research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A two-dimensional coordination polymer: poly[[bis­­[μ2-N-ethyl-N-(pyridin-4-ylmeth­yl)di­thio­carbamato-κ3N:S,S′]cadmium(II)] 3-methyl­pyridine monosolvate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 March 2017; accepted 4 March 2017; online 10 March 2017)

The title compound, {[Cd(C9H11N2S2)2]·C6H7N}n, features two μ2-κ3-di­thio­carbamate ligands each of which chelates one CdII atom, via the S atoms, while simultaneously bridging to another via the pyridyl-N atom. The result is a two-dimensional coordination polymer extending parallel to the ab plane with square channels along the b axis. The CdII atom geometry is based on a distorted cis-N2S4 octa­hedron. The 3-methyl­pyridine mol­ecules reside in the channels aligned along the b axis, being held in place by methyl­ene-C—H⋯N(3-methyl­pyridine) and (3-methyl­pyridine)-C—H⋯π(pyrid­yl) inter­actions. Pyridyl-C—H⋯S and di­thio­carbamate-methyl-C—H⋯π(pyrid­yl) inter­actions provide connections between layers along the c axis.

1. Chemical context

Despite the relatively recent observations of one-dimensional coordination polymers for some binary cadmium di­thio­carbamates (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. Bt A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.], 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]; Ferreira et al., 2016[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137-145.]), i.e. compounds of general formula Cd(S2CNRR′)2, for R, R′ = alkyl, aryl, the overwhelming majority of Cd(S2CNRR′)2 structures are binuclear and zero-dimensional (i.e. mol­ecular). This arises owing to the presence of equal numbers of chelating ligands and tridentate ligands, with the latter chelating one CdII atom while bridging a second. The coord­ination geometry defined by the resulting S5 donor set is invariably highly distorted and inter­mediate between trigonal-bipyramidal and square-pyramidal (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). The polymeric motifs of Cd(S2CNRR′)2 have μ3-bridging ligands exclusively and six-coordinate, S6, geometries. Systematic crystallization studies indicate these transform to the binuclear motif with the egress of time (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. Bt A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.], 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]), suggesting the zero-dimensional motif is the thermodynamic outcome of crystallization. The addition of monodentate pyridyl-N donor mol­ecules during adduct formation more often than not results in the breakdown of the binuclear motif to form a mononuclear species, e.g. as in the structures of Cd{S2CN[CH2C(H)Me2]2}2(pyridine) (Rodina et al., 2011[Rodina, T. A. V., Ivanov, A., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263-270.]) and Cd[S2CN(Me)Ph]2(pyridine)2 (Onwudiwe et al., 2013[Onwudiwe, D. C., Strydom, C. A. & Hosten, E. C. (2013). Inorg. Chim. Acta, 401, 1-10.]). The latter structure shows it is possible for the CdII atom to increase its coordination number to six in the presence of N-donors. Hence, bipyridyl donors with suitably disposed nitro­gen atoms might be anti­cipated to produce coordination polymers. This has been realized in several examples, e.g. in the one-dimensional coordination polymers of {Cd(S2CNEt2)2[1,2-bis­(pyridin-4-yl)ethyl­ene]}n (Chai et al., 2003[Chai, J., Lai, C.-S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249-250.]) and in its 1,2-bis­(pyridin-4-yl)ethane analogue (Avila et al., 2006[Avila, V., Benson, R. E., Broker, G. A., Daniels, L. M. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m1425-m1427.]). In these instances, the CdII atom exists within a trans-N2S4 coordination geometry. However, the reaction outcomes are not always as expected.

[Scheme 1]

Thus, in [{Cd[S2C(iPr)CH2CH2OH]2}2[1,2-bis­(pyridin-4-yl)ethyl­ene]3], isolated as its tetra aceto­nitrile solvate, both bidentate bridging (× 1) and monodentate (× 2) modes of coordination are found for 1,2-bis­(pyridin-4-yl)ethyl­ene, resulting in a cis-N2S4 coordination geometry (Jotani, Poplaukhin, et al., 2016[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085-1092.]). In another unexpected reaction outcome, only monodentate modes of coordination are found for 3-pyridine­aldazine in the structure of {Cd[S2CN(nPr)CH2CH2OH]2(3-pyridine­aldazine)2} leading to a NS4 donor set for cadmium (Broker & Tiekink, 2011[Broker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320-m321.]). Very recently, a more surprising structure was reported wherein the binuclear core usually found for Cd(S2CNRR′)2, see above, was retained. Thus, the structure of {Cd[S2CN(iPr)CH2CH2OH]2(3-pyridine­aldazine)}2, isolated as its hydrate (Arman et al., 2016[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1234-1238.]), features monodentate binding of the 3-pyridine­aldazine ligands to each CdII atom, leading to NS5 coordination geometries.

The varied and inter­esting structures notwithstanding, it is obvious that CdII will expand its coordination number in the presence of pyridyl-N donors. Hence, in order to encourage the formation of higher-dimensional aggregates, functionalizing the di­thio­carbamate ligand with pyridyl substituents offers an opportunity to increase the dimensionality of the structure. Indeed, CdII structures with pyridin-4-yl groups included in the di­thio­carbamate ligand have appeared in the recent literature, e.g. Cd[S2CN(ferrocenylmeth­yl)CH2Py]2(1,10-phenanthroline) (Kumar et al., 2016[Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62-69.]). Here, the CdII atom is coordinatively saturated within a cis-N2S4 donor set so the pyridyl-N atoms of the di­thio­carbamate ligand are non-coordinating. However, pyridyl-N bridging has been observed in the binuclear structure, [Cd[S2CN(1H-indol-3-ylmeth­yl)CH2(CH2py)]2}2 (Kumar et al., 2014[Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765-6774.]). This structure is in fact very closely related to the common binuclear motif but, instead of a bridging, tridentate di­thio­carbamate ligand, via three sulfur donors, the bridges in this structure are provided by the pyridyl-N atoms; the two pendent pyridyl groups are non-coordinating. In a continuation of exploratory work in this field (Arman et al., 2013[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479-m480.]), herein the crystal and mol­ecular structures of the title two-dimensional coordination polymer, (I)[link], {Cd[S2CN(Et)CH2py]2.3-methyl­pyridine}2, containing a pyridyl-functionalized di­thio­carbamate ligand, is described.

2. Structural commentary

The asymmetric unit of (I)[link] comprises a molecule of Cd[S2CN(Et)CH2py]2, Fig. 1[link], and a mol­ecule of 3-methyl­pyridine. Referring to Table 1[link], each di­thio­carbamate anion is chelating, forming very similar Cd—S bond lengths. This similarity is reflected in the experimental equivalence of the associated C—S bond lengths. Each di­thio­carbamate ligand is in fact tridentate, chelating one CdII atom as just described and simultaneously bridging another via the pyridyl-N atom so that the coord­ination geometry about the CdII atom is cis-N2S4, distorted octa­hedral, Table 1[link]. The bridging extends to form two inter­connected rows of mol­ecules, with those aligned along the a axis being formed via S3/S4–N4 bridges and those along the b axis being sustained by S1/S2–N2 bridges. The result is a two-dimensional architecture in the ab plane, Fig. 2[link]. Square channels are formed in the b-axis direction and these are occupied by the solvent 3-methyl­pyridine mol­ecules, Fig. 2[link]a and b. The slats along the a axis are defined by the pyridyl residues and these block access along this direction, Fig. 2[link]c.

Table 1
Selected geometric parameters (Å, °)

Cd—S1 2.6399 (19) Cd—N4ii 2.346 (5)
Cd—S2 2.6618 (17) S1—C1 1.714 (6)
Cd—S3 2.6578 (16) S2—C1 1.715 (6)
Cd—S4 2.6932 (18) S3—C10 1.715 (6)
Cd—N2i 2.430 (5) S4—C10 1.724 (6)
       
S1—Cd—S2 68.26 (5) S2—Cd—N4ii 94.15 (14)
S1—Cd—S3 101.88 (6) S3—Cd—S4 67.58 (5)
S1—Cd—S4 100.71 (5) S3—Cd—N2i 158.55 (18)
S1—Cd—N2i 90.18 (16) S3—Cd—N4ii 91.47 (13)
S1—Cd—N4ii 159.47 (13) S4—Cd—N2i 92.95 (16)
S2—Cd—S3 100.73 (5) S4—Cd—N4ii 98.77 (14)
S2—Cd—S4 162.67 (5) N2i—Cd—N4ii 82.40 (18)
S2—Cd—N2i 100.20 (17)    
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) x-1, y, z.
[Figure 1]
Figure 1
The Cd[S2CN(Et)CH2py]2 component of the asymmetric unit of (I)[link], extended to show the immediate coordination geometry about the CdII atom, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) −x, −[{1\over 2}] + y, −z; (ii) −1 + x, y, z.]
[Figure 2]
Figure 2
The two-dimensional architecture in (I)[link], showing (a) a view in projection down the a axis, (b) a view slightly off-set from the a axis and (c) a view in projection down the b axis. The 3-methyl­pyridine mol­ecules are shown in space-filling mode. All H atoms have been removed for reasons of clarity.

3. Supra­molecular features

A summary of specific inter­molecular inter­actions contributing to the mol­ecular packing of (I)[link] is given in Table 2[link]. The main inter­actions between the host framework and the guest 3-methyl­pyridine mol­ecules are of the type methyl­ene-C—H⋯N(3-methyl­pyridine) and (3-methyl­pyridine)-C—H⋯π(pyrid­yl). The connections between layers stacking along the c axis are of the type pyridyl-C—H⋯S and di­thio­carbamate-methyl-C—H⋯π(pyrid­yl). Two illustrations of the mol­ecular packing are given in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N2/C5–C9 and N4/C14–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N5iii 0.99 2.62 3.264 (15) 123
C24—H24CCg1iv 0.98 2.72 3.662 (12) 163
C15—H15⋯S3iii 0.95 2.81 3.738 (7) 167
C3—H3CCg2v 0.98 2.73 3.633 (8) 154
Symmetry codes: (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Two representations of the mol­ecular packing in (I)[link], showing (a) a view of the unit-cell contents in projection down the b axis and (b) a simplified view where all H atoms not participating in the specified inter­molecular contacts are removed, adjacent layers are coloured in green and brown, and 3-methyl­pyridine mol­ecules are coloured orange. The C—H⋯S, C—H⋯N and C—H⋯π inter­actions are shown as orange, blue and purple dashed lines, respectively.

4. Database survey

The dithiocarbamate anion, [S2CN(Et)CH2py], found in (I)[link] has been reported in a series of diorganotin bis­(di­thio­carbamate)s (Barba et al., 2012[Barba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422-428.]) but there was no evidence for inter­molecular Sn—N(py) inter­actions, the structures rather conforming to the expected motifs (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). There are also examples of structures of the general formula M[S2CN(R)CH2py]2, a notable example being one with R = CH2py, namely, {Hg[S2CN(CH2Py)2]2]}n (Yadav et al., 2014[Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210-217.]), i.e. with two pyridyl groups per di­thio­carbamate ligand, which adopts a relatively rare one-dimensional coordination polymer with a twisted topology (Jotani, Tan et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]). In the other structures, R is a non-coordinating residue. For example, in the centrosymmetric ZnII compound with R = CH2(ferrocen­yl) (Kumar et al., 2016[Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62-69.]), a two-dimensional architecture is found. Reverting back to HgII structures, when R = CH2(fur­yl) (Kumar et al., 2016[Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62-69.]), a flat, two-dimensional architecture is found as the HgII atom lies on a centre on inversion. In the case of {Hg[S2CN(Me)CH2Py]2}n (Singh et al., 2014[Singh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737-3748.]), mol­ecules self-assemble into a one-dimensional coordination polymer as one pyridyl-N atom coordinates a neighbouring HgII atom while the other is non-coordinating. Finally, when R = CH2(1-methyl-1H-pyrrol-2-yl) (Yadav et al., 2014[Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210-217.]), no Hg—N inter­actions are found. The HgII atom has a distorted tetra­hedral geometry defined by an S4 donor set. Such a variety in structures warrants continuing inter­est in this area.

5. Synthesis and crystallization

The Cd[S2CN(Et2)CH2py]2 precursor (268 mg, 0.50 mmol) was dissolved in an excess of 3-methyl­pyridine (ca 10 ml). The solution was filtered, transferred to a 50 ml test tube and layered with hexa­nes (ca 60 ml). Colourless crystals of (I)[link] formed on the test tube walls within a week. IR (cm−1): 2973(w), 2923(w), 1608(s), 1473(s), 1408(s), 1283(m), 1249(m), 1219(s), 1167(s), 1107(m), 1071(m), 991(s), 946(s). NMR 1H: δ (ppm) 8.56 (dd, Ar, 2.98, 5.49 Hz), 8.43 (t, Ar, 1.00 Hz), 8.38 (dd, Ar, 0.89, 3.88 Hz), 7.61 (dq, Ar, 1.49, 7.82 Hz), 7.30 (d, Ar, 6.02 Hz), 5.19 (s, –CH2–Ar), 3.88 (q, –CH2CH3, 6.49 Hz), 2.30 (s, pyridyl-CH3), 1.22 (t, –CH2CH3, 4.80 Hz). M.p. 531 – 533 K (uncorrected). TGA: two steps, the first corresponding to loss of 3-methyl­pyridine (onset 410 K, mid-point 420 K, endset 431 K; theoretical mass loss 14.8%, observed mass loss 13.3%), the second step corresponds to the decomposition to CdS (onset 603 K, mid-point 604 K, endset 613 K; theoretical mass loss 62.3%, observed mass loss 57.4%). Total theoretical mass loss 77.1%, observed mass loss 74.9%.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). Owing to inter­ference from the beam-stop, the (100) reflection was removed from the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C9H11N2S2)2]·C6H7N
Mr 628.16
Crystal system, space group Monoclinic, P21
Temperature (K) 98
a, b, c (Å) 9.5842 (15), 11.0788 (16), 12.989 (2)
β (°) 100.014 (4)
V3) 1358.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.13
Crystal size (mm) 0.23 × 0.20 × 0.10
 
