research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-(4-bromo­phen­yl)-2-{[5-(pyridin-3-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}ethan-1-one

CROSSMARK_Color_square_no_text.svg

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan, bKarakoram International University, Gilgit, Pakistan, cPCSIR Laboratories Complex, Karachi, Pakistan, and dH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Sahrah-e-Dr. Salimuzzaman Siddiqui, Karachi-75280, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 February 2017; accepted 28 March 2017; online 31 March 2017)

In the title compound, C15H10BrN3O2S, the dihedral angles between the 1,3,4-oxa­diazole ring and the 3-pyridinyl and bromo­benzene rings are 12.17 (15) and 18.74 (15)°, respectively. In the crystal, the mol­ecules are linked into [100] chains by way of C—H⋯O, C—H⋯N, C—H⋯S hydrogen bonds. The Hirshfeld surface analysis indicates that the most important contributions to the packing are H⋯H (19.5%), N⋯H (17.3%), C⋯H (15.5%), Br⋯H (11.7%), and O⋯H (11.0%) inter­actions.

1. Chemical context

Substituted 1,3,4-oxa­diazo­les exhibit numerous biological activities such as anti­bacterial and anti­fungal (Prakash et al., 2010[Prakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252-4257.], Chandrakantha et al., 2010[Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206-1210.]), anti­cancer (Abu-Zaied et al., 2011[Abu-Zaied, M., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229-235.]), anti-inflammatory, analgesic (Husain et al., 2009[Husain, A., Ahmad, A., Alam, M. M., Ajmal, M. & Ahuja, P. (2009). Eur. J. Med. Chem. 44, 3798-3804.], Omar et al., 1996[Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819-825.]), anti­convulsant and neurotoxic activities (Rajak et al., 2010[Rajak, H., Deshmukh, R., Veerasamy, R., Sharma, A. K., Mishra, P. & Kharya, M. D. (2010). Bioorg. Med. Chem. Lett. 20, 4168-4172.], Zarghi et al., 2005[Zarghi, A., Tabatabai, S. A., Faizi, M., Ahadian, A., Navabi, P., Zanganeh, V. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1863-1865.]). Chemical compounds having a 1,3,4-oxa­diazole moiety are also important contrib­utors towards the synthesis of biologically active heterocyclic compounds having anti­bacterial activity against resistant strains (Bharti et al., 2010[Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (I)[link], a product of the condensation reaction between alcoholic solutions of 5-(3-pyrid­yl)-1,3,4-oxa­diazole-2-thiol and 2,4-di­bromo­aceto­phenone in the presence triethyl amine (Kashtoh et al., 2014[Kashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A. J., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454-5465.]).

[Scheme 1]

2. Structural commentary

The structure of (I)[link] (Fig. 1[link]) is composed of three near-planar aromatic rings [bromo­phenyl (A), 3-pyridinyl (B) and 1,3,4-oxa­diazol (C)]. The inter-ring dihedral angles are A/B = 6.93 (15), A/C = 18.74 (15) and B/C = 12.17 (15)°. The C7—C8—S2—C9 torsion angle of 172.56 (17)° indicates approximate coplanarity of these atoms. Otherwise, geometrical data for (I)[link] are similar to those found in structurally related compounds (Xia et al., 2011[Xia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413.]; Xu et al., 2005[Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375-o3376.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 30% probability level.

3. Hydrogen bonding and Hirshfeld surface analysis

The packing of (I)[link] is consolidated by C1—H1B⋯O1, C1—H2B⋯S2 and C4—H4A⋯N2 hydrogen bonds, which form chains running along a-axis direction (Fig. 2[link], Table 1[link]). The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) of the crystal structure indicates that the contribution of the H⋯H inter­molecular inter­actions to the crystal packing amounts to 19.5%, N⋯H = 17.3%, Br⋯H = 11.7% and O⋯H = 11.0%. Minor inter­molecular contacts for the cohesion of the structure are: C⋯O = 4.7%, C⋯C = 3.6% and others (Br⋯C, C⋯S, C⋯N, Br⋯S, N⋯N, Br⋯N, O⋯N)= 10.4%. These contacts are represented by conventional mapping of dnorm on the mol­ecular Hirshfeld surface, as shown in Fig. 3[link]. The H⋯H contribution to the crystal packing is shown as a Hirshfeld surface two-dimensional fingerprint plot with red dots (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The de (y axis) and di (x axis) values are the closest external and inter­nal distances (Å) from given points on the Hirshfeld surface (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.93 2.42 3.260 (3) 150
C2—H2B⋯S2i 0.93 2.86 3.716 (3) 153
C4—H4A⋯N2ii 0.93 2.58 3.372 (4) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal packing of the title compound (I)[link]. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
[Figure 3]
Figure 3
dnorm mapped on the Hirshfeld surface illustrating the inter­molecular contacts of the title compound. Dotted lines indicate hydrogen bonds.
[Figure 4]
Figure 4
Fingerprint plots of the title compound, for (a) all, (b) H⋯H, (c) C⋯H, (d) N⋯H, (e) O⋯H and (f) S⋯H contacts. The outline of the full fingerprint plot is shown in grey. di is the closet inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

