research communications
A two-dimensional coordination polymer: poly[[bis[μ2-N-ethyl-N-(pyridin-4-ylmethyl)dithiocarbamato-κ3N:S,S′]cadmium(II)] 3-methylpyridine monosolvate]
aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The title compound, {[Cd(C9H11N2S2)2]·C6H7N}n, features two μ2-κ3-dithiocarbamate ligands each of which chelates one CdII atom, via the S atoms, while simultaneously bridging to another via the pyridyl-N atom. The result is a two-dimensional coordination polymer extending parallel to the ab plane with square channels along the b axis. The CdII atom geometry is based on a distorted cis-N2S4 octahedron. The 3-methylpyridine molecules reside in the channels aligned along the b axis, being held in place by methylene-C—H⋯N(3-methylpyridine) and (3-methylpyridine)-C—H⋯π(pyridyl) interactions. Pyridyl-C—H⋯S and dithiocarbamate-methyl-C—H⋯π(pyridyl) interactions provide connections between layers along the c axis.
CCDC reference: 1535967
1. Chemical context
Despite the relatively recent observations of one-dimensional coordination polymers for some binary cadmium dithiocarbamates (Tan et al., 2013, 2016; Ferreira et al., 2016), i.e. compounds of general formula Cd(S2CNRR′)2, for R, R′ = alkyl, aryl, the overwhelming majority of Cd(S2CNRR′)2 structures are binuclear and zero-dimensional (i.e. molecular). This arises owing to the presence of equal numbers of chelating ligands and tridentate ligands, with the latter chelating one CdII atom while bridging a second. The coordination geometry defined by the resulting S5 donor set is invariably highly distorted and intermediate between trigonal-bipyramidal and square-pyramidal (Tiekink, 2003). The polymeric motifs of Cd(S2CNRR′)2 have μ3-bridging ligands exclusively and six-coordinate, S6, geometries. Systematic crystallization studies indicate these transform to the binuclear motif with the egress of time (Tan et al., 2013, 2016), suggesting the zero-dimensional motif is the thermodynamic outcome of crystallization. The addition of monodentate pyridyl-N donor molecules during adduct formation more often than not results in the breakdown of the binuclear motif to form a mononuclear species, e.g. as in the structures of Cd{S2CN[CH2C(H)Me2]2}2(pyridine) (Rodina et al., 2011) and Cd[S2CN(Me)Ph]2(pyridine)2 (Onwudiwe et al., 2013). The latter structure shows it is possible for the CdII atom to increase its to six in the presence of N-donors. Hence, bipyridyl donors with suitably disposed nitrogen atoms might be anticipated to produce coordination polymers. This has been realized in several examples, e.g. in the one-dimensional coordination polymers of {Cd(S2CNEt2)2[1,2-bis(pyridin-4-yl)ethylene]}n (Chai et al., 2003) and in its 1,2-bis(pyridin-4-yl)ethane analogue (Avila et al., 2006). In these instances, the CdII atom exists within a trans-N2S4 coordination geometry. However, the reaction outcomes are not always as expected.
Thus, in [{Cd[S2C(iPr)CH2CH2OH]2}2[1,2-bis(pyridin-4-yl)ethylene]3], isolated as its tetra acetonitrile solvate, both bidentate bridging (× 1) and monodentate (× 2) modes of coordination are found for 1,2-bis(pyridin-4-yl)ethylene, resulting in a cis-N2S4 coordination geometry (Jotani, Poplaukhin, et al., 2016). In another unexpected reaction outcome, only monodentate modes of coordination are found for 3-pyridinealdazine in the structure of {Cd[S2CN(nPr)CH2CH2OH]2(3-pyridinealdazine)2} leading to a NS4 donor set for cadmium (Broker & Tiekink, 2011). Very recently, a more surprising structure was reported wherein the binuclear core usually found for Cd(S2CNRR′)2, see above, was retained. Thus, the structure of {Cd[S2CN(iPr)CH2CH2OH]2(3-pyridinealdazine)}2, isolated as its hydrate (Arman et al., 2016), features monodentate binding of the 3-pyridinealdazine ligands to each CdII atom, leading to NS5 coordination geometries.
The varied and interesting structures notwithstanding, it is obvious that CdII will expand its in the presence of pyridyl-N donors. Hence, in order to encourage the formation of higher-dimensional aggregates, functionalizing the dithiocarbamate ligand with pyridyl substituents offers an opportunity to increase the dimensionality of the structure. Indeed, CdII structures with pyridin-4-yl groups included in the dithiocarbamate ligand have appeared in the recent literature, e.g. Cd[S2CN(ferrocenylmethyl)CH2Py]2(1,10-phenanthroline) (Kumar et al., 2016). Here, the CdII atom is coordinatively saturated within a cis-N2S4 donor set so the pyridyl-N atoms of the dithiocarbamate ligand are non-coordinating. However, pyridyl-N bridging has been observed in the binuclear structure, [Cd[S2CN(1H-indol-3-ylmethyl)CH2(CH2py)]2}2 (Kumar et al., 2014). This structure is in fact very closely related to the common binuclear motif but, instead of a bridging, tridentate dithiocarbamate ligand, via three sulfur donors, the bridges in this structure are provided by the pyridyl-N atoms; the two pendent pyridyl groups are non-coordinating. In a continuation of exploratory work in this field (Arman et al., 2013), herein the crystal and molecular structures of the title two-dimensional coordination polymer, (I), {Cd[S2CN(Et)CH2py]2.3-methylpyridine}2, containing a pyridyl-functionalized dithiocarbamate ligand, is described.
2. Structural commentary
The comprises a molecule of Cd[S2CN(Et)CH2py]2, Fig. 1, and a molecule of 3-methylpyridine. Referring to Table 1, each dithiocarbamate anion is chelating, forming very similar Cd—S bond lengths. This similarity is reflected in the experimental equivalence of the associated C—S bond lengths. Each dithiocarbamate ligand is in fact tridentate, chelating one CdII atom as just described and simultaneously bridging another via the pyridyl-N atom so that the coordination geometry about the CdII atom is cis-N2S4, distorted octahedral, Table 1. The bridging extends to form two interconnected rows of molecules, with those aligned along the a axis being formed via S3/S4–N4 bridges and those along the b axis being sustained by S1/S2–N2 bridges. The result is a two-dimensional architecture in the ab plane, Fig. 2. Square channels are formed in the b-axis direction and these are occupied by the solvent 3-methylpyridine molecules, Fig. 2a and b. The slats along the a axis are defined by the pyridyl residues and these block access along this direction, Fig. 2c.
of (I)3. Supramolecular features
A summary of specific intermolecular interactions contributing to the molecular packing of (I) is given in Table 2. The main interactions between the host framework and the guest 3-methylpyridine molecules are of the type methylene-C—H⋯N(3-methylpyridine) and (3-methylpyridine)-C—H⋯π(pyridyl). The connections between layers stacking along the c axis are of the type pyridyl-C—H⋯S and dithiocarbamate-methyl-C—H⋯π(pyridyl). Two illustrations of the molecular packing are given in Fig. 3.
4. Database survey
The dithiocarbamate anion, −[S2CN(Et)CH2py], found in (I) has been reported in a series of diorganotin bis(dithiocarbamate)s (Barba et al., 2012) but there was no evidence for intermolecular Sn—N(py) interactions, the structures rather conforming to the expected motifs (Tiekink, 2008). There are also examples of structures of the general formula M[S2CN(R)CH2py]2, a notable example being one with R = CH2py, namely, {Hg[S2CN(CH2Py)2]2]}n (Yadav et al., 2014), i.e. with two pyridyl groups per dithiocarbamate ligand, which adopts a relatively rare one-dimensional coordination polymer with a twisted topology (Jotani, Tan et al., 2016). In the other structures, R is a non-coordinating residue. For example, in the centrosymmetric ZnII compound with R = CH2(ferrocenyl) (Kumar et al., 2016), a two-dimensional architecture is found. Reverting back to HgII structures, when R = CH2(furyl) (Kumar et al., 2016), a flat, two-dimensional architecture is found as the HgII atom lies on a centre on inversion. In the case of {Hg[S2CN(Me)CH2Py]2}n (Singh et al., 2014), molecules self-assemble into a one-dimensional coordination polymer as one pyridyl-N atom coordinates a neighbouring HgII atom while the other is non-coordinating. Finally, when R = CH2(1-methyl-1H-pyrrol-2-yl) (Yadav et al., 2014), no Hg—N interactions are found. The HgII atom has a distorted tetrahedral geometry defined by an S4 donor set. Such a variety in structures warrants continuing interest in this area.
5. Synthesis and crystallization
The Cd[S2CN(Et2)CH2py]2 precursor (268 mg, 0.50 mmol) was dissolved in an excess of 3-methylpyridine (ca 10 ml). The solution was filtered, transferred to a 50 ml test tube and layered with hexanes (ca 60 ml). Colourless crystals of (I) formed on the test tube walls within a week. IR (cm−1): 2973(w), 2923(w), 1608(s), 1473(s), 1408(s), 1283(m), 1249(m), 1219(s), 1167(s), 1107(m), 1071(m), 991(s), 946(s). NMR 1H: δ (ppm) 8.56 (dd, Ar, 2.98, 5.49 Hz), 8.43 (t, Ar, 1.00 Hz), 8.38 (dd, Ar, 0.89, 3.88 Hz), 7.61 (dq, Ar, 1.49, 7.82 Hz), 7.30 (d, Ar, 6.02 Hz), 5.19 (s, –CH2–Ar), 3.88 (q, –CH2CH3, 6.49 Hz), 2.30 (s, pyridyl-CH3), 1.22 (t, –CH2CH3, 4.80 Hz). M.p. 531 – 533 K (uncorrected). TGA: two steps, the first corresponding to loss of 3-methylpyridine (onset 410 K, mid-point 420 K, endset 431 K; theoretical mass loss 14.8%, observed mass loss 13.3%), the second step corresponds to the decomposition to CdS (onset 603 K, mid-point 604 K, endset 613 K; theoretical mass loss 62.3%, observed mass loss 57.4%). Total theoretical mass loss 77.1%, observed mass loss 74.9%.
6. details
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). Owing to interference from the beam-stop, the (100) reflection was removed from the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1535967
https://doi.org/10.1107/S2056989017003516/hb7664sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017003516/hb7664Isup2.hkl
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd(C9H11N2S2)2]·C6H7N | F(000) = 640 |
Mr = 628.16 | Dx = 1.536 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71069 Å |
a = 9.5842 (15) Å | Cell parameters from 6543 reflections |
b = 11.0788 (16) Å | θ = 2.4–40.7° |
c = 12.989 (2) Å | µ = 1.13 mm−1 |
β = 100.014 (4)° | T = 98 K |
V = 1358.2 (4) Å3 | Block, colourless |
Z = 2 | 0.23 × 0.20 × 0.10 mm |
AFC12K/SATURN724 diffractometer | 5618 independent reflections |
Radiation source: fine-focus sealed tube | 5586 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −12→12 |
Tmin = 0.802, Tmax = 1.000 | k = −14→13 |
10508 measured reflections | l = −15→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0304P)2 + 3.8335P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.95 e Å−3 |
5618 reflections | Δρmin = −1.20 e Å−3 |
310 parameters | Absolute structure: Flack x determined using 2244 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.035 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Being affected by the beamstop, the (100) reflection was omitted from the final cycles of refinement. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.07792 (4) | 0.11775 (5) | 0.28476 (3) | 0.01706 (11) | |
S1 | 0.23327 (18) | 0.29766 (16) | 0.23386 (13) | 0.0188 (3) | |
S2 | −0.01802 (17) | 0.33065 (15) | 0.33697 (13) | 0.0208 (3) | |
S3 | 0.22627 (17) | 0.04779 (16) | 0.46716 (12) | 0.0215 (3) | |
S4 | 0.24814 (18) | −0.07121 (16) | 0.26516 (13) | 0.0198 (3) | |
N1 | 0.1324 (5) | 0.5121 (5) | 0.2772 (4) | 0.0171 (10) | |
N2 | 0.0426 (5) | 0.6032 (7) | −0.1044 (4) | 0.0216 (12) | |
N3 | 0.4308 (5) | −0.1054 (5) | 0.4433 (4) | 0.0182 (10) | |
N4 | 0.8778 (5) | 0.0113 (5) | 0.3160 (4) | 0.0163 (10) | |
C1 | 0.1167 (6) | 0.3905 (6) | 0.2819 (4) | 0.0160 (11) | |
C2 | 0.0472 (7) | 0.5963 (6) | 0.3283 (5) | 0.0242 (15) | |
H2A | −0.0413 | 0.5561 | 0.3394 | 0.029* | |
H2B | 0.0213 | 0.6674 | 0.2829 | 0.029* | |
C3 | 0.1312 (8) | 0.6364 (8) | 0.4323 (5) | 0.0316 (18) | |
H3A | 0.0725 | 0.6894 | 0.4675 | 0.047* | |
H3B | 0.2159 | 0.6802 | 0.4206 | 0.047* | |
H3C | 0.1595 | 0.5655 | 0.4761 | 0.047* | |
C4 | 0.2370 (7) | 0.5677 (7) | 0.2207 (5) | 0.0238 (14) | |
H4A | 0.3221 | 0.5157 | 0.2271 | 0.029* | |
H4B | 0.2664 | 0.6472 | 0.2520 | 0.029* | |
C5 | 0.1735 (7) | 0.5838 (6) | 0.1065 (5) | 0.0243 (15) | |
C6 | 0.1958 (8) | 0.4960 (7) | 0.0331 (6) | 0.0314 (16) | |
H6 | 0.2563 | 0.4289 | 0.0528 | 0.038* | |
C7 | 0.1261 (8) | 0.5106 (7) | −0.0692 (6) | 0.0313 (16) | |
H7 | 0.1392 | 0.4496 | −0.1181 | 0.038* | |
C8 | 0.0322 (9) | 0.6904 (7) | −0.0345 (6) | 0.0357 (18) | |
H8 | −0.0213 | 0.7607 | −0.0571 | 0.043* | |
C9 | 0.0971 (10) | 0.6820 (8) | 0.0704 (6) | 0.0378 (19) | |
H9 | 0.0872 | 0.7463 | 0.1169 | 0.045* | |
C10 | 0.3130 (6) | −0.0482 (6) | 0.3960 (5) | 0.0158 (11) | |
C11 | 0.4862 (6) | −0.0914 (7) | 0.5560 (5) | 0.0239 (14) | |
H11A | 0.4691 | −0.0078 | 0.5778 | 0.029* | |
H11B | 0.5898 | −0.1056 | 0.5694 | 0.029* | |
C12 | 0.4151 (8) | −0.1797 (9) | 0.6200 (6) | 0.0344 (19) | |
H12A | 0.4554 | −0.1706 | 0.6942 | 0.052* | |
H12B | 0.4308 | −0.2624 | 0.5977 | 0.052* | |
H12C | 0.3131 | −0.1632 | 0.6092 | 0.052* | |
C13 | 0.5156 (6) | −0.1836 (6) | 0.3869 (5) | 0.0216 (13) | |
H13A | 0.4562 | −0.2126 | 0.3216 | 0.026* | |
H13B | 0.5485 | −0.2548 | 0.4305 | 0.026* | |
C14 | 0.6427 (7) | −0.1156 (6) | 0.3609 (5) | 0.0216 (13) | |
C15 | 0.7786 (6) | −0.1612 (6) | 0.3879 (5) | 0.0225 (13) | |
H15 | 0.7938 | −0.2369 | 0.4224 | 0.027* | |
C16 | 0.8927 (7) | −0.0960 (6) | 0.3645 (5) | 0.0243 (14) | |
H16 | 0.9852 | −0.1288 | 0.3836 | 0.029* | |
C17 | 0.7450 (7) | 0.0563 (6) | 0.2896 (5) | 0.0214 (13) | |
H17 | 0.7326 | 0.1319 | 0.2547 | 0.026* | |
C18 | 0.6265 (7) | −0.0034 (6) | 0.3115 (5) | 0.0218 (13) | |
H18 | 0.5351 | 0.0318 | 0.2930 | 0.026* | |
N5 | 0.4417 (12) | 0.1672 (11) | 0.8221 (11) | 0.084 (4) | |
C19 | 0.3520 (10) | 0.0783 (11) | 0.8364 (9) | 0.059 (3) | |
H19 | 0.3143 | 0.0284 | 0.7787 | 0.071* | |
C20 | 0.3115 (11) | 0.0565 (10) | 0.9343 (8) | 0.052 (2) | |
C21 | 0.3647 (10) | 0.1275 (16) | 1.0165 (8) | 0.060 (3) | |
H21 | 0.3389 | 0.1126 | 1.0827 | 0.072* | |
C22 | 0.4575 (14) | 0.2230 (14) | 1.0056 (12) | 0.081 (4) | |
H22 | 0.4972 | 0.2730 | 1.0627 | 0.097* | |
C23 | 0.4878 (15) | 0.2396 (15) | 0.9037 (12) | 0.081 (4) | |
H23 | 0.5448 | 0.3068 | 0.8923 | 0.097* | |
C24 | 0.2137 (11) | −0.0448 (12) | 0.9431 (9) | 0.063 (3) | |
H24A | 0.2640 | −0.1078 | 0.9879 | 0.094* | |
H24B | 0.1789 | −0.0782 | 0.8735 | 0.094* | |
H24C | 0.1335 | −0.0156 | 0.9736 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.01767 (18) | 0.01518 (19) | 0.01811 (19) | 0.0001 (2) | 0.00250 (13) | 0.00003 (19) |
S1 | 0.0144 (7) | 0.0213 (9) | 0.0207 (7) | −0.0016 (6) | 0.0030 (6) | −0.0033 (6) |
S2 | 0.0208 (7) | 0.0181 (8) | 0.0255 (8) | −0.0002 (6) | 0.0095 (6) | −0.0005 (6) |
S3 | 0.0231 (8) | 0.0224 (9) | 0.0183 (7) | 0.0048 (6) | 0.0016 (6) | −0.0022 (6) |
S4 | 0.0218 (8) | 0.0182 (9) | 0.0187 (7) | 0.0025 (6) | 0.0021 (6) | −0.0031 (6) |
N1 | 0.017 (2) | 0.018 (3) | 0.016 (2) | −0.002 (2) | 0.0005 (19) | 0.0004 (19) |
N2 | 0.027 (2) | 0.019 (3) | 0.019 (2) | 0.000 (2) | 0.0026 (18) | 0.000 (2) |
N3 | 0.010 (2) | 0.022 (3) | 0.022 (3) | −0.003 (2) | 0.0009 (18) | 0.000 (2) |
N4 | 0.014 (2) | 0.015 (3) | 0.021 (2) | 0.0000 (19) | 0.0028 (18) | 0.0007 (19) |
C1 | 0.011 (3) | 0.020 (3) | 0.013 (3) | −0.001 (2) | −0.0073 (19) | 0.000 (2) |
C2 | 0.027 (3) | 0.015 (4) | 0.030 (3) | 0.003 (2) | 0.002 (2) | 0.002 (2) |
C3 | 0.046 (4) | 0.028 (5) | 0.020 (3) | 0.004 (3) | 0.005 (3) | −0.001 (3) |
C4 | 0.024 (3) | 0.023 (3) | 0.024 (3) | −0.009 (3) | 0.001 (2) | 0.002 (2) |
C5 | 0.029 (3) | 0.022 (4) | 0.020 (3) | −0.007 (2) | 0.000 (3) | 0.002 (2) |
C6 | 0.035 (4) | 0.032 (4) | 0.027 (4) | 0.008 (3) | 0.005 (3) | 0.008 (3) |
C7 | 0.038 (4) | 0.034 (4) | 0.023 (3) | 0.008 (3) | 0.008 (3) | 0.003 (3) |
C8 | 0.051 (5) | 0.021 (4) | 0.031 (4) | 0.009 (3) | −0.004 (3) | 0.000 (3) |
C9 | 0.055 (5) | 0.028 (5) | 0.027 (4) | −0.006 (4) | −0.004 (3) | −0.007 (3) |
C10 | 0.008 (2) | 0.017 (3) | 0.020 (3) | −0.004 (2) | −0.003 (2) | 0.002 (2) |
C11 | 0.011 (3) | 0.032 (4) | 0.027 (3) | −0.003 (3) | −0.002 (2) | 0.005 (3) |
C12 | 0.026 (4) | 0.050 (6) | 0.024 (3) | −0.012 (4) | −0.004 (3) | 0.016 (3) |
C13 | 0.014 (3) | 0.020 (3) | 0.031 (3) | 0.000 (2) | 0.004 (2) | 0.004 (3) |
C14 | 0.024 (3) | 0.016 (3) | 0.026 (3) | 0.001 (3) | 0.007 (3) | −0.001 (2) |
C15 | 0.016 (3) | 0.018 (3) | 0.035 (4) | 0.000 (2) | 0.007 (2) | 0.006 (3) |
C16 | 0.024 (3) | 0.021 (3) | 0.028 (3) | 0.006 (3) | 0.004 (3) | 0.003 (3) |
C17 | 0.020 (3) | 0.018 (3) | 0.026 (3) | 0.002 (2) | 0.003 (2) | 0.004 (3) |
C18 | 0.017 (3) | 0.020 (3) | 0.028 (3) | 0.000 (2) | 0.002 (2) | 0.004 (3) |
N5 | 0.068 (7) | 0.083 (9) | 0.114 (10) | 0.023 (6) | 0.054 (7) | 0.041 (7) |
C19 | 0.038 (5) | 0.082 (10) | 0.061 (6) | 0.014 (5) | 0.018 (4) | 0.014 (5) |
C20 | 0.051 (6) | 0.052 (6) | 0.059 (6) | 0.010 (5) | 0.023 (5) | 0.001 (5) |
C21 | 0.055 (5) | 0.076 (8) | 0.053 (5) | −0.006 (7) | 0.021 (4) | −0.009 (7) |
C22 | 0.066 (8) | 0.078 (10) | 0.109 (11) | 0.009 (7) | 0.042 (8) | 0.008 (8) |
C23 | 0.071 (9) | 0.081 (10) | 0.100 (11) | 0.005 (7) | 0.042 (8) | 0.025 (8) |
C24 | 0.047 (6) | 0.074 (8) | 0.067 (7) | −0.003 (5) | 0.010 (5) | −0.001 (6) |
Cd—S1 | 2.6399 (19) | C7—H7 | 0.9500 |
Cd—S2 | 2.6618 (17) | C8—C9 | 1.398 (11) |
Cd—S3 | 2.6578 (16) | C8—H8 | 0.9500 |
Cd—S4 | 2.6932 (18) | C9—H9 | 0.9500 |
Cd—N2i | 2.430 (5) | C11—C12 | 1.520 (9) |
Cd—N4ii | 2.346 (5) | C11—H11A | 0.9900 |
S1—C1 | 1.714 (6) | C11—H11B | 0.9900 |
S2—C1 | 1.715 (6) | C12—H12A | 0.9800 |
S3—C10 | 1.715 (6) | C12—H12B | 0.9800 |
S4—C10 | 1.724 (6) | C12—H12C | 0.9800 |
N1—C1 | 1.357 (8) | C13—C14 | 1.519 (9) |
N1—C4 | 1.477 (8) | C13—H13A | 0.9900 |
N1—C2 | 1.471 (8) | C13—H13B | 0.9900 |
N2—C8 | 1.342 (10) | C14—C15 | 1.385 (9) |
N2—C7 | 1.332 (10) | C14—C18 | 1.396 (9) |
N2—Cdiii | 2.430 (5) | C15—C16 | 1.388 (9) |
N3—C10 | 1.347 (8) | C15—H15 | 0.9500 |
N3—C13 | 1.467 (8) | C16—H16 | 0.9500 |
N3—C11 | 1.477 (8) | C17—C18 | 1.386 (9) |
N4—C16 | 1.341 (9) | C17—H17 | 0.9500 |
N4—C17 | 1.354 (8) | C18—H18 | 0.9500 |
N4—Cdiv | 2.346 (5) | N5—C23 | 1.341 (19) |
C2—C3 | 1.514 (9) | N5—C19 | 1.341 (15) |
C2—H2A | 0.9900 | C19—C20 | 1.413 (13) |
C2—H2B | 0.9900 | C19—H19 | 0.9500 |
C3—H3A | 0.9800 | C20—C21 | 1.353 (16) |
C3—H3B | 0.9800 | C20—C24 | 1.479 (15) |
C3—H3C | 0.9800 | C21—C22 | 1.40 (2) |
C4—C5 | 1.513 (9) | C21—H21 | 0.9500 |
C4—H4A | 0.9900 | C22—C23 | 1.415 (18) |
C4—H4B | 0.9900 | C22—H22 | 0.9500 |
C5—C9 | 1.349 (11) | C23—H23 | 0.9500 |
C5—C6 | 1.403 (10) | C24—H24A | 0.9800 |
C6—C7 | 1.389 (10) | C24—H24B | 0.9800 |
C6—H6 | 0.9500 | C24—H24C | 0.9800 |
S1—Cd—S2 | 68.26 (5) | C9—C8—H8 | 118.7 |
S1—Cd—S3 | 101.88 (6) | C5—C9—C8 | 121.0 (8) |
S1—Cd—S4 | 100.71 (5) | C5—C9—H9 | 119.5 |
S1—Cd—N2i | 90.18 (16) | C8—C9—H9 | 119.5 |
S1—Cd—N4ii | 159.47 (13) | N3—C10—S3 | 119.5 (5) |
S2—Cd—S3 | 100.73 (5) | N3—C10—S4 | 120.6 (5) |
S2—Cd—S4 | 162.67 (5) | S3—C10—S4 | 119.8 (3) |
S2—Cd—N2i | 100.20 (17) | N3—C11—C12 | 110.8 (6) |
S2—Cd—N4ii | 94.15 (14) | N3—C11—H11A | 109.5 |
S3—Cd—S4 | 67.58 (5) | C12—C11—H11A | 109.5 |
S3—Cd—N2i | 158.55 (18) | N3—C11—H11B | 109.5 |
S3—Cd—N4ii | 91.47 (13) | C12—C11—H11B | 109.5 |
S4—Cd—N2i | 92.95 (16) | H11A—C11—H11B | 108.1 |
S4—Cd—N4ii | 98.77 (14) | C11—C12—H12A | 109.5 |
N2i—Cd—N4ii | 82.40 (18) | C11—C12—H12B | 109.5 |
C1—S1—Cd | 86.0 (2) | H12A—C12—H12B | 109.5 |
C1—S2—Cd | 85.3 (2) | C11—C12—H12C | 109.5 |
C10—S3—Cd | 86.3 (2) | H12A—C12—H12C | 109.5 |
C10—S4—Cd | 85.0 (2) | H12B—C12—H12C | 109.5 |
C1—N1—C4 | 121.8 (5) | N3—C13—C14 | 110.7 (6) |
C1—N1—C2 | 122.3 (5) | N3—C13—H13A | 109.5 |
C4—N1—C2 | 115.9 (5) | C14—C13—H13A | 109.5 |
C8—N2—C7 | 115.6 (6) | N3—C13—H13B | 109.5 |
C8—N2—Cdiii | 121.7 (5) | C14—C13—H13B | 109.5 |
C7—N2—Cdiii | 122.6 (5) | H13A—C13—H13B | 108.1 |
C10—N3—C13 | 123.0 (5) | C15—C14—C18 | 117.8 (6) |
C10—N3—C11 | 122.1 (5) | C15—C14—C13 | 121.2 (6) |
C13—N3—C11 | 115.0 (5) | C18—C14—C13 | 121.0 (6) |
C16—N4—C17 | 117.6 (5) | C14—C15—C16 | 119.8 (6) |
C16—N4—Cdiv | 120.2 (4) | C14—C15—H15 | 120.1 |
C17—N4—Cdiv | 122.1 (4) | C16—C15—H15 | 120.1 |
N1—C1—S1 | 119.7 (5) | N4—C16—C15 | 122.7 (6) |
N1—C1—S2 | 120.0 (5) | N4—C16—H16 | 118.6 |
S1—C1—S2 | 120.3 (4) | C15—C16—H16 | 118.6 |
N1—C2—C3 | 109.8 (5) | N4—C17—C18 | 122.7 (6) |
N1—C2—H2A | 109.7 | N4—C17—H17 | 118.6 |
C3—C2—H2A | 109.7 | C18—C17—H17 | 118.6 |
N1—C2—H2B | 109.7 | C17—C18—C14 | 119.3 (6) |
C3—C2—H2B | 109.7 | C17—C18—H18 | 120.3 |
H2A—C2—H2B | 108.2 | C14—C18—H18 | 120.3 |
C2—C3—H3A | 109.5 | C23—N5—C19 | 117.4 (11) |
C2—C3—H3B | 109.5 | N5—C19—C20 | 122.2 (12) |
H3A—C3—H3B | 109.5 | N5—C19—H19 | 118.9 |
C2—C3—H3C | 109.5 | C20—C19—H19 | 118.9 |
H3A—C3—H3C | 109.5 | C21—C20—C19 | 119.0 (11) |
H3B—C3—H3C | 109.5 | C21—C20—C24 | 122.5 (10) |
N1—C4—C5 | 110.1 (5) | C19—C20—C24 | 118.5 (10) |
N1—C4—H4A | 109.6 | C20—C21—C22 | 121.2 (11) |
C5—C4—H4A | 109.6 | C20—C21—H21 | 119.4 |
N1—C4—H4B | 109.6 | C22—C21—H21 | 119.4 |
C5—C4—H4B | 109.6 | C23—C22—C21 | 115.3 (14) |
H4A—C4—H4B | 108.2 | C23—C22—H22 | 122.3 |
C9—C5—C6 | 117.4 (7) | C21—C22—H22 | 122.3 |
C9—C5—C4 | 122.5 (7) | N5—C23—C22 | 124.6 (14) |
C6—C5—C4 | 120.1 (6) | N5—C23—H23 | 117.7 |
C7—C6—C5 | 117.7 (7) | C22—C23—H23 | 117.7 |
C7—C6—H6 | 121.2 | C20—C24—H24A | 109.5 |
C5—C6—H6 | 121.2 | C20—C24—H24B | 109.5 |
N2—C7—C6 | 125.3 (7) | H24A—C24—H24B | 109.5 |
N2—C7—H7 | 117.3 | C20—C24—H24C | 109.5 |
C6—C7—H7 | 117.3 | H24A—C24—H24C | 109.5 |
N2—C8—C9 | 122.6 (7) | H24B—C24—H24C | 109.5 |
N2—C8—H8 | 118.7 | ||
C4—N1—C1—S1 | 7.3 (7) | Cd—S3—C10—N3 | 168.9 (5) |
C2—N1—C1—S1 | −172.3 (4) | Cd—S3—C10—S4 | −11.5 (3) |
C4—N1—C1—S2 | −173.4 (4) | Cd—S4—C10—N3 | −169.0 (5) |
C2—N1—C1—S2 | 7.0 (8) | Cd—S4—C10—S3 | 11.3 (3) |
Cd—S1—C1—N1 | −177.9 (5) | C10—N3—C11—C12 | 85.9 (8) |
Cd—S1—C1—S2 | 2.8 (3) | C13—N3—C11—C12 | −95.6 (7) |
Cd—S2—C1—N1 | 177.9 (5) | C10—N3—C13—C14 | 98.4 (7) |
Cd—S2—C1—S1 | −2.8 (3) | C11—N3—C13—C14 | −80.2 (7) |
C1—N1—C2—C3 | 98.4 (7) | N3—C13—C14—C15 | 127.2 (7) |
C4—N1—C2—C3 | −81.3 (7) | N3—C13—C14—C18 | −50.9 (8) |
C1—N1—C4—C5 | 86.5 (7) | C18—C14—C15—C16 | −0.7 (10) |
C2—N1—C4—C5 | −93.9 (6) | C13—C14—C15—C16 | −179.0 (6) |
N1—C4—C5—C9 | 86.4 (8) | C17—N4—C16—C15 | 0.0 (10) |
N1—C4—C5—C6 | −95.1 (8) | Cdiv—N4—C16—C15 | 178.0 (5) |
C9—C5—C6—C7 | −6.3 (11) | C14—C15—C16—N4 | 0.1 (11) |
C4—C5—C6—C7 | 175.2 (7) | C16—N4—C17—C18 | 0.6 (10) |
C8—N2—C7—C6 | 3.1 (12) | Cdiv—N4—C17—C18 | −177.3 (5) |
Cdiii—N2—C7—C6 | −178.8 (6) | N4—C17—C18—C14 | −1.3 (10) |
C5—C6—C7—N2 | 2.0 (12) | C15—C14—C18—C17 | 1.3 (10) |
C7—N2—C8—C9 | −4.0 (12) | C13—C14—C18—C17 | 179.5 (6) |
Cdiii—N2—C8—C9 | 177.9 (6) | C23—N5—C19—C20 | −3.1 (17) |
C6—C5—C9—C8 | 5.6 (12) | N5—C19—C20—C21 | 0.1 (16) |
C4—C5—C9—C8 | −175.9 (7) | N5—C19—C20—C24 | −179.1 (10) |
N2—C8—C9—C5 | −0.4 (14) | C19—C20—C21—C22 | 0.8 (19) |
C13—N3—C10—S3 | −176.5 (5) | C24—C20—C21—C22 | 180.0 (12) |
C11—N3—C10—S3 | 2.0 (8) | C20—C21—C22—C23 | 1 (2) |
C13—N3—C10—S4 | 3.9 (8) | C19—N5—C23—C22 | 5 (2) |
C11—N3—C10—S4 | −177.7 (5) | C21—C22—C23—N5 | −4 (2) |
Symmetry codes: (i) −x, y−1/2, −z; (ii) x−1, y, z; (iii) −x, y+1/2, −z; (iv) x+1, y, z. |
Cg1 and Cg2 are the centroids of the N2/C5–C9 and N4/C14–C17 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···N5v | 0.99 | 2.62 | 3.264 (15) | 123 |
C24—H24C···Cg1vi | 0.98 | 2.72 | 3.662 (12) | 163 |
C15—H15···S3v | 0.95 | 2.81 | 3.738 (7) | 167 |
C3—H3C···Cg2vii | 0.98 | 2.73 | 3.633 (8) | 154 |
Symmetry codes: (v) −x+1, y−1/2, −z+1; (vi) −x, y−1/2, −z+1; (vii) −x+1, y+1/2, −z+1. |
Acknowledgements
We thank Sunway University for support of biological and crystal engineering studies of metal dithiocarbamates.
References
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480. CSD CrossRef IUCr Journals Google Scholar
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1234–1238. Web of Science CSD CrossRef IUCr Journals Google Scholar
Avila, V., Benson, R. E., Broker, G. A., Daniels, L. M. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m1425–m1427. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422–428. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Broker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320–m321. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chai, J., Lai, C.-S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413. CAS Google Scholar
Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62–69. Web of Science CSD CrossRef CAS Google Scholar
Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774. Web of Science CSD CrossRef CAS Google Scholar
Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Onwudiwe, D. C., Strydom, C. A. & Hosten, E. C. (2013). Inorg. Chim. Acta, 401, 1–10. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rodina, T. A. V., Ivanov, A., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263–270. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737–3748. Web of Science CSD CrossRef CAS Google Scholar
Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126. CAS Google Scholar
Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. Bt A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056. Google Scholar
Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.