reflections with I > 2σ(I)
Detector resolution: 14.6199 pixels mm-1Rint = 0.041
ω scansθmax = 26.7°, θmin = 3.1°
Absorption correction: multi-scan
multi-scan
h = 97
Tmin = 0.899, Tmax = 0.967k = 1616
21815 measured reflectionsl = 3232
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.1025P)2 + 1.2366P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2779 reflectionsΔρmax = 0.28 e Å3
226 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.4311 (2)0.65661 (11)0.61738 (6)0.0381 (4)
O90.5493 (2)0.46460 (13)0.62650 (7)0.0440 (4)
O70.5646 (3)0.58196 (18)0.85486 (7)0.0566 (5)
O80.7432 (2)0.45799 (14)0.68664 (7)0.0469 (4)
C70.4418 (3)0.65628 (15)0.66650 (8)0.0317 (5)
N70.6116 (2)0.49512 (14)0.66734 (7)0.0353 (4)
C120.5282 (3)0.57726 (16)0.69555 (8)0.0317 (4)
C80.3714 (3)0.73340 (16)0.70030 (8)0.0338 (5)
C100.4631 (3)0.65060 (18)0.77790 (8)0.0365 (5)
O40.2970 (3)0.83845 (18)0.63172 (8)0.0664 (7)
N50.2811 (3)0.81933 (15)0.67800 (8)0.0390 (4)
O50.1900 (3)0.87035 (16)0.70710 (7)0.0595 (6)
C110.5410 (3)0.57451 (16)0.74889 (8)0.0344 (5)
H110.6019890.5214740.7657200.041*
O60.3831 (4)0.70675 (18)0.85946 (8)0.0733 (7)
N60.4708 (3)0.64684 (16)0.83447 (8)0.0448 (5)
C90.3783 (3)0.72956 (17)0.75414 (9)0.0366 (5)
H90.3250570.7807990.7745070.044*
F50.2136 (2)0.44284 (10)0.45073 (6)0.0484 (4)
O20.0618 (2)0.81443 (11)0.51702 (7)0.0412 (4)
N30.1841 (2)0.66094 (13)0.53164 (6)0.0320 (4)
H30.2094770.6791510.5637470.038*
N10.0672 (3)0.69947 (14)0.45092 (7)0.0371 (4)
H10.0194560.7423730.4290230.044*
N40.3114 (3)0.50588 (14)0.54809 (7)0.0383 (4)
H4A0.3388170.5262010.5797030.046*
H4B0.3396800.4446940.5377100.046*
C20.1011 (3)0.73142 (15)0.50045 (8)0.0325 (5)
C40.2293 (3)0.56620 (15)0.51674 (8)0.0316 (4)
C50.1785 (3)0.53785 (16)0.46564 (8)0.0348 (5)
C60.1035 (3)0.60450 (18)0.43367 (9)0.0392 (5)
H60.0754540.5856050.3989410.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0529 (10)0.0359 (8)0.0256 (7)0.0065 (7)0.0044 (6)0.0023 (6)
O90.0528 (10)0.0445 (9)0.0347 (8)0.0036 (7)0.0071 (7)0.0055 (7)
O70.0523 (11)0.0861 (15)0.0315 (9)0.0037 (10)0.0075 (8)0.0120 (9)
O80.0448 (9)0.0477 (10)0.0483 (10)0.0065 (7)0.0101 (8)0.0000 (8)
C70.0347 (10)0.0337 (10)0.0268 (10)0.0097 (8)0.0011 (8)0.0030 (7)
N70.0386 (10)0.0369 (9)0.0305 (9)0.0042 (7)0.0001 (7)0.0035 (7)
C120.0335 (10)0.0331 (10)0.0286 (10)0.0057 (8)0.0010 (8)0.0025 (8)
C80.0373 (11)0.0315 (10)0.0327 (10)0.0057 (8)0.0022 (8)0.0014 (8)
C100.0408 (12)0.0434 (12)0.0252 (10)0.0119 (9)0.0015 (8)0.0014 (8)
O40.0806 (15)0.0708 (14)0.0478 (11)0.0296 (11)0.0199 (10)0.0262 (10)
N50.0424 (10)0.0379 (10)0.0368 (10)0.0034 (8)0.0003 (8)0.0009 (8)
O50.0814 (15)0.0547 (12)0.0424 (10)0.0228 (10)0.0041 (9)0.0079 (8)
C110.0357 (11)0.0380 (10)0.0296 (10)0.0076 (8)0.0047 (8)0.0058 (8)
O60.122 (2)0.0654 (13)0.0320 (9)0.0087 (13)0.0120 (11)0.0020 (9)
N60.0538 (12)0.0518 (12)0.0287 (10)0.0135 (10)0.0011 (9)0.0027 (8)
C90.0396 (12)0.0386 (11)0.0317 (11)0.0097 (9)0.0015 (8)0.0019 (8)
F50.0673 (10)0.0373 (7)0.0404 (8)0.0123 (6)0.0140 (7)0.0128 (6)
O20.0538 (10)0.0292 (8)0.0406 (9)0.0029 (7)0.0023 (7)0.0004 (6)
N30.0404 (10)0.0302 (9)0.0252 (8)0.0019 (7)0.0033 (7)0.0028 (6)
N10.0491 (11)0.0347 (9)0.0274 (9)0.0077 (8)0.0028 (8)0.0032 (7)
N40.0514 (11)0.0310 (9)0.0324 (9)0.0053 (8)0.0094 (8)0.0031 (7)
C20.0380 (11)0.0308 (11)0.0288 (10)0.0023 (8)0.0005 (8)0.0012 (8)
C40.0360 (10)0.0303 (10)0.0285 (10)0.0039 (8)0.0006 (8)0.0000 (8)
C50.0439 (11)0.0312 (10)0.0294 (10)0.0031 (8)0.0032 (9)0.0057 (8)
C60.0473 (12)0.0418 (12)0.0284 (10)0.0055 (10)0.0053 (9)0.0049 (8)
Geometric parameters (Å, º) top
O3—C71.262 (3)O6—N61.225 (3)
O9—N71.222 (3)C9—H90.9500
O7—N61.240 (3)F5—C51.342 (2)
O8—N71.235 (3)O2—C21.217 (3)
C7—C81.446 (3)N3—C41.357 (3)
C7—C121.448 (3)N3—C21.387 (3)
N7—C121.457 (3)N3—H30.8800
C12—C111.372 (3)N1—C61.362 (3)
C8—C91.383 (3)N1—C21.364 (3)
C8—N51.452 (3)N1—H10.8800
C10—C91.377 (3)N4—C41.299 (3)
C10—C111.389 (3)N4—H4A0.8800
C10—N61.453 (3)N4—H4B0.8800
O4—N51.219 (3)C4—C51.419 (3)
N5—O51.229 (3)C5—C61.337 (3)
C11—H110.9500C6—H60.9500
O3—C7—C8124.81 (19)C10—C9—C8119.2 (2)
O3—C7—C12123.1 (2)C10—C9—H9120.4
C8—C7—C12112.08 (18)C8—C9—H9120.4
O9—N7—O8122.5 (2)C4—N3—C2125.37 (17)
O9—N7—C12119.83 (18)C4—N3—H3117.3
O8—N7—C12117.63 (18)C2—N3—H3117.3
C11—C12—C7124.4 (2)C6—N1—C2123.29 (18)
C11—C12—N7116.32 (18)C6—N1—H1118.4
C7—C12—N7119.24 (18)C2—N1—H1118.4
C9—C8—C7123.9 (2)C4—N4—H4A120.0
C9—C8—N5116.14 (19)C4—N4—H4B120.0
C7—C8—N5119.89 (18)H4A—N4—H4B120.0
C9—C10—C11121.4 (2)O2—C2—N1123.8 (2)
C9—C10—N6119.2 (2)O2—C2—N3121.46 (19)
C11—C10—N6119.5 (2)N1—C2—N3114.70 (18)
O4—N5—O5122.3 (2)N4—C4—N3121.33 (19)
O4—N5—C8119.8 (2)N4—C4—C5123.0 (2)
O5—N5—C8117.87 (19)N3—C4—C5115.65 (19)
C12—C11—C10118.9 (2)C6—C5—F5122.10 (19)
C12—C11—H11120.6C6—C5—C4120.8 (2)
C10—C11—H11120.6F5—C5—C4117.05 (19)
O6—N6—O7123.5 (2)C5—C6—N1120.0 (2)
O6—N6—C10118.5 (2)C5—C6—H6120.0
O7—N6—C10117.9 (2)N1—C6—H6120.0
O4—N5—C8—C716.2 (3)O3—C7—C8—C9177.2 (2)
O4—N5—C8—C9166.2 (2)C12—C7—C8—N5179.5 (2)
O5—N5—C8—C7163.6 (2)C12—C7—C8—C93.0 (3)
O5—N5—C8—C914.0 (3)O3—C7—C12—N71.8 (3)
O6—N6—C10—C99.2 (4)O3—C7—C12—C11179.6 (2)
O6—N6—C10—C11170.7 (2)C8—C7—C12—N7178.00 (19)
O7—N6—C10—C9171.7 (2)N5—C8—C9—C10179.5 (2)
O7—N6—C10—C118.4 (3)C7—C8—C9—C103.0 (4)
O8—N7—C12—C7147.0 (2)C8—C9—C10—N6179.8 (2)
O8—N7—C12—C1131.8 (3)C8—C9—C10—C110.3 (4)
O9—N7—C12—C734.0 (3)N6—C10—C11—C12178.0 (2)
O9—N7—C12—C11147.2 (2)C9—C10—C11—C121.9 (3)
C2—N1—C6—C51.1 (4)C10—C11—C12—N7179.6 (2)
C6—N1—C2—O2176.4 (2)C10—C11—C12—C71.7 (4)
C6—N1—C2—N33.1 (3)N3—C4—C5—F5176.70 (18)
C2—N3—C4—C53.0 (3)N3—C4—C5—C65.1 (3)
C4—N3—C2—O2178.6 (2)N4—C4—C5—F52.2 (3)
C4—N3—C2—N10.9 (3)N4—C4—C5—C6175.9 (2)
C2—N3—C4—N4178.0 (2)F5—C5—C6—N1178.7 (2)
O3—C7—C8—N50.2 (3)C4—C5—C6—N13.3 (4)
C8—C7—C12—C110.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.922.794 (3)175
N1—H1···O4i0.882.563.021 (3)114
N3—H3···O30.882.222.915 (2)136
N4—H4A···O30.882.102.828 (2)139
N4—H4A···O90.882.182.782 (3)125
N4—H4B···O2ii0.881.962.832 (3)171
C6—H6···O4i0.952.513.003 (3)113
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1/2, y3/2, z.
 

Acknowledgements

MM thanks UGC-BSR, India, for the award of an RFSMS. PTM thanks the UGC for a one-time BSR–faculty grant.

References

First citationAlmarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896.  Web of Science CrossRef Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt. Ltd, Victoria, Australia. URL: https://www.povray.org.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, M., Kanno, H., Sugaya, E., Osa, Y. & Takayanagi, H. (2004). Anal. Sci. 20, x39–x40.  Google Scholar
First citationGould, P. J. (1986). Int. J. Pharm. 33, 201–217.  CrossRef CAS Web of Science Google Scholar
First citationHeidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E. & Scheiner, J. (1957). Nature, 179, 663–666.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330.  CSD CrossRef IUCr Journals Google Scholar
First citationLouis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552–555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorschhäuser, J. (2003). Pharm. Unserer Zeit, 32, 124–128.  PubMed Google Scholar
First citationNagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Mol. Pharm. 10, 2462–2466.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPortalone, G. (2011). Chem. Cent. J. 5, 1–8.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPortalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSamuel, H. G. (1997). Chem. Rev. 5, 1231–1232.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSilva, C. C. P. da, Pepino, R. de O., de Melo, C. C., Tenorio, J. C. & Ellena, J. (2014). Cryst. Growth Des. 14, 4383–4393.  Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42–o45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444–452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVermes, A., Guchelaar, H. J. & Dankert, J. J. (2000). J. Antimicrob. Chemother. 46, 171–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds