research communications
Interaction between maleic acid and N-R-furfurylamines: of 2-methyl-N-[(5-phenylfuran-2-yl)methyl]propan-2-aminium (2Z)-3-carboxyacrylate and N-[(5-iodofuran-2-yl)methyl]-2-methylpropan-2-aminium (2Z)-3-carboxyprop-2-enoate
aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com
The title molecular salts, C15H20NO+·C4H3O4−, (I), and C9H15INO+·C4H3O4−, (II), have very similar molecular geometries for both cation and anion. The anions of both (I) and (II) are practically planar (r.m.s. deviations = 0.062 and 0.072 Å, respectively) and adopt a rare symmetrical geometry with the hydroxy H atom approximately equidistant from the two O atoms. In their crystals, the cations and anions in both (I) and (II) form tight ionic pairs via strong N—H⋯O hydrogen bonds, with a roughly perpendicular disposition of the anion to the furan ring of the cation. This ion-pair conformation appears to correlate with the lack of reactivity of these salts in [4 + 2] cycloaddition reactions. In the extended structures of (I) and (II), the ion pairs form hydrogen-bonded chains propagating along [010] and [001], respectively, via N—H⋯O hydrogen bonds.
Keywords: furans; Diels–Alder reaction; maleates; crystal structure; synchrotron radiation.
1. Chemical context
Owing to the fact that the furan ring contains a system of conjugated double bonds, it usually acts as an effective diene in intra- and intermolecular Diels–Alder reactions with electron-deficient dienophiles. The [4 + 2] cycloaddition of furans with maleic acid leading to structurally diverse 7-oxabicyclo[2.2.1]heptenes has been investigated for a long time (Diels & Alder, 1931; Berson & Swidler, 1953, 1954; Eggelte et al., 1973; Sprague et al., 1985). However, there are only fragmentary data concerning the reactions of halogen- or aryl-substituted furans with maleic acid (Sheinkman et al., 1972; Shih et al., 1975). It is known that the interaction between maleic acid and furfurylamines leads usually to the formation of the salts, but is not accompanied by the [4 + 2] cycloaddition (Clitherow, 1983; Price et al., 1985; Brown, 1986; Pelosi et al., 2002; Craig et al., 2008; Metsger et al., 2010).
The main goal of this work was to study the cycloaddition reaction between 5-R-furfuryl-tert-butylamines and maleic acid. The interaction between the corresponding and maleic acid at room temperature leads to the salts (I) and (II) only (Fig. 1). Unexpectedly, attempts to achieve thermal of salts (I) and (II) did not result in isolation of the targeted 7-oxabicyclo[2.2.1]heptenes: the initial maleates remained unchanged at temperatures up to 413 K (Fig. 2). In order to explain this fact by an understanding of their stereochemical features, an X-ray diffraction study of compounds (I) and (II) was undertaken.
2. Structural commentary
Compounds (I), C15H20NO+·C4H3O4−, and (II), C9H15INO+·C4H3O4−, represent secondary amine salts of maleic acid and have very similar molecular geometries (Figs. 3 and 4) for both cation and anion. The saturated C2–C1–N1–C(t-Bu) backbone of the ammonium cation is twisted by 72.66 (7) and 63.2 (2)° relative to the furan ring in (I) and (II), respectively. The phenyl substituent of the cation in (I) is almost coplanar to the furan ring (r.m.s. deviation is 0.006 Å). The anions of (I) and (II) are practically planar (r.m.s. deviations are 0.062 and 0.072 Å, respectively). It interesting to note that the hydrogen atom of the hydroxy group of the anion is arranged at almost equal distances from the two oxygen atoms in both (I) and (II) (Tables 1 and 2, Figs. 3 and 4). Thus, the anions of (I) and (II) adopt a rare symmetrical geometry.
|
Importantly, the cations and anions in both (I) and (II) form tight ion pairs via strong N1—H1A⋯O2 hydrogen bonds (Tables 1 and 2, Figs. 3 and 4). Within the tight ion pairs, the anion is roughly perpendicular to the furan ring of the cation, the interplanar angles being 72.01 (4) and 67.94 (12)° in (I) and (II), respectively. Apparently, the formation of the robust tight ion pairs with a definite cation–anion conformation inhibits the desired reaction, preventing the closure of the cations and anions.
3. Supramolecular features
Despite the sterically different substituents at the furyl ring of the aminium cations, compounds (I) and (II) organize similar supramolecular structures in the solid state. So, in the crystal of (I), the tight ion pairs form hydrogen-bonded chains propagating along [010] via strong N1—H1B⋯O4 links (Table 1, Fig. 5). In the crystal of (II), the analogous hydrogen-bonded chains propagate along [001] (Table 2, Fig. 6). In both (I) and (II), the chains are further packed in stacks along [100] (Figs. 5 and 6).
4. Synthesis and crystallization
The starting N-[(5-R-furan-2-yl)methyl]-2-methylpropan-2-amines were synthesized according to the procedure described recently (Zubkov et al., 2016).
General procedure. A solution of the corresponding amine (1 mmol) and maleic acid (0.12 g, 1.1 mmol) in acetone (5 ml) was stirred for 1 h. The precipitated crystals were filtered off and recrystallized from an i-PrOH–DMF mixture [for (I)] or MeOH [for (II)] to give the analytically pure maleates (I) and (II).
2-Methyl-N-[(5-phenylfuran-2-yl)methyl]propan-2-aminium (2Z)-3-carboxyacrylate (I). Colourless prisms. Yield 0.26 g (72%). M.p. = 485.1–486.1 K (i-PrOH–DMF). IR (KBr), ν (cm−1): 1591, 1630, 3435. 1H NMR (DMSO, 600 MHz, 301 K): δ = 1.36 (s, 9H, t-Bu), 4.30 (s, 2H, CH2—N), 6.04 (s, 2H, –CH=CH–), 6.74 (d, 1H, H3, furyl, J = 3.4), 7.00 (d, 1H, H4, furyl, J = 3.4), 7.34 (br t, 1H, H4, Ph, J = 7.6), 7.46 (ddd, 2H, H3 and H5, Ph, J = 8.2, J = 7.6, J = 1.4), 7.76 (dd, 2H, H2 and H6, Ph, J = 8.2, J = 1.4), 8.89 (br s, 1H, CO2H). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 25.7 (3C, CH3), 38.0 (CH2—N), 57.3 (N—C), 100.0 (2C, –CH=CH–), 107.4 (C4, furyl), 114.3 (C3, furyl), 124.2, 128.5, 129.5, 130.3, 136.7 (C1, Ph), 146.6 (C2, furyl), 154.5 (C5, furyl), 167.8 (2C, CO2). MS (APCI): m/z = 230 [M − 115]+.
N-[(5-Iodofuran-2-yl)methyl]-2-methylpropan-2-aminium (2Z)-3-carboxyprop-2-enoate (II). Colourless needles. Yield 0.31 g (79%). M.p. = 452.1–453.3 K (CH3OH). IR (KBr), ν (cm−1): 1576, 1631, 2800, 3012. 1H NMR (DMSO, 600 MHz, 301 K): δ = 1.26 (s, 9H, t-Bu), 4.19 (s, 2H, CH2—N), 5.99–6.00 (m, 2H, –CH=CH–), 6.54 (d, 1H, H3, furyl, J = 3.3), 6.73 (d, 1H, H4, furyl, J = 3.3), 8.89 (br s, 1H, CO2H). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 25.6 (3C, CH3), 37.4 (CH2—N), 57.3 (N—C), 100.0 (C5, furyl), 115.3 (C4, furyl), 121.8 (C3, furyl), 136.6 (2C, —CH=CH—), 151.1 [C2, furyl], 167.7 (2C, CO2). MS (APCI): m/z = 280 [M − 115]+.
5. Refinement
Crystal data, data collection and structure . X-ray diffraction studies for (II) were carried out on the `Belok' beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation).
details are summarized in Table 3
|
The hydrogen atoms of the amino and hydroxy groups were localized in a difference-Fourier map and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)]. All other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined using the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for all other atoms].
Supporting information
https://doi.org/10.1107/S2056989017003541/hb7663sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017003541/hb7663Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017003541/hb7663IIsup3.hkl
Data collection: APEX2 (Bruker, 2005) for (I); Automar (MarXperts, 2015) for (II). Cell
SAINT (Bruker, 2001) for (I); iMosflm (Battye et al., 2011) for (II). Data reduction: SAINT (Bruker, 2001) for (I); iMosflm (Battye et al., 2011) for (II). For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H20NO+·C4H3O4− | Z = 2 |
Mr = 345.38 | F(000) = 368 |
Triclinic, P1 | Dx = 1.281 Mg m−3 |
a = 7.5177 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8339 (6) Å | Cell parameters from 2186 reflections |
c = 12.1951 (7) Å | θ = 2.6–31.5° |
α = 94.387 (1)° | µ = 0.09 mm−1 |
β = 94.552 (1)° | T = 120 K |
γ = 91.578 (1)° | Prism, colourless |
V = 895.57 (9) Å3 | 0.30 × 0.25 × 0.20 mm |
Bruker APEXII CCD diffractometer | 3947 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.047 |
φ and ω scans | θmax = 32.7°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −11→11 |
Tmin = 0.966, Tmax = 0.977 | k = −14→14 |
14165 measured reflections | l = −18→18 |
6555 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: mixed |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3 |
6555 reflections | (Δ/σ)max < 0.001 |
238 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.92461 (12) | 0.90909 (9) | 0.24482 (7) | 0.0223 (2) | |
N1 | 1.20595 (14) | 0.76402 (11) | 0.11610 (9) | 0.0175 (2) | |
H1A | 1.2498 (18) | 0.6949 (15) | 0.1627 (12) | 0.021* | |
H1B | 1.2370 (19) | 0.8484 (15) | 0.1545 (12) | 0.021* | |
C1 | 1.00641 (17) | 0.74679 (14) | 0.09978 (11) | 0.0223 (3) | |
H1C | 0.9596 | 0.8102 | 0.0461 | 0.027* | |
H1D | 0.9736 | 0.6525 | 0.0691 | 0.027* | |
C2 | 0.92419 (17) | 0.77432 (13) | 0.20536 (11) | 0.0216 (3) | |
C3 | 0.84120 (18) | 0.69612 (15) | 0.27361 (12) | 0.0264 (3) | |
H3 | 0.8233 | 0.5998 | 0.2652 | 0.032* | |
C4 | 0.78576 (19) | 0.78600 (15) | 0.36059 (12) | 0.0272 (3) | |
H4 | 0.7229 | 0.7610 | 0.4210 | 0.033* | |
C5 | 0.83939 (17) | 0.91370 (14) | 0.34107 (11) | 0.0222 (3) | |
C6 | 0.82740 (17) | 1.04880 (14) | 0.39825 (11) | 0.0229 (3) | |
C7 | 0.89734 (18) | 1.16539 (15) | 0.35647 (12) | 0.0262 (3) | |
H7 | 0.9550 | 1.1572 | 0.2898 | 0.031* | |
C8 | 0.88348 (19) | 1.29304 (16) | 0.41130 (12) | 0.0296 (3) | |
H8 | 0.9325 | 1.3716 | 0.3824 | 0.036* | |
C9 | 0.79823 (19) | 1.30640 (16) | 0.50820 (12) | 0.0302 (3) | |
H9 | 0.7881 | 1.3940 | 0.5454 | 0.036* | |
C10 | 0.72778 (19) | 1.19148 (16) | 0.55059 (11) | 0.0286 (3) | |
H10 | 0.6689 | 1.2005 | 0.6167 | 0.034* | |
C11 | 0.74308 (18) | 1.06376 (16) | 0.49678 (11) | 0.0260 (3) | |
H11 | 0.6960 | 0.9854 | 0.5269 | 0.031* | |
C12 | 1.30888 (17) | 0.75667 (13) | 0.01359 (11) | 0.0200 (3) | |
C13 | 1.50545 (18) | 0.75962 (15) | 0.05686 (12) | 0.0265 (3) | |
H13A | 1.5326 | 0.8418 | 0.1067 | 0.040* | |
H13B | 1.5804 | 0.7604 | −0.0053 | 0.040* | |
H13C | 1.5294 | 0.6785 | 0.0969 | 0.040* | |
C14 | 1.25942 (19) | 0.62298 (14) | −0.05538 (12) | 0.0262 (3) | |
H14A | 1.1346 | 0.6240 | −0.0853 | 0.039* | |
H14B | 1.2751 | 0.5465 | −0.0089 | 0.039* | |
H14C | 1.3368 | 0.6126 | −0.1163 | 0.039* | |
C15 | 1.26620 (19) | 0.88007 (15) | −0.05105 (12) | 0.0262 (3) | |
H15A | 1.2918 | 0.9639 | −0.0029 | 0.039* | |
H15B | 1.1397 | 0.8753 | −0.0779 | 0.039* | |
H15C | 1.3397 | 0.8804 | −0.1139 | 0.039* | |
O2 | 0.34880 (14) | 0.57638 (10) | 0.25174 (8) | 0.0310 (2) | |
O3 | 0.19310 (13) | 0.40290 (11) | 0.15970 (8) | 0.0306 (2) | |
O4 | 0.34720 (13) | −0.00091 (10) | 0.23666 (8) | 0.0279 (2) | |
O5 | 0.19913 (12) | 0.15695 (10) | 0.14960 (8) | 0.0255 (2) | |
H5O | 0.190 (2) | 0.2747 (18) | 0.1531 (13) | 0.038* | |
C16 | 0.31067 (18) | 0.45314 (14) | 0.23545 (11) | 0.0226 (3) | |
C17 | 0.40964 (18) | 0.36056 (14) | 0.30859 (11) | 0.0235 (3) | |
H17 | 0.4830 | 0.4061 | 0.3680 | 0.028* | |
C18 | 0.41217 (18) | 0.22465 (14) | 0.30440 (11) | 0.0226 (3) | |
H18 | 0.4888 | 0.1892 | 0.3602 | 0.027* | |
C19 | 0.31356 (17) | 0.11924 (14) | 0.22580 (11) | 0.0210 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0221 (5) | 0.0253 (5) | 0.0199 (5) | 0.0034 (4) | 0.0041 (4) | 0.0016 (4) |
N1 | 0.0174 (5) | 0.0160 (5) | 0.0189 (5) | 0.0008 (4) | −0.0002 (4) | 0.0010 (4) |
C1 | 0.0167 (6) | 0.0276 (7) | 0.0217 (6) | 0.0006 (5) | −0.0003 (5) | −0.0016 (5) |
C2 | 0.0178 (6) | 0.0236 (7) | 0.0225 (6) | 0.0032 (5) | −0.0012 (5) | −0.0011 (5) |
C3 | 0.0246 (7) | 0.0266 (7) | 0.0281 (7) | 0.0009 (6) | 0.0022 (6) | 0.0025 (6) |
C4 | 0.0254 (7) | 0.0333 (8) | 0.0242 (7) | 0.0024 (6) | 0.0068 (6) | 0.0056 (6) |
C5 | 0.0181 (6) | 0.0320 (7) | 0.0172 (6) | 0.0057 (5) | 0.0023 (5) | 0.0039 (5) |
C6 | 0.0183 (6) | 0.0309 (7) | 0.0197 (6) | 0.0072 (5) | −0.0001 (5) | 0.0022 (5) |
C7 | 0.0242 (7) | 0.0325 (8) | 0.0223 (7) | 0.0043 (6) | 0.0039 (5) | 0.0022 (6) |
C8 | 0.0276 (7) | 0.0318 (8) | 0.0293 (8) | 0.0040 (6) | 0.0008 (6) | 0.0020 (6) |
C9 | 0.0289 (7) | 0.0348 (8) | 0.0252 (7) | 0.0090 (6) | −0.0028 (6) | −0.0064 (6) |
C10 | 0.0252 (7) | 0.0417 (9) | 0.0189 (7) | 0.0105 (6) | 0.0005 (5) | −0.0004 (6) |
C11 | 0.0227 (7) | 0.0359 (8) | 0.0197 (7) | 0.0077 (6) | 0.0006 (5) | 0.0038 (6) |
C12 | 0.0189 (6) | 0.0220 (6) | 0.0193 (6) | 0.0012 (5) | 0.0031 (5) | 0.0007 (5) |
C13 | 0.0207 (6) | 0.0299 (8) | 0.0291 (7) | 0.0013 (6) | 0.0037 (6) | 0.0026 (6) |
C14 | 0.0260 (7) | 0.0261 (7) | 0.0257 (7) | 0.0021 (6) | 0.0042 (6) | −0.0051 (6) |
C15 | 0.0287 (7) | 0.0276 (7) | 0.0229 (7) | 0.0005 (6) | 0.0025 (6) | 0.0062 (5) |
O2 | 0.0433 (6) | 0.0204 (5) | 0.0294 (6) | 0.0081 (4) | 0.0000 (5) | 0.0026 (4) |
O3 | 0.0296 (5) | 0.0296 (6) | 0.0318 (6) | 0.0042 (4) | −0.0079 (4) | 0.0075 (4) |
O4 | 0.0333 (6) | 0.0196 (5) | 0.0301 (5) | −0.0014 (4) | −0.0006 (4) | −0.0001 (4) |
O5 | 0.0256 (5) | 0.0284 (5) | 0.0215 (5) | −0.0018 (4) | −0.0041 (4) | 0.0021 (4) |
C16 | 0.0233 (6) | 0.0250 (7) | 0.0203 (6) | 0.0077 (5) | 0.0039 (5) | 0.0025 (5) |
C17 | 0.0254 (7) | 0.0222 (7) | 0.0217 (7) | 0.0024 (5) | −0.0045 (5) | −0.0003 (5) |
C18 | 0.0225 (6) | 0.0226 (7) | 0.0218 (6) | 0.0029 (5) | −0.0042 (5) | 0.0021 (5) |
C19 | 0.0206 (6) | 0.0230 (7) | 0.0191 (6) | −0.0007 (5) | 0.0031 (5) | 0.0000 (5) |
O1—C2 | 1.3747 (16) | C11—H11 | 0.9500 |
O1—C5 | 1.3796 (15) | C12—C15 | 1.5247 (19) |
N1—C1 | 1.5007 (16) | C12—C14 | 1.5259 (18) |
N1—C12 | 1.5198 (16) | C12—C13 | 1.5279 (18) |
N1—H1A | 0.968 (15) | C13—H13A | 0.9800 |
N1—H1B | 0.936 (15) | C13—H13B | 0.9800 |
C1—C2 | 1.4817 (18) | C13—H13C | 0.9800 |
C1—H1C | 0.9900 | C14—H14A | 0.9800 |
C1—H1D | 0.9900 | C14—H14B | 0.9800 |
C2—C3 | 1.352 (2) | C14—H14C | 0.9800 |
C3—C4 | 1.424 (2) | C15—H15A | 0.9800 |
C3—H3 | 0.9500 | C15—H15B | 0.9800 |
C4—C5 | 1.353 (2) | C15—H15C | 0.9800 |
C4—H4 | 0.9500 | O2—C16 | 1.2351 (17) |
C5—C6 | 1.4609 (19) | O3—C16 | 1.2866 (17) |
C6—C7 | 1.396 (2) | O3—H5O | 1.257 (17) |
C6—C11 | 1.4022 (19) | O4—C19 | 1.2300 (16) |
C7—C8 | 1.387 (2) | O5—C19 | 1.2979 (16) |
C7—H7 | 0.9500 | O5—H5O | 1.160 (17) |
C8—C9 | 1.388 (2) | C16—C17 | 1.4947 (19) |
C8—H8 | 0.9500 | C17—C18 | 1.3343 (18) |
C9—C10 | 1.387 (2) | C17—H17 | 0.9500 |
C9—H9 | 0.9500 | C18—C19 | 1.4952 (18) |
C10—C11 | 1.384 (2) | C18—H18 | 0.9500 |
C10—H10 | 0.9500 | ||
C2—O1—C5 | 106.85 (10) | C10—C11—H11 | 119.7 |
C1—N1—C12 | 117.49 (10) | C6—C11—H11 | 119.7 |
C1—N1—H1A | 108.0 (8) | N1—C12—C15 | 108.92 (10) |
C12—N1—H1A | 108.0 (8) | N1—C12—C14 | 109.41 (11) |
C1—N1—H1B | 109.6 (9) | C15—C12—C14 | 111.64 (11) |
C12—N1—H1B | 106.5 (9) | N1—C12—C13 | 105.08 (10) |
H1A—N1—H1B | 106.6 (12) | C15—C12—C13 | 111.28 (11) |
C2—C1—N1 | 111.02 (10) | C14—C12—C13 | 110.29 (11) |
C2—C1—H1C | 109.4 | C12—C13—H13A | 109.5 |
N1—C1—H1C | 109.4 | C12—C13—H13B | 109.5 |
C2—C1—H1D | 109.4 | H13A—C13—H13B | 109.5 |
N1—C1—H1D | 109.4 | C12—C13—H13C | 109.5 |
H1C—C1—H1D | 108.0 | H13A—C13—H13C | 109.5 |
C3—C2—O1 | 109.83 (12) | H13B—C13—H13C | 109.5 |
C3—C2—C1 | 134.49 (13) | C12—C14—H14A | 109.5 |
O1—C2—C1 | 115.65 (12) | C12—C14—H14B | 109.5 |
C2—C3—C4 | 106.78 (13) | H14A—C14—H14B | 109.5 |
C2—C3—H3 | 126.6 | C12—C14—H14C | 109.5 |
C4—C3—H3 | 126.6 | H14A—C14—H14C | 109.5 |
C5—C4—C3 | 107.10 (12) | H14B—C14—H14C | 109.5 |
C5—C4—H4 | 126.4 | C12—C15—H15A | 109.5 |
C3—C4—H4 | 126.4 | C12—C15—H15B | 109.5 |
C4—C5—O1 | 109.43 (12) | H15A—C15—H15B | 109.5 |
C4—C5—C6 | 134.61 (13) | C12—C15—H15C | 109.5 |
O1—C5—C6 | 115.96 (12) | H15A—C15—H15C | 109.5 |
C7—C6—C11 | 118.51 (13) | H15B—C15—H15C | 109.5 |
C7—C6—C5 | 121.38 (12) | C16—O3—H5O | 111.3 (7) |
C11—C6—C5 | 120.11 (13) | C19—O5—H5O | 111.7 (8) |
C8—C7—C6 | 120.65 (13) | O2—C16—O3 | 123.38 (13) |
C8—C7—H7 | 119.7 | O2—C16—C17 | 116.77 (12) |
C6—C7—H7 | 119.7 | O3—C16—C17 | 119.85 (12) |
C7—C8—C9 | 120.20 (15) | C18—C17—C16 | 130.78 (13) |
C7—C8—H8 | 119.9 | C18—C17—H17 | 114.6 |
C9—C8—H8 | 119.9 | C16—C17—H17 | 114.6 |
C10—C9—C8 | 119.80 (14) | C17—C18—C19 | 130.28 (12) |
C10—C9—H9 | 120.1 | C17—C18—H18 | 114.9 |
C8—C9—H9 | 120.1 | C19—C18—H18 | 114.9 |
C11—C10—C9 | 120.17 (13) | O4—C19—O5 | 123.00 (12) |
C11—C10—H10 | 119.9 | O4—C19—C18 | 117.33 (12) |
C9—C10—H10 | 119.9 | O5—C19—C18 | 119.67 (12) |
C10—C11—C6 | 120.67 (14) | ||
C12—N1—C1—C2 | −172.59 (11) | C11—C6—C7—C8 | 0.0 (2) |
C5—O1—C2—C3 | 0.25 (14) | C5—C6—C7—C8 | 179.45 (13) |
C5—O1—C2—C1 | 178.57 (11) | C6—C7—C8—C9 | −0.6 (2) |
N1—C1—C2—C3 | −109.20 (17) | C7—C8—C9—C10 | 0.4 (2) |
N1—C1—C2—O1 | 73.02 (14) | C8—C9—C10—C11 | 0.3 (2) |
O1—C2—C3—C4 | 0.17 (15) | C9—C10—C11—C6 | −0.9 (2) |
C1—C2—C3—C4 | −177.70 (14) | C7—C6—C11—C10 | 0.8 (2) |
C2—C3—C4—C5 | −0.53 (16) | C5—C6—C11—C10 | −178.73 (12) |
C3—C4—C5—O1 | 0.70 (16) | C1—N1—C12—C15 | 67.55 (14) |
C3—C4—C5—C6 | −178.87 (14) | C1—N1—C12—C14 | −54.73 (14) |
C2—O1—C5—C4 | −0.60 (14) | C1—N1—C12—C13 | −173.13 (11) |
C2—O1—C5—C6 | 179.06 (11) | O2—C16—C17—C18 | −172.20 (14) |
C4—C5—C6—C7 | −179.94 (15) | O3—C16—C17—C18 | 7.4 (2) |
O1—C5—C6—C7 | 0.51 (18) | C16—C17—C18—C19 | −1.3 (3) |
C4—C5—C6—C11 | −0.5 (2) | C17—C18—C19—O4 | 176.22 (14) |
O1—C5—C6—C11 | 179.98 (11) | C17—C18—C19—O5 | −3.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O3 | 1.160 (17) | 1.257 (17) | 2.4142 (14) | 175.3 (15) |
N1—H1A···O2i | 0.968 (15) | 1.790 (15) | 2.7547 (15) | 174.9 (13) |
N1—H1B···O4ii | 0.936 (15) | 1.860 (15) | 2.7803 (14) | 167.4 (13) |
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z. |
C9H15INO+·C4H3O4− | F(000) = 784 |
Mr = 395.18 | Dx = 1.678 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.96990 Å |
a = 5.7501 (12) Å | Cell parameters from 600 reflections |
b = 28.272 (6) Å | θ = 3.5–35.0° |
c = 9.6402 (19) Å | µ = 4.69 mm−1 |
β = 93.17 (3)° | T = 100 K |
V = 1564.8 (6) Å3 | Needle, colourless |
Z = 4 | 0.30 × 0.05 × 0.03 mm |
Rayonix SX165 CCD diffractometer | 2714 reflections with I > 2σ(I) |
φ scan | Rint = 0.068 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 38.5°, θmin = 3.5° |
Tmin = 0.460, Tmax = 0.860 | h = −7→7 |
21875 measured reflections | k = −36→36 |
3146 independent reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0377P)2 + 3.P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3146 reflections | Δρmax = 0.94 e Å−3 |
194 parameters | Δρmin = −1.21 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0047 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.75296 (5) | 0.48487 (2) | 0.86223 (3) | 0.05279 (17) | |
O1 | 0.4289 (4) | 0.56119 (7) | 0.7766 (3) | 0.0273 (5) | |
O2 | 0.6669 (4) | 0.62755 (8) | 0.4628 (2) | 0.0250 (5) | |
O3 | 0.4201 (4) | 0.64214 (9) | 0.2824 (3) | 0.0284 (5) | |
O4 | 0.7068 (4) | 0.65296 (8) | −0.1219 (2) | 0.0242 (5) | |
O5 | 0.4335 (4) | 0.65188 (8) | 0.0330 (3) | 0.0272 (5) | |
H5O | 0.434 (7) | 0.6447 (14) | 0.153 (5) | 0.041* | |
N1 | 0.3606 (4) | 0.65833 (8) | 0.6639 (3) | 0.0172 (5) | |
H1A | 0.436 (6) | 0.6486 (12) | 0.592 (4) | 0.021* | |
H1B | 0.462 (7) | 0.6587 (12) | 0.735 (4) | 0.021* | |
C1 | 0.1674 (5) | 0.62389 (10) | 0.6907 (4) | 0.0227 (7) | |
H1C | 0.1109 | 0.6293 | 0.7845 | 0.027* | |
H1D | 0.0355 | 0.6289 | 0.6219 | 0.027* | |
C2 | 0.2549 (5) | 0.57433 (10) | 0.6802 (4) | 0.0247 (7) | |
C3 | 0.2006 (7) | 0.53816 (12) | 0.5920 (5) | 0.0379 (9) | |
H3 | 0.0876 | 0.5385 | 0.5163 | 0.045* | |
C4 | 0.3478 (8) | 0.49932 (12) | 0.6355 (5) | 0.0425 (10) | |
H4 | 0.3511 | 0.4687 | 0.5950 | 0.051* | |
C5 | 0.4796 (6) | 0.51500 (11) | 0.7450 (4) | 0.0307 (9) | |
C6 | 0.2890 (5) | 0.71010 (10) | 0.6427 (3) | 0.0189 (7) | |
C7 | 0.5174 (5) | 0.73740 (10) | 0.6298 (4) | 0.0236 (7) | |
H7A | 0.6151 | 0.7339 | 0.7157 | 0.035* | |
H7B | 0.4829 | 0.7710 | 0.6137 | 0.035* | |
H7C | 0.6001 | 0.7248 | 0.5516 | 0.035* | |
C8 | 0.1369 (5) | 0.71450 (11) | 0.5089 (4) | 0.0241 (7) | |
H8A | 0.2219 | 0.7025 | 0.4310 | 0.036* | |
H8B | 0.0968 | 0.7478 | 0.4926 | 0.036* | |
H8C | −0.0061 | 0.6961 | 0.5171 | 0.036* | |
C9 | 0.1632 (5) | 0.72673 (10) | 0.7693 (4) | 0.0225 (7) | |
H9A | 0.0164 | 0.7094 | 0.7744 | 0.034* | |
H9B | 0.1308 | 0.7607 | 0.7611 | 0.034* | |
H9C | 0.2618 | 0.7208 | 0.8537 | 0.034* | |
C10 | 0.6235 (5) | 0.63160 (9) | 0.3358 (4) | 0.0198 (7) | |
C11 | 0.8219 (5) | 0.62384 (10) | 0.2425 (3) | 0.0213 (7) | |
H11 | 0.9625 | 0.6131 | 0.2884 | 0.026* | |
C12 | 0.8311 (5) | 0.62967 (10) | 0.1049 (4) | 0.0225 (7) | |
H12 | 0.9776 | 0.6225 | 0.0690 | 0.027* | |
C13 | 0.6458 (5) | 0.64577 (10) | −0.0025 (3) | 0.0196 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0535 (2) | 0.04314 (19) | 0.0625 (3) | 0.02765 (12) | 0.00979 (16) | 0.01596 (12) |
O1 | 0.0296 (12) | 0.0202 (10) | 0.0322 (15) | 0.0075 (9) | 0.0039 (11) | 0.0029 (9) |
O2 | 0.0267 (12) | 0.0268 (11) | 0.0221 (14) | 0.0022 (9) | 0.0057 (10) | 0.0000 (9) |
O3 | 0.0182 (11) | 0.0421 (13) | 0.0254 (14) | 0.0036 (9) | 0.0057 (10) | 0.0003 (10) |
O4 | 0.0217 (11) | 0.0293 (11) | 0.0218 (13) | −0.0005 (8) | 0.0017 (10) | 0.0046 (9) |
O5 | 0.0164 (10) | 0.0397 (13) | 0.0257 (14) | 0.0047 (9) | 0.0030 (9) | 0.0035 (10) |
N1 | 0.0150 (12) | 0.0167 (11) | 0.0201 (15) | 0.0015 (9) | 0.0032 (11) | 0.0001 (10) |
C1 | 0.0178 (14) | 0.0199 (14) | 0.031 (2) | −0.0007 (11) | 0.0050 (13) | 0.0017 (13) |
C2 | 0.0235 (15) | 0.0194 (14) | 0.032 (2) | −0.0016 (11) | 0.0062 (14) | 0.0039 (13) |
C3 | 0.042 (2) | 0.0239 (16) | 0.046 (3) | −0.0080 (14) | −0.0075 (18) | 0.0007 (16) |
C4 | 0.054 (2) | 0.0180 (15) | 0.056 (3) | −0.0022 (16) | 0.011 (2) | −0.0060 (17) |
C5 | 0.0343 (18) | 0.0207 (15) | 0.038 (2) | 0.0063 (12) | 0.0127 (17) | 0.0074 (14) |
C6 | 0.0180 (14) | 0.0159 (13) | 0.0231 (19) | 0.0027 (10) | 0.0033 (13) | −0.0002 (11) |
C7 | 0.0210 (15) | 0.0182 (13) | 0.032 (2) | 0.0006 (11) | 0.0046 (14) | 0.0021 (13) |
C8 | 0.0237 (15) | 0.0224 (14) | 0.0260 (19) | 0.0045 (11) | −0.0001 (14) | 0.0007 (13) |
C9 | 0.0198 (14) | 0.0214 (13) | 0.0267 (19) | 0.0024 (11) | 0.0046 (13) | −0.0040 (13) |
C10 | 0.0189 (14) | 0.0144 (12) | 0.026 (2) | −0.0001 (10) | 0.0054 (13) | 0.0007 (12) |
C11 | 0.0180 (14) | 0.0229 (14) | 0.0232 (19) | 0.0023 (11) | 0.0034 (13) | 0.0016 (13) |
C12 | 0.0164 (14) | 0.0230 (14) | 0.029 (2) | 0.0026 (11) | 0.0065 (13) | 0.0003 (13) |
C13 | 0.0172 (13) | 0.0181 (13) | 0.0235 (19) | −0.0005 (10) | 0.0014 (13) | 0.0007 (12) |
I1—C5 | 2.068 (4) | C4—C5 | 1.341 (6) |
O1—C5 | 1.376 (4) | C4—H4 | 0.9500 |
O1—C2 | 1.379 (4) | C6—C8 | 1.523 (5) |
O2—C10 | 1.241 (4) | C6—C9 | 1.527 (4) |
O3—C10 | 1.287 (4) | C6—C7 | 1.535 (4) |
O3—H5O | 1.25 (5) | C7—H7A | 0.9800 |
O4—C13 | 1.238 (4) | C7—H7B | 0.9800 |
O5—C13 | 1.297 (3) | C7—H7C | 0.9800 |
O5—H5O | 1.18 (5) | C8—H8A | 0.9800 |
N1—C1 | 1.510 (4) | C8—H8B | 0.9800 |
N1—C6 | 1.531 (4) | C8—H8C | 0.9800 |
N1—H1A | 0.88 (4) | C9—H9A | 0.9800 |
N1—H1B | 0.88 (4) | C9—H9B | 0.9800 |
C1—C2 | 1.494 (4) | C9—H9C | 0.9800 |
C1—H1C | 0.9900 | C10—C11 | 1.507 (4) |
C1—H1D | 0.9900 | C11—C12 | 1.340 (5) |
C2—C3 | 1.355 (5) | C11—H11 | 0.9500 |
C3—C4 | 1.435 (6) | C12—C13 | 1.515 (5) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C5—O1—C2 | 105.2 (3) | N1—C6—C7 | 105.5 (2) |
C10—O3—H5O | 107.7 (19) | C6—C7—H7A | 109.5 |
C13—O5—H5O | 107 (2) | C6—C7—H7B | 109.5 |
C1—N1—C6 | 116.4 (2) | H7A—C7—H7B | 109.5 |
C1—N1—H1A | 109 (2) | C6—C7—H7C | 109.5 |
C6—N1—H1A | 109 (2) | H7A—C7—H7C | 109.5 |
C1—N1—H1B | 110 (2) | H7B—C7—H7C | 109.5 |
C6—N1—H1B | 105 (2) | C6—C8—H8A | 109.5 |
H1A—N1—H1B | 107 (3) | C6—C8—H8B | 109.5 |
C2—C1—N1 | 109.8 (2) | H8A—C8—H8B | 109.5 |
C2—C1—H1C | 109.7 | C6—C8—H8C | 109.5 |
N1—C1—H1C | 109.7 | H8A—C8—H8C | 109.5 |
C2—C1—H1D | 109.7 | H8B—C8—H8C | 109.5 |
N1—C1—H1D | 109.7 | C6—C9—H9A | 109.5 |
H1C—C1—H1D | 108.2 | C6—C9—H9B | 109.5 |
C3—C2—O1 | 110.7 (3) | H9A—C9—H9B | 109.5 |
C3—C2—C1 | 133.1 (3) | C6—C9—H9C | 109.5 |
O1—C2—C1 | 116.2 (3) | H9A—C9—H9C | 109.5 |
C2—C3—C4 | 106.4 (4) | H9B—C9—H9C | 109.5 |
C2—C3—H3 | 126.8 | O2—C10—O3 | 123.0 (3) |
C4—C3—H3 | 126.8 | O2—C10—C11 | 117.3 (3) |
C5—C4—C3 | 106.0 (3) | O3—C10—C11 | 119.7 (3) |
C5—C4—H4 | 127.0 | C12—C11—C10 | 130.2 (3) |
C3—C4—H4 | 127.0 | C12—C11—H11 | 114.9 |
C4—C5—O1 | 111.8 (3) | C10—C11—H11 | 114.9 |
C4—C5—I1 | 132.4 (3) | C11—C12—C13 | 130.5 (3) |
O1—C5—I1 | 115.7 (3) | C11—C12—H12 | 114.8 |
C8—C6—C9 | 112.1 (3) | C13—C12—H12 | 114.8 |
C8—C6—N1 | 109.2 (2) | O4—C13—O5 | 122.9 (3) |
C9—C6—N1 | 108.9 (2) | O4—C13—C12 | 117.4 (3) |
C8—C6—C7 | 110.1 (3) | O5—C13—C12 | 119.7 (3) |
C9—C6—C7 | 110.8 (3) | ||
C6—N1—C1—C2 | 168.5 (3) | C2—O1—C5—C4 | 0.1 (4) |
C5—O1—C2—C3 | −0.4 (4) | C2—O1—C5—I1 | 175.9 (2) |
C5—O1—C2—C1 | −179.6 (3) | C1—N1—C6—C8 | −66.1 (3) |
N1—C1—C2—C3 | −115.3 (4) | C1—N1—C6—C9 | 56.6 (4) |
N1—C1—C2—O1 | 63.7 (4) | C1—N1—C6—C7 | 175.5 (3) |
O1—C2—C3—C4 | 0.5 (4) | O2—C10—C11—C12 | −173.7 (3) |
C1—C2—C3—C4 | 179.6 (3) | O3—C10—C11—C12 | 6.0 (5) |
C2—C3—C4—C5 | −0.5 (4) | C10—C11—C12—C13 | −0.3 (5) |
C3—C4—C5—O1 | 0.2 (4) | C11—C12—C13—O4 | 172.5 (3) |
C3—C4—C5—I1 | −174.7 (3) | C11—C12—C13—O5 | −6.8 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O3 | 1.18 (5) | 1.25 (5) | 2.425 (3) | 172 (4) |
N1—H1A···O2 | 0.88 (4) | 1.97 (4) | 2.828 (3) | 167 (3) |
N1—H1B···O4i | 0.88 (4) | 1.92 (4) | 2.792 (4) | 172 (3) |
Symmetry code: (i) x, y, z+1. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of the Russian Federation (award No. 4.1154.2017).
References
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Berson, J. A. & Swidler, R. (1953). J. Am. Chem. Soc. 75, 1721–1726. CrossRef CAS Web of Science Google Scholar
Berson, J. A. & Swidler, R. (1954). J. Am. Chem. Soc. 76, 4060–4069. CrossRef CAS Web of Science Google Scholar
Brown, T. H. (1986). Patent US4567176A1. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker. (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clitherow, J. W. (1983). Patent US4413135A1. Google Scholar
Craig, A. S., Ho, T. C. T. & McClure, M. S. (2008). Patent WO2008/154469A1. Google Scholar
Diels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257–266. CrossRef Google Scholar
Eggelte, T. A., de Koning, H. & Huisman, H. O. (1973). Tetrahedron, 29, 2491–2493. CrossRef CAS Web of Science Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
MarXperts. (2015). Automar. marXperts GmbH, Norderstedt, Germany. Google Scholar
Metsger, L., Mittelman, A. & Yurkovski, S. (2010). Pat. US2010/87459A1. Google Scholar
Pelosi, S. S. Jr, Yu, C.-N. & Calcagno, M. A. (2002). Patent EP1231208A2. Google Scholar
Price, B. J., Clitherow, J. W., Bradshaw, J., Martin-Smith, M., Judd, D. B. & Hayes, R. (1985). Patent US4524071A1. Google Scholar
Sheinkman, A. K., Deikalo, A. A., Stupnikova, T. V., Klyuev, N. A. & Mal'tseva, G. A. (1972). Chem. Heterocycl. Compd. 8, 993–997. CrossRef Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shih, W., Lau, N. & Seltzer, S. (1975). J. Org. Chem. 40, 1269–1274. CrossRef CAS Web of Science Google Scholar
Sprague, P. W., Heikes, J. E., Gougoutas, J. Z., Malley, M. F., Harris, D. N. & Greenberg, R. (1985). J. Med. Chem. 28, 1580–1590. CSD CrossRef CAS PubMed Web of Science Google Scholar
Zubkov, F. I., Golubev, V. D., Zaytsev, V. P., Bakhanovich, O. V., Nikitina, E. V., Khrustalev, V. N., Aysin, R. R., Timofeeva, T. V., Novikov, R. A. & Varlamov, A. V. (2016). Chem. Heterocycl. Compd, 52, 225–236. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.