4. Comparison with reported literature

A database search disclosed a long list of compounds containing the 1,3,4-oxa­diazole moiety; however, only two examples of sulfanyl­ethanone-substituted 1,3,4-oxa­diazole derivatives were found, viz. 1,3-bis{[5-(pyridin-2-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}propan-2-one (II) (Xia et al., 2011[Xia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413.]) and 2-{5-[(1H-1,2,4-triazol-1-yl)-meth­yl]-1,3,4-oxa­diazol-2-yl­thio}-1-(2,4-di­chloro­phen­yl)ethanone (III) (Xu et al., 2005[Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375-o3376.]). H⋯N inter­actions were found to be the most relevant inter­molecular inter­actions to form hydrogen bonds with neighboring mol­ecules. Therefore, D—H⋯N inter­actions were considered in a comparison with reported structures. In the crystal of (II), the mol­ecules are linked into a three-dimensional network via weak C—H⋯N hydrogen bonds (H⋯N distances = 2.51 and 2.54 Å) In (III), the C—H⋯N hydrogen bonds are found to be slightly weaker in comparison with the first structure (H⋯N distances = 2.41 Å). The change in substituents also changes the packing pattern towards zigzag chains extending along the b-axis direction. In addition, both (II) and (III) feature aromatic ππ stacking inter­actions, which are not observed in (I)[link].

5. Synthesis and crystallization

5-(3-Pyrid­yl)-1,3,4-oxa­diazole-2-thiol (179 mg, 1 mmol) and triethyl amine (0.1 ml) were added in ethanol (10 ml) and stirred for 10 min in a round-bottomed flask. After 10 min, to the reaction mixture was slowly added 2 4-dibromaceto­phenone (278 mg, 1 mmol). The mixture was refluxed until complete consumption of starting materials, the progress of reaction being monitored by TLC. After 2 h, the precipitate that had formed was separated, washed with ethanol and recrystallized from methanol solution to afford colourless blocks (346 mg, 92% yield).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically with C—H = 0.93 Å (CH) or 0.97 Å (CH2) and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrN3O2S
Mr 376.23
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 273
a, b, c (Å) 11.9144 (16), 8.3755 (12), 30.382 (4)
V3) 3031.8 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.86
Crystal size (mm) 0.47 × 0.39 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.347, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16806, 2765, 2106
Rint 0.038
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.114, 1.13
No. of reflections 2765
No. of parameters 199
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.25
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

1-(4-Bromophenyl)-2-{[5-(pyridin-3-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}-ethan-1-one top
Crystal data top
C15H10BrN3O2SDx = 1.648 Mg m3
Mr = 376.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3887 reflections
a = 11.9144 (16) Åθ = 2.7–22.9°
b = 8.3755 (12) ŵ = 2.86 mm1
c = 30.382 (4) ÅT = 273 K
V = 3031.8 (7) Å3Block, colorless
Z = 80.47 × 0.39 × 0.11 mm
F(000) = 1504
Data collection top
Bruker SMART APEX CCD
diffractometer
2765 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scanθmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1413
Tmin = 0.347, Tmax = 0.746k = 1010
16806 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32966 (4)1.17413 (5)0.651655 (12)0.0855 (2)
S20.48889 (6)0.57198 (9)0.42780 (3)0.0573 (2)
O10.58756 (16)0.7313 (2)0.49352 (7)0.0627 (6)
O20.42221 (15)0.3878 (2)0.36429 (6)0.0519 (5)
N10.2823 (2)0.4393 (3)0.40960 (8)0.0593 (6)
N20.2436 (2)0.3373 (3)0.37529 (9)0.0632 (7)
N30.4463 (3)0.0865 (4)0.25578 (10)0.0847 (9)
C10.3327 (2)0.8827 (4)0.54232 (11)0.0561 (7)
H1B0.27980.83910.52330.067*
C20.2986 (3)0.9787 (4)0.57656 (11)0.0642 (8)
H2B0.22271.00050.58060.077*
C30.3762 (3)1.0418 (3)0.60463 (9)0.0561 (7)
C40.4894 (2)1.0117 (3)0.59921 (10)0.0572 (8)
H4A0.54161.05500.61860.069*
C50.5238 (2)0.9178 (3)0.56513 (10)0.0528 (7)
H5A0.59990.89790.56120.063*
C60.4458 (2)0.8510 (3)0.53610 (9)0.0450 (6)
C70.4875 (2)0.7497 (3)0.49968 (9)0.0468 (6)
C80.4052 (2)0.6676 (3)0.46970 (10)0.0495 (7)
H8A0.35430.74450.45660.059*
H8B0.36170.58920.48580.059*
C90.3863 (2)0.4642 (3)0.40109 (9)0.0501 (7)
C100.3272 (2)0.3106 (3)0.35029 (10)0.0514 (7)
C110.3335 (2)0.2139 (3)0.31076 (11)0.0541 (7)
C120.2370 (3)0.1585 (3)0.29051 (11)0.0621 (8)
H12A0.16650.18200.30200.075*
C130.2476 (3)0.0681 (4)0.25307 (11)0.0717 (10)
H13A0.18420.02870.23890.086*
C140.3520 (3)0.0365 (4)0.23684 (12)0.0779 (10)
H14A0.35750.02320.21110.093*
C150.4355 (3)0.1747 (4)0.29175 (12)0.0702 (9)
H15A0.50050.21270.30510.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1083 (4)0.0886 (3)0.0597 (3)0.00727 (19)0.02208 (18)0.00144 (17)
S20.0409 (4)0.0600 (4)0.0711 (5)0.0033 (3)0.0054 (3)0.0031 (4)
O10.0357 (14)0.0716 (13)0.0808 (15)0.0013 (10)0.0025 (10)0.0025 (11)
O20.0407 (11)0.0572 (10)0.0578 (12)0.0024 (9)0.0065 (9)0.0010 (9)
N10.0405 (14)0.0658 (15)0.0716 (17)0.0039 (11)0.0083 (12)0.0052 (12)
N20.0454 (16)0.0682 (16)0.0759 (18)0.0064 (11)0.0074 (14)0.0062 (13)
N30.075 (2)0.103 (2)0.076 (2)0.0034 (17)0.0039 (16)0.0197 (17)
C10.0354 (17)0.0653 (17)0.068 (2)0.0096 (13)0.0067 (13)0.0019 (15)
C20.0432 (18)0.075 (2)0.074 (2)0.0041 (15)0.0102 (15)0.0014 (17)
C30.059 (2)0.0566 (16)0.0527 (17)0.0062 (14)0.0036 (14)0.0095 (13)
C40.055 (2)0.0570 (17)0.0592 (19)0.0102 (13)0.0151 (14)0.0116 (14)
C50.0409 (16)0.0536 (16)0.0638 (18)0.0013 (12)0.0102 (13)0.0114 (14)
C60.0343 (15)0.0450 (13)0.0558 (16)0.0031 (11)0.0059 (12)0.0128 (12)
C70.0350 (18)0.0455 (14)0.0600 (17)0.0014 (11)0.0046 (12)0.0130 (12)
C80.0381 (16)0.0504 (15)0.0601 (17)0.0002 (11)0.0001 (12)0.0039 (12)
C90.0451 (18)0.0450 (14)0.0600 (18)0.0018 (12)0.0039 (13)0.0057 (13)
C100.0409 (18)0.0515 (16)0.0619 (19)0.0025 (12)0.0015 (13)0.0096 (13)
C110.053 (2)0.0515 (15)0.0580 (18)0.0001 (12)0.0009 (13)0.0075 (13)
C120.053 (2)0.0605 (18)0.073 (2)0.0053 (14)0.0073 (16)0.0071 (15)
C130.074 (3)0.069 (2)0.072 (2)0.0099 (18)0.0188 (18)0.0001 (17)
C140.085 (3)0.079 (2)0.070 (2)0.002 (2)0.010 (2)0.0093 (18)
C150.055 (2)0.087 (2)0.069 (2)0.0046 (16)0.0017 (16)0.0092 (17)
Geometric parameters (Å, º) top
Br1—C31.891 (3)C4—C51.363 (4)
S2—C91.722 (3)C4—H4A0.9300
S2—C81.804 (3)C5—C61.398 (4)
O1—C71.217 (3)C5—H5A0.9300
O2—C91.357 (3)C6—C71.480 (4)
O2—C101.372 (3)C7—C81.504 (4)
N1—C91.283 (4)C8—H8A0.9700
N1—N21.424 (3)C8—H8B0.9700
N2—C101.272 (4)C10—C111.451 (4)
N3—C151.326 (4)C11—C121.384 (4)
N3—C141.330 (5)C11—C151.385 (4)
C1—C21.376 (4)C12—C131.372 (4)
C1—C61.387 (4)C12—H12A0.9300
C1—H1B0.9300C13—C141.364 (4)
C2—C31.365 (4)C13—H13A0.9300
C2—H2B0.9300C14—H14A0.9300
C3—C41.382 (4)C15—H15A0.9300
C9—S2—C899.97 (13)C7—C8—H8A110.6
C9—O2—C10102.6 (2)S2—C8—H8A110.6
C9—N1—N2105.2 (2)C7—C8—H8B110.6
C10—N2—N1106.8 (2)S2—C8—H8B110.6
C15—N3—C14116.7 (3)H8A—C8—H8B108.7
C2—C1—C6120.1 (3)N1—C9—O2113.2 (2)
C2—C1—H1B119.9N1—C9—S2132.5 (2)
C6—C1—H1B119.9O2—C9—S2114.32 (19)
C3—C2—C1119.9 (3)N2—C10—O2112.2 (3)
C3—C2—H2B120.0N2—C10—C11129.3 (3)
C1—C2—H2B120.0O2—C10—C11118.5 (2)
C2—C3—C4121.1 (3)C12—C11—C15117.7 (3)
C2—C3—Br1120.0 (2)C12—C11—C10120.8 (3)
C4—C3—Br1118.9 (2)C15—C11—C10121.5 (3)
C5—C4—C3119.2 (3)C13—C12—C11118.5 (3)
C5—C4—H4A120.4C13—C12—H12A120.8
C3—C4—H4A120.4C11—C12—H12A120.8
C4—C5—C6120.7 (3)C14—C13—C12119.4 (3)
C4—C5—H5A119.6C14—C13—H13A120.3
C6—C5—H5A119.6C12—C13—H13A120.3
C1—C6—C5118.9 (3)N3—C14—C13123.6 (4)
C1—C6—C7122.5 (3)N3—C14—H14A118.2
C5—C6—C7118.6 (2)C13—C14—H14A118.2
O1—C7—C6121.1 (2)N3—C15—C11124.1 (3)
O1—C7—C8119.2 (3)N3—C15—H15A117.9
C6—C7—C8119.7 (2)C11—C15—H15A117.9
C7—C8—S2105.69 (19)
C9—N1—N2—C100.6 (3)C10—O2—C9—N10.1 (3)
C6—C1—C2—C30.5 (5)C10—O2—C9—S2178.86 (18)
C1—C2—C3—C40.3 (5)C8—S2—C9—N17.1 (3)
C1—C2—C3—Br1179.8 (2)C8—S2—C9—O2174.34 (19)
C2—C3—C4—C50.2 (4)N1—N2—C10—O20.6 (3)
Br1—C3—C4—C5179.3 (2)N1—N2—C10—C11179.7 (3)
C3—C4—C5—C60.6 (4)C9—O2—C10—N20.3 (3)
C2—C1—C6—C50.1 (4)C9—O2—C10—C11179.9 (2)
C2—C1—C6—C7179.5 (3)N2—C10—C11—C1212.1 (5)
C4—C5—C6—C10.5 (4)O2—C10—C11—C12167.6 (2)
C4—C5—C6—C7179.9 (2)N2—C10—C11—C15168.4 (3)
C1—C6—C7—O1175.7 (3)O2—C10—C11—C1511.9 (4)
C5—C6—C7—O13.8 (4)C15—C11—C12—C130.2 (4)
C1—C6—C7—C84.4 (4)C10—C11—C12—C13179.7 (3)
C5—C6—C7—C8176.0 (2)C11—C12—C13—C140.4 (5)
O1—C7—C8—S24.8 (3)C15—N3—C14—C131.6 (6)
C6—C7—C8—S2175.32 (19)C12—C13—C14—N31.2 (6)
C9—S2—C8—C7172.56 (17)C14—N3—C15—C111.4 (5)
N2—N1—C9—O20.4 (3)C12—C11—C15—N30.7 (5)
N2—N1—C9—S2178.9 (2)C10—C11—C15—N3179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.932.423.260 (3)150
C2—H2B···S2i0.932.863.716 (3)153
C4—H4A···N2ii0.932.583.372 (4)144
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors are thankful to the financial support of Higher Education Commission (HEC) Pakistan through research projects No. 20–1910 and 20–2830.

Funding information

Funding for this research was provided by: Higher Education Commission, Pakistan (award Nos. 20–1910, 20–2830).

References

First citationAbu-Zaied, M., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229–235.  CAS PubMed Google Scholar
First citationBharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHusain, A., Ahmad, A., Alam, M. M., Ajmal, M. & Ahuja, P. (2009). Eur. J. Med. Chem. 44, 3798–3804.  CrossRef PubMed CAS Google Scholar
First citationKashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A. J., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454–5465.  CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOmar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252–4257.  CrossRef CAS PubMed Google Scholar
First citationRajak, H., Deshmukh, R., Veerasamy, R., Sharma, A. K., Mishra, P. & Kharya, M. D. (2010). Bioorg. Med. Chem. Lett. 20, 4168–4172.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationXia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375–o3376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZarghi, A., Tabatabai, S. A., Faizi, M., Ahadian, A., Navabi, P., Zanganeh, V. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1863–1865.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds