research communications
R)-4-(4-methoxybenzoyl)-4-{[(1R)-1-phenylethyl]carbamoyl}butanoate
of methyl (4aDepartamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caidos, 37008-Salamanca, Spain, and bServicio de Difracción de Rayos X, Universidad de Salamanca, Plaza de los Caidos, 37008-Salamanca, Spain
*Correspondence e-mail: nmg@usal.es
The title compound, C22H25NO5, was prepared by CAN [cerium(IV) ammonium nitrate] oxidation of the corresponding β-lactam. The dihedral angle between the benzene rings is 13.3 (4)° and the C—N—C(=O)—C torsion angle is 176.1 (6)°. In the crystal, amide-C(4) N—H⋯O and reinforcing C—H⋯O hydrogen bonds link the molecules into infinite [010] chains. Further C—H⋯O hydrogen bonds cross-link the chains in the c-axis direction.
Keywords: crystal structure; hydrogen bonds; CAN oxidation; β-lactame; glutarate.
CCDC reference: 1524270
1. Chemical context
Cerium(IV) ammonium nitrate (CAN) is a powerful reagent in organic synthesis, which promotes a wide range of reactions that go well beyond its usual role as an oxidant (Sridharan & Menendez, 2010). Chemoselective mono-debenzylation of benzyl tertiary occurs in the presence of N-benzyl O-benzyl and (Bull et al., 2000); interestingly this reaction can be applied to mono-debenzylation of β-amino as a way to obtain β-lactams (Davies & Ichihara, 1998) or piperidone (Garrido et al., 2011), providing as well a new oxidative methodology as catch linker for reaction monitoring and optimization on solid phase support (Davies et al., 2008). Our group has demonstrated two different domino reactions, one by lithium amide addition to diendioate that can be applied to the synthesis of cyclopentanic (Urones et al., 2004) or cyclohexanic (Garrido et al., 2006) derivatives and the other by addition to Baylis–Hillman (Garrido et al., 2008) derivatives with application to the synthesis of non-peptidic neurokinin NK1 receptor antagonist (+)-L-733,060 (Garrido et al., 2010). Within this context of the synthesis of biologically active compounds, we are interested in the synthesis of β-lactam and its mono-deprotection, as shown in the Scheme, where the asymmetric 4-benzoyl glutarate is readily obtained by CAN oxidation of the appropriate substituted β-lactam. For the CAN oxidation reaction of a related trialkyl amine derivative providing monodeprotection, see Garrido et al. (2011).
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The molecule consists of an ester amide glutarate derivative with a p-metoxybenzoyl group as substituent: all the bond lengths and angles are within normal ranges. The almost planar conformation of the ester group is established from the torsion angle C20—C21—O4—C22 of 178.6 (3)°. The ether group atom C1 and the carbonyl group atom C8 are almost coplanar with the benzene ring, the C7—O1—C1—C6 and O2—C8—C4—C5 torsion angles being 177.9 (1) and 172.4 (8)°, respectively. The C11 methyl group is also almost coplanar with the its benzene ring, as indicated by the torsion angle C18—C11—C12—C13 of 176.68 (7)°. The dihedral angle between the aromatic rings is 13.3 (4)°.
3. Supramolecular features
In the extended structure of the title compound, hydrogen bonds are one of the primary factors in building the crystal network (Table 1). Intermolecular N1—H1⋯O3i (dotted light-blue lines), C9—H9⋯O3i dotted (orange lines) and C20—H20A⋯O2i (dotted blue lines) hydrogen bonds link neighboring molecules, generating infinite chains running along the b-axis direction (Fig. 2). These chains are joined to each other along c axis by C17—H17⋯O5ii interactions (dotted pink lines), as shown in Fig. 3. The packing viewed along the [010] direction is illustrated in Fig. 4.
4. Synthesis and crystallization
(3S,4S,αR)-N-(α-methylbenzyl)-4-(para-methoxyphenyl)-3-methoxycarbonylethyl-β-lactam (I) (26.50 mg, 76.12 µmol) was dissolved in 12.00 ml of a mixture of MeCN–H2O (5:1) and CAN (150.1 mg, 0.27 mmol) was added and allowed to stir for 15 minutes under an argon atmosphere. Solid NaHCO3 was then added and the mixture allowed to stir for another 15 minutes. It was filtered over celite, washed with EtOAc and NaHSO4 and the phases separated. The organic phase was treated with H2O, brine and anhydrous Na2SO4, filtered and the solvent removed under reduced pressure to obtained the crude product (23.4 mg), which was purified by flash (silica gel, hexane/EtOAC 7:3) and crystallized from hexane/EtOAc solution to yield 7.7 mg of product (II) (28%), m.p. 440.6 K.
IR (film): 700, 802, 1026, 1171, 1260, 1373, 1456, 1512, 1601, 1736, 2849, 2918, 3333. 1H NMR (200 MHz, CDCl3) δ 8.33–7.78 (m, 2H, Ar), 7.48–7.25 (m, 5H, Ar), 6.99–6.81 (m, 2H, Ar), 5.05 (1H, quint, J = 6.9 Hz), 4.65 (1H, t, J = 5.5 Hz), 3.87 (s, 3H, COOMe), 3.65 (s, 3H, OMe), 2.50–2.20 (m, 4H), 1.47 (3H, d, J = 6.9 Hz, CH3).13C NMR (50 MHz, CDCl3) δ 193.4 (C, C=O), 169.4(C, C=O), 164.1 (C, Cipso), 160.6 (C, Cipso), 139.2(C, Cipso), 127.5 (CH × 2, Ar), 125.0 (CH × 2, Ar), 122.3 (CH, Ar), 122.1 (CH × 2, Ar), 110.4 (CH × 2, Ar), 51.9 (CH3, COOMe), 50.1 (CH), 48.1 (CH3, OMe), 45.3 (CH), 27.6 (CH2), 23.3 (CH2), 18.4 (CH3). HRMS (EI): C22H26NO5 requires (M + H)+, 384.1803, found 384.1805.
5. Refinement
Crystal data, data collection and structure . The hydrogen atoms were positioned geometrically, with C–H distances constrained to 0.93 Å (aromatic CH), 0.97 Å (methylene CH2), 0.98 methyne CH) and N—H = 0.86 Å (amine), and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C,N).
details are summarized in Table 2Supporting information
CCDC reference: 1524270
https://doi.org/10.1107/S2056989017003607/hb7652sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017003607/hb7652Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017003607/hb7652Isup3.cml
Data collection: APEX2 (Bruker 2006); cell
SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C22H25NO5 | F(000) = 816 |
Mr = 383.43 | Dx = 1.242 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3001 reflections |
a = 23.739 (3) Å | θ = 3.1–60.0° |
b = 4.7791 (5) Å | µ = 0.72 mm−1 |
c = 18.0722 (19) Å | T = 298 K |
V = 2050.3 (4) Å3 | Prismatic, colorless |
Z = 4 | 0.12 × 0.10 × 0.08 mm |
Bruker APEXII CCD area-detector diffractometer | 2913 independent reflections |
Radiation source: fine-focus sealed tube | 1854 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
phi and ω scans | θmax = 66.3°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −26→27 |
Tmin = 0.917, Tmax = 0.944 | k = −5→4 |
9316 measured reflections | l = −18→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.25 | w = 1/[σ2(Fo2) + (0.0115P)2 + 2.2937P] where P = (Fo2 + 2Fc2)/3 |
2913 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.14092 (19) | 0.5853 (12) | 0.7501 (3) | 0.0968 (16) | |
O2 | −0.07814 (19) | 0.4116 (10) | 0.9431 (2) | 0.0873 (15) | |
O3 | 0.0203 (2) | 0.3173 (8) | 1.0773 (3) | 0.0954 (17) | |
O4 | −0.2138 (2) | 1.1081 (15) | 1.0782 (4) | 0.135 (2) | |
O5 | −0.1868 (3) | 0.7840 (19) | 1.1507 (4) | 0.172 (4) | |
N1 | 0.0500 (2) | 0.7476 (10) | 1.1092 (3) | 0.0660 (15) | |
H1 | 0.0457 | 0.9243 | 1.1022 | 0.079* | |
C1 | 0.0970 (3) | 0.5689 (16) | 0.7980 (4) | 0.0737 (19) | |
C2 | 0.0521 (3) | 0.3913 (14) | 0.7891 (4) | 0.077 (2) | |
H2 | 0.0503 | 0.2712 | 0.7487 | 0.093* | |
C3 | 0.0090 (3) | 0.3946 (15) | 0.8420 (4) | 0.0721 (19) | |
H3 | −0.0216 | 0.2754 | 0.8359 | 0.087* | |
C4 | 0.0105 (3) | 0.5687 (13) | 0.9029 (4) | 0.0620 (16) | |
C5 | 0.0563 (3) | 0.7466 (14) | 0.9097 (4) | 0.0742 (19) | |
H5 | 0.0584 | 0.8673 | 0.9500 | 0.089* | |
C6 | 0.0987 (3) | 0.7474 (16) | 0.8579 (4) | 0.081 (2) | |
H6 | 0.1288 | 0.8699 | 0.8632 | 0.098* | |
C7 | 0.1414 (3) | 0.3946 (19) | 0.6885 (5) | 0.116 (3) | |
H7A | 0.1399 | 0.2057 | 0.7065 | 0.173* | |
H7B | 0.1754 | 0.4207 | 0.6605 | 0.173* | |
H7C | 0.1094 | 0.4302 | 0.6575 | 0.173* | |
C8 | −0.0366 (3) | 0.5519 (12) | 0.9563 (4) | 0.0622 (16) | |
C9 | −0.0306 (2) | 0.7072 (11) | 1.0286 (3) | 0.0621 (17) | |
H9 | −0.0205 | 0.9019 | 1.0180 | 0.075* | |
C10 | 0.0160 (3) | 0.5753 (13) | 1.0744 (4) | 0.0628 (16) | |
C11 | 0.0948 (3) | 0.6560 (14) | 1.1592 (4) | 0.077 (2) | |
H11 | 0.1005 | 0.4553 | 1.1508 | 0.093* | |
C12 | 0.1492 (3) | 0.8035 (14) | 1.1383 (4) | 0.0658 (18) | |
C13 | 0.1712 (4) | 0.7725 (19) | 1.0682 (5) | 0.106 (3) | |
H13 | 0.1523 | 0.6623 | 1.0339 | 0.127* | |
C14 | 0.2205 (4) | 0.901 (3) | 1.0482 (5) | 0.128 (4) | |
H14 | 0.2350 | 0.8761 | 1.0009 | 0.154* | |
C15 | 0.2483 (4) | 1.065 (2) | 1.0980 (7) | 0.120 (3) | |
H15 | 0.2817 | 1.1533 | 1.0845 | 0.144* | |
C16 | 0.2273 (4) | 1.100 (2) | 1.1666 (6) | 0.118 (3) | |
H16 | 0.2465 | 1.2103 | 1.2006 | 0.142* | |
C17 | 0.1779 (3) | 0.9729 (15) | 1.1865 (4) | 0.085 (2) | |
H17 | 0.1635 | 1.0022 | 1.2337 | 0.102* | |
C18 | 0.0765 (3) | 0.692 (2) | 1.2385 (4) | 0.117 (3) | |
H18A | 0.0712 | 0.8878 | 1.2487 | 0.176* | |
H18B | 0.1049 | 0.6181 | 1.2708 | 0.176* | |
H18C | 0.0417 | 0.5946 | 1.2464 | 0.176* | |
C19 | −0.0847 (2) | 0.7043 (12) | 1.0759 (3) | 0.0672 (17) | |
H19A | −0.0969 | 0.5120 | 1.0821 | 0.081* | |
H19B | −0.0760 | 0.7781 | 1.1245 | 0.081* | |
C20 | −0.1329 (2) | 0.8718 (15) | 1.0434 (4) | 0.078 (2) | |
H20A | −0.1190 | 1.0532 | 1.0277 | 0.093* | |
H20B | −0.1473 | 0.7757 | 1.0000 | 0.093* | |
C21 | −0.1799 (3) | 0.9125 (19) | 1.0976 (5) | 0.082 (2) | |
C22 | −0.2616 (3) | 1.157 (2) | 1.1275 (6) | 0.162 (5) | |
H22A | −0.2773 | 0.9809 | 1.1425 | 0.243* | |
H22B | −0.2898 | 1.2642 | 1.1020 | 0.243* | |
H22C | −0.2491 | 1.2583 | 1.1703 | 0.243* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.084 (3) | 0.115 (4) | 0.091 (4) | −0.005 (3) | 0.004 (3) | −0.005 (4) |
O2 | 0.099 (3) | 0.090 (3) | 0.072 (3) | −0.043 (3) | −0.008 (3) | −0.009 (3) |
O3 | 0.135 (4) | 0.031 (2) | 0.120 (5) | 0.001 (3) | −0.050 (4) | 0.001 (3) |
O4 | 0.108 (4) | 0.149 (6) | 0.149 (6) | 0.035 (4) | 0.045 (4) | 0.051 (5) |
O5 | 0.159 (6) | 0.218 (8) | 0.139 (6) | 0.052 (6) | 0.054 (5) | 0.093 (6) |
N1 | 0.087 (3) | 0.034 (3) | 0.078 (4) | 0.003 (3) | −0.032 (3) | 0.002 (3) |
C1 | 0.074 (4) | 0.068 (4) | 0.079 (5) | 0.007 (4) | −0.009 (4) | 0.008 (5) |
C2 | 0.089 (5) | 0.064 (5) | 0.078 (5) | −0.001 (4) | −0.008 (4) | −0.010 (4) |
C3 | 0.080 (4) | 0.063 (4) | 0.073 (5) | −0.014 (4) | −0.008 (4) | −0.002 (4) |
C4 | 0.072 (4) | 0.047 (3) | 0.067 (4) | −0.003 (3) | −0.013 (3) | 0.003 (4) |
C5 | 0.084 (4) | 0.063 (4) | 0.076 (5) | −0.013 (4) | −0.010 (4) | −0.007 (4) |
C6 | 0.078 (4) | 0.075 (5) | 0.091 (6) | −0.019 (4) | −0.009 (4) | −0.004 (5) |
C7 | 0.121 (7) | 0.126 (7) | 0.100 (7) | 0.008 (6) | 0.018 (5) | −0.032 (7) |
C8 | 0.083 (4) | 0.042 (3) | 0.062 (4) | −0.012 (3) | −0.017 (4) | 0.000 (3) |
C9 | 0.077 (4) | 0.036 (3) | 0.074 (5) | −0.007 (3) | −0.018 (3) | 0.002 (3) |
C10 | 0.082 (4) | 0.044 (3) | 0.063 (4) | −0.001 (4) | −0.021 (3) | −0.001 (4) |
C11 | 0.094 (5) | 0.055 (4) | 0.082 (5) | 0.005 (4) | −0.037 (4) | 0.006 (4) |
C12 | 0.074 (4) | 0.054 (4) | 0.070 (5) | 0.012 (3) | −0.018 (4) | −0.003 (4) |
C13 | 0.104 (6) | 0.126 (7) | 0.088 (7) | 0.009 (6) | −0.010 (5) | −0.034 (6) |
C14 | 0.104 (7) | 0.195 (12) | 0.085 (7) | 0.025 (7) | 0.013 (5) | −0.009 (8) |
C15 | 0.090 (6) | 0.139 (9) | 0.132 (10) | 0.002 (6) | 0.003 (7) | 0.030 (9) |
C16 | 0.097 (6) | 0.128 (8) | 0.128 (9) | −0.033 (6) | −0.005 (6) | −0.018 (8) |
C17 | 0.092 (5) | 0.086 (5) | 0.078 (6) | −0.005 (4) | 0.000 (4) | −0.013 (5) |
C18 | 0.105 (5) | 0.184 (10) | 0.063 (5) | −0.036 (6) | −0.020 (4) | 0.038 (7) |
C19 | 0.088 (4) | 0.054 (4) | 0.059 (4) | −0.006 (3) | −0.009 (4) | 0.007 (4) |
C20 | 0.077 (4) | 0.078 (5) | 0.078 (5) | −0.009 (4) | −0.006 (4) | 0.016 (4) |
C21 | 0.083 (5) | 0.088 (5) | 0.075 (6) | −0.005 (5) | −0.001 (4) | 0.014 (5) |
C22 | 0.107 (6) | 0.185 (11) | 0.195 (11) | 0.033 (7) | 0.073 (7) | 0.023 (9) |
O1—C1 | 1.357 (8) | C9—H9 | 0.9800 |
O1—C7 | 1.439 (8) | C11—C18 | 1.508 (9) |
O2—C8 | 1.215 (6) | C11—C12 | 1.518 (9) |
O3—C10 | 1.238 (6) | C11—H11 | 0.9800 |
O4—C21 | 1.282 (9) | C12—C17 | 1.371 (9) |
O4—C22 | 1.461 (8) | C12—C13 | 1.379 (10) |
O5—C21 | 1.151 (8) | C13—C14 | 1.369 (11) |
N1—C10 | 1.314 (7) | C13—H13 | 0.9300 |
N1—C11 | 1.461 (7) | C14—C15 | 1.364 (12) |
N1—H1 | 0.8600 | C14—H14 | 0.9300 |
C1—C2 | 1.373 (9) | C15—C16 | 1.346 (11) |
C1—C6 | 1.378 (9) | C15—H15 | 0.9300 |
C2—C3 | 1.398 (8) | C16—C17 | 1.369 (10) |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C3—C4 | 1.380 (8) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—H18A | 0.9600 |
C4—C5 | 1.386 (8) | C18—H18B | 0.9600 |
C4—C8 | 1.481 (8) | C18—H18C | 0.9600 |
C5—C6 | 1.374 (9) | C19—C20 | 1.515 (8) |
C5—H5 | 0.9300 | C19—H19A | 0.9700 |
C6—H6 | 0.9300 | C19—H19B | 0.9700 |
C7—H7A | 0.9600 | C20—C21 | 1.498 (9) |
C7—H7B | 0.9600 | C20—H20A | 0.9700 |
C7—H7C | 0.9600 | C20—H20B | 0.9700 |
C8—C9 | 1.509 (8) | C22—H22A | 0.9600 |
C9—C10 | 1.519 (8) | C22—H22B | 0.9600 |
C9—C19 | 1.542 (8) | C22—H22C | 0.9600 |
C1—O1—C7 | 117.6 (6) | C12—C11—H11 | 107.4 |
C21—O4—C22 | 115.9 (7) | C17—C12—C13 | 117.3 (7) |
C10—N1—C11 | 123.7 (5) | C17—C12—C11 | 122.6 (7) |
C10—N1—H1 | 118.1 | C13—C12—C11 | 120.1 (7) |
C11—N1—H1 | 118.1 | C14—C13—C12 | 121.3 (8) |
O1—C1—C2 | 123.9 (7) | C14—C13—H13 | 119.4 |
O1—C1—C6 | 116.3 (7) | C12—C13—H13 | 119.4 |
C2—C1—C6 | 119.8 (7) | C15—C14—C13 | 119.8 (9) |
C1—C2—C3 | 118.7 (7) | C15—C14—H14 | 120.1 |
C1—C2—H2 | 120.6 | C13—C14—H14 | 120.1 |
C3—C2—H2 | 120.6 | C16—C15—C14 | 120.0 (10) |
C4—C3—C2 | 122.2 (6) | C16—C15—H15 | 120.0 |
C4—C3—H3 | 118.9 | C14—C15—H15 | 120.0 |
C2—C3—H3 | 118.9 | C15—C16—C17 | 120.3 (9) |
C3—C4—C5 | 117.5 (6) | C15—C16—H16 | 119.9 |
C3—C4—C8 | 117.9 (6) | C17—C16—H16 | 119.9 |
C5—C4—C8 | 124.6 (6) | C16—C17—C12 | 121.4 (8) |
C6—C5—C4 | 121.0 (7) | C16—C17—H17 | 119.3 |
C6—C5—H5 | 119.5 | C12—C17—H17 | 119.3 |
C4—C5—H5 | 119.5 | C11—C18—H18A | 109.5 |
C5—C6—C1 | 120.8 (7) | C11—C18—H18B | 109.5 |
C5—C6—H6 | 119.6 | H18A—C18—H18B | 109.5 |
C1—C6—H6 | 119.6 | C11—C18—H18C | 109.5 |
O1—C7—H7A | 109.5 | H18A—C18—H18C | 109.5 |
O1—C7—H7B | 109.5 | H18B—C18—H18C | 109.5 |
H7A—C7—H7B | 109.5 | C20—C19—C9 | 114.2 (5) |
O1—C7—H7C | 109.5 | C20—C19—H19A | 108.7 |
H7A—C7—H7C | 109.5 | C9—C19—H19A | 108.7 |
H7B—C7—H7C | 109.5 | C20—C19—H19B | 108.7 |
O2—C8—C4 | 121.0 (6) | C9—C19—H19B | 108.7 |
O2—C8—C9 | 121.2 (6) | H19A—C19—H19B | 107.6 |
C4—C8—C9 | 117.8 (5) | C21—C20—C19 | 112.2 (6) |
C8—C9—C10 | 109.7 (5) | C21—C20—H20A | 109.2 |
C8—C9—C19 | 113.3 (5) | C19—C20—H20A | 109.2 |
C10—C9—C19 | 107.5 (5) | C21—C20—H20B | 109.2 |
C8—C9—H9 | 108.7 | C19—C20—H20B | 109.2 |
C10—C9—H9 | 108.7 | H20A—C20—H20B | 107.9 |
C19—C9—H9 | 108.7 | O5—C21—O4 | 121.9 (9) |
O3—C10—N1 | 123.6 (6) | O5—C21—C20 | 125.6 (9) |
O3—C10—C9 | 119.7 (6) | O4—C21—C20 | 112.5 (7) |
N1—C10—C9 | 116.7 (5) | O4—C22—H22A | 109.5 |
N1—C11—C18 | 110.0 (6) | O4—C22—H22B | 109.5 |
N1—C11—C12 | 109.0 (5) | H22A—C22—H22B | 109.5 |
C18—C11—C12 | 115.3 (6) | O4—C22—H22C | 109.5 |
N1—C11—H11 | 107.4 | H22A—C22—H22C | 109.5 |
C18—C11—H11 | 107.4 | H22B—C22—H22C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.02 | 2.871 (6) | 168 |
C9—H9···O3i | 0.98 | 2.46 | 3.277 (7) | 141 |
C20—H20A···O2i | 0.97 | 2.49 | 3.410 (8) | 158 |
C17—H17···O5ii | 0.93 | 2.55 | 3.303 (11) | 139 |
Symmetry codes: (i) x, y+1, z; (ii) −x, y+1/2, −z+5/2. |
Acknowledgements
The authors gratefully acknowledge the help of A. Lithgow (NMR) and C. Raposo (MS) of the Universidad de Salamanca.
Funding information
Funding for this research was provided by: Ministerio de Economía y Competitividadhttps://doi.org/10.13039/501100003329 (award Nos. CTQ2015–68175-R, SAF2014–59716-R); FEDER, Junta de Castilla y León UCI21.
References
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bull, S. D., Davies, S. G., Fenton, G., Mulvaney, A. W., Prasad, R. S. & Smith, A. D. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3765–3774. Web of Science CrossRef Google Scholar
Davies, S. G. & Ichihara, O. (1998). Tetrahedron Lett. 39, 6045–6048. Web of Science CrossRef CAS Google Scholar
Davies, S. G., Mortimer, D. A. B., Mulvaney, A., Russell, A. J., Skarphedinsson, H., Smith, A. D. & Vickers, R. J. (2008). Org. Biomol. Chem. 6, 1625–1634. Web of Science CrossRef PubMed CAS Google Scholar
Garrido, N. M., Díez, D., Domínguez, S. H., García, M., Sánchez, M. R. & Davies, S. G. (2006). Tetrahedron Asymmetry, 17, 2183–2186. Web of Science CrossRef CAS Google Scholar
Garrido, N. M., García, M., Díez, D., Sánchez, M. R., Sanz, F. & Urones, J. G. (2008). Org. Lett. 10, 1687–1690. Web of Science CSD CrossRef PubMed CAS Google Scholar
Garrido, N. M., García, M., Sánchez, M. R., Díez, D. & Urones, J. G. (2010). Synlett, pp. 387–390. Web of Science CrossRef Google Scholar
Garrido, N. M., Sánchez, M. R., Díez, D., Sanz, F. & Urones, J. G. (2011). Tetrahedron Asymmetry, 22, 872–880. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridharan, V. & Menéndez, J. C. (2010). Chem. Rev. 110, 3805–3849. Web of Science CrossRef CAS PubMed Google Scholar
Urones, J. G., Garrido, N. M., Díez, D., El Hammoumi, M. M., Dominguez, S. H., Casaseca, J. A., Davies, S. G. & Smith, A. D. (2004). Org. Biomol. Chem. 2, 364–372. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.