Data collection
Diffractometer AFC12/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.802, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10508, 5618, 5586
Rint 0.030
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.08
No. of reflections 5618
No. of parameters 310
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −1.20
Absolute structure Flack x determined using 2244 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.035 (15)
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[bis[µ2-N-ethyl-N-(pyridin-4-ylmethyl)dithiocarbamato-κ3N:S,S']cadmium(II)] 3-methylpyridine monosolvate] top
Crystal data top
[Cd(C9H11N2S2)2]·C6H7NF(000) = 640
Mr = 628.16Dx = 1.536 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 9.5842 (15) ÅCell parameters from 6543 reflections
b = 11.0788 (16) Åθ = 2.4–40.7°
c = 12.989 (2) ŵ = 1.13 mm1
β = 100.014 (4)°T = 98 K
V = 1358.2 (4) Å3Block, colourless
Z = 20.23 × 0.20 × 0.10 mm
Data collection top
AFC12K/SATURN724
diffractometer
5618 independent reflections
Radiation source: fine-focus sealed tube5586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.802, Tmax = 1.000k = 1413
10508 measured reflectionsl = 1516
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0304P)2 + 3.8335P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.95 e Å3
5618 reflectionsΔρmin = 1.20 e Å3
310 parametersAbsolute structure: Flack x determined using 2244 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.035 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Being affected by the beamstop, the (100) reflection was omitted from the final cycles of refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.07792 (4)0.11775 (5)0.28476 (3)0.01706 (11)
S10.23327 (18)0.29766 (16)0.23386 (13)0.0188 (3)
S20.01802 (17)0.33065 (15)0.33697 (13)0.0208 (3)
S30.22627 (17)0.04779 (16)0.46716 (12)0.0215 (3)
S40.24814 (18)0.07121 (16)0.26516 (13)0.0198 (3)
N10.1324 (5)0.5121 (5)0.2772 (4)0.0171 (10)
N20.0426 (5)0.6032 (7)0.1044 (4)0.0216 (12)
N30.4308 (5)0.1054 (5)0.4433 (4)0.0182 (10)
N40.8778 (5)0.0113 (5)0.3160 (4)0.0163 (10)
C10.1167 (6)0.3905 (6)0.2819 (4)0.0160 (11)
C20.0472 (7)0.5963 (6)0.3283 (5)0.0242 (15)
H2A0.04130.55610.33940.029*
H2B0.02130.66740.28290.029*
C30.1312 (8)0.6364 (8)0.4323 (5)0.0316 (18)
H3A0.07250.68940.46750.047*
H3B0.21590.68020.42060.047*
H3C0.15950.56550.47610.047*
C40.2370 (7)0.5677 (7)0.2207 (5)0.0238 (14)
H4A0.32210.51570.22710.029*
H4B0.26640.64720.25200.029*
C50.1735 (7)0.5838 (6)0.1065 (5)0.0243 (15)
C60.1958 (8)0.4960 (7)0.0331 (6)0.0314 (16)
H60.25630.42890.05280.038*
C70.1261 (8)0.5106 (7)0.0692 (6)0.0313 (16)
H70.13920.44960.11810.038*
C80.0322 (9)0.6904 (7)0.0345 (6)0.0357 (18)
H80.02130.76070.05710.043*
C90.0971 (10)0.6820 (8)0.0704 (6)0.0378 (19)
H90.08720.74630.11690.045*
C100.3130 (6)0.0482 (6)0.3960 (5)0.0158 (11)
C110.4862 (6)0.0914 (7)0.5560 (5)0.0239 (14)
H11A0.46910.00780.57780.029*
H11B0.58980.10560.56940.029*
C120.4151 (8)0.1797 (9)0.6200 (6)0.0344 (19)
H12A0.45540.17060.69420.052*
H12B0.43080.26240.59770.052*
H12C0.31310.16320.60920.052*
C130.5156 (6)0.1836 (6)0.3869 (5)0.0216 (13)
H13A0.45620.21260.32160.026*
H13B0.54850.25480.43050.026*
C140.6427 (7)0.1156 (6)0.3609 (5)0.0216 (13)
C150.7786 (6)0.1612 (6)0.3879 (5)0.0225 (13)
H150.79380.23690.42240.027*
C160.8927 (7)0.0960 (6)0.3645 (5)0.0243 (14)
H160.98520.12880.38360.029*
C170.7450 (7)0.0563 (6)0.2896 (5)0.0214 (13)
H170.73260.13190.25470.026*
C180.6265 (7)0.0034 (6)0.3115 (5)0.0218 (13)
H180.53510.03180.29300.026*
N50.4417 (12)0.1672 (11)0.8221 (11)0.084 (4)
C190.3520 (10)0.0783 (11)0.8364 (9)0.059 (3)
H190.31430.02840.77870.071*
C200.3115 (11)0.0565 (10)0.9343 (8)0.052 (2)
C210.3647 (10)0.1275 (16)1.0165 (8)0.060 (3)
H210.33890.11261.08270.072*
C220.4575 (14)0.2230 (14)1.0056 (12)0.081 (4)
H220.49720.27301.06270.097*
C230.4878 (15)0.2396 (15)0.9037 (12)0.081 (4)
H230.54480.30680.89230.097*
C240.2137 (11)0.0448 (12)0.9431 (9)0.063 (3)
H24A0.26400.10780.98790.094*
H24B0.17890.07820.87350.094*
H24C0.13350.01560.97360.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01767 (18)0.01518 (19)0.01811 (19)0.0001 (2)0.00250 (13)0.00003 (19)
S10.0144 (7)0.0213 (9)0.0207 (7)0.0016 (6)0.0030 (6)0.0033 (6)
S20.0208 (7)0.0181 (8)0.0255 (8)0.0002 (6)0.0095 (6)0.0005 (6)
S30.0231 (8)0.0224 (9)0.0183 (7)0.0048 (6)0.0016 (6)0.0022 (6)
S40.0218 (8)0.0182 (9)0.0187 (7)0.0025 (6)0.0021 (6)0.0031 (6)
N10.017 (2)0.018 (3)0.016 (2)0.002 (2)0.0005 (19)0.0004 (19)
N20.027 (2)0.019 (3)0.019 (2)0.000 (2)0.0026 (18)0.000 (2)
N30.010 (2)0.022 (3)0.022 (3)0.003 (2)0.0009 (18)0.000 (2)
N40.014 (2)0.015 (3)0.021 (2)0.0000 (19)0.0028 (18)0.0007 (19)
C10.011 (3)0.020 (3)0.013 (3)0.001 (2)0.0073 (19)0.000 (2)
C20.027 (3)0.015 (4)0.030 (3)0.003 (2)0.002 (2)0.002 (2)
C30.046 (4)0.028 (5)0.020 (3)0.004 (3)0.005 (3)0.001 (3)
C40.024 (3)0.023 (3)0.024 (3)0.009 (3)0.001 (2)0.002 (2)
C50.029 (3)0.022 (4)0.020 (3)0.007 (2)0.000 (3)0.002 (2)
C60.035 (4)0.032 (4)0.027 (4)0.008 (3)0.005 (3)0.008 (3)
C70.038 (4)0.034 (4)0.023 (3)0.008 (3)0.008 (3)0.003 (3)
C80.051 (5)0.021 (4)0.031 (4)0.009 (3)0.004 (3)0.000 (3)
C90.055 (5)0.028 (5)0.027 (4)0.006 (4)0.004 (3)0.007 (3)
C100.008 (2)0.017 (3)0.020 (3)0.004 (2)0.003 (2)0.002 (2)
C110.011 (3)0.032 (4)0.027 (3)0.003 (3)0.002 (2)0.005 (3)
C120.026 (4)0.050 (6)0.024 (3)0.012 (4)0.004 (3)0.016 (3)
C130.014 (3)0.020 (3)0.031 (3)0.000 (2)0.004 (2)0.004 (3)
C140.024 (3)0.016 (3)0.026 (3)0.001 (3)0.007 (3)0.001 (2)
C150.016 (3)0.018 (3)0.035 (4)0.000 (2)0.007 (2)0.006 (3)
C160.024 (3)0.021 (3)0.028 (3)0.006 (3)0.004 (3)0.003 (3)
C170.020 (3)0.018 (3)0.026 (3)0.002 (2)0.003 (2)0.004 (3)
C180.017 (3)0.020 (3)0.028 (3)0.000 (2)0.002 (2)0.004 (3)
N50.068 (7)0.083 (9)0.114 (10)0.023 (6)0.054 (7)0.041 (7)
C190.038 (5)0.082 (10)0.061 (6)0.014 (5)0.018 (4)0.014 (5)
C200.051 (6)0.052 (6)0.059 (6)0.010 (5)0.023 (5)0.001 (5)
C210.055 (5)0.076 (8)0.053 (5)0.006 (7)0.021 (4)0.009 (7)
C220.066 (8)0.078 (10)0.109 (11)0.009 (7)0.042 (8)0.008 (8)
C230.071 (9)0.081 (10)0.100 (11)0.005 (7)0.042 (8)0.025 (8)
C240.047 (6)0.074 (8)0.067 (7)0.003 (5)0.010 (5)0.001 (6)
Geometric parameters (Å, º) top
Cd—S12.6399 (19)C7—H70.9500
Cd—S22.6618 (17)C8—C91.398 (11)
Cd—S32.6578 (16)C8—H80.9500
Cd—S42.6932 (18)C9—H90.9500
Cd—N2i2.430 (5)C11—C121.520 (9)
Cd—N4ii2.346 (5)C11—H11A0.9900
S1—C11.714 (6)C11—H11B0.9900
S2—C11.715 (6)C12—H12A0.9800
S3—C101.715 (6)C12—H12B0.9800
S4—C101.724 (6)C12—H12C0.9800
N1—C11.357 (8)C13—C141.519 (9)
N1—C41.477 (8)C13—H13A0.9900
N1—C21.471 (8)C13—H13B0.9900
N2—C81.342 (10)C14—C151.385 (9)
N2—C71.332 (10)C14—C181.396 (9)
N2—Cdiii2.430 (5)C15—C161.388 (9)
N3—C101.347 (8)C15—H150.9500
N3—C131.467 (8)C16—H160.9500
N3—C111.477 (8)C17—C181.386 (9)
N4—C161.341 (9)C17—H170.9500
N4—C171.354 (8)C18—H180.9500
N4—Cdiv2.346 (5)N5—C231.341 (19)
C2—C31.514 (9)N5—C191.341 (15)
C2—H2A0.9900C19—C201.413 (13)
C2—H2B0.9900C19—H190.9500
C3—H3A0.9800C20—C211.353 (16)
C3—H3B0.9800C20—C241.479 (15)
C3—H3C0.9800C21—C221.40 (2)
C4—C51.513 (9)C21—H210.9500
C4—H4A0.9900C22—C231.415 (18)
C4—H4B0.9900C22—H220.9500
C5—C91.349 (11)C23—H230.9500
C5—C61.403 (10)C24—H24A0.9800
C6—C71.389 (10)C24—H24B0.9800
C6—H60.9500C24—H24C0.9800
S1—Cd—S268.26 (5)C9—C8—H8118.7
S1—Cd—S3101.88 (6)C5—C9—C8121.0 (8)
S1—Cd—S4100.71 (5)C5—C9—H9119.5
S1—Cd—N2i90.18 (16)C8—C9—H9119.5
S1—Cd—N4ii159.47 (13)N3—C10—S3119.5 (5)
S2—Cd—S3100.73 (5)N3—C10—S4120.6 (5)
S2—Cd—S4162.67 (5)S3—C10—S4119.8 (3)
S2—Cd—N2i100.20 (17)N3—C11—C12110.8 (6)
S2—Cd—N4ii94.15 (14)N3—C11—H11A109.5
S3—Cd—S467.58 (5)C12—C11—H11A109.5
S3—Cd—N2i158.55 (18)N3—C11—H11B109.5
S3—Cd—N4ii91.47 (13)C12—C11—H11B109.5
S4—Cd—N2i92.95 (16)H11A—C11—H11B108.1
S4—Cd—N4ii98.77 (14)C11—C12—H12A109.5
N2i—Cd—N4ii82.40 (18)C11—C12—H12B109.5
C1—S1—Cd86.0 (2)H12A—C12—H12B109.5
C1—S2—Cd85.3 (2)C11—C12—H12C109.5
C10—S3—Cd86.3 (2)H12A—C12—H12C109.5
C10—S4—Cd85.0 (2)H12B—C12—H12C109.5
C1—N1—C4121.8 (5)N3—C13—C14110.7 (6)
C1—N1—C2122.3 (5)N3—C13—H13A109.5
C4—N1—C2115.9 (5)C14—C13—H13A109.5
C8—N2—C7115.6 (6)N3—C13—H13B109.5
C8—N2—Cdiii121.7 (5)C14—C13—H13B109.5
C7—N2—Cdiii122.6 (5)H13A—C13—H13B108.1
C10—N3—C13123.0 (5)C15—C14—C18117.8 (6)
C10—N3—C11122.1 (5)C15—C14—C13121.2 (6)
C13—N3—C11115.0 (5)C18—C14—C13121.0 (6)
C16—N4—C17117.6 (5)C14—C15—C16119.8 (6)
C16—N4—Cdiv120.2 (4)C14—C15—H15120.1
C17—N4—Cdiv122.1 (4)C16—C15—H15120.1
N1—C1—S1119.7 (5)N4—C16—C15122.7 (6)
N1—C1—S2120.0 (5)N4—C16—H16118.6
S1—C1—S2120.3 (4)C15—C16—H16118.6
N1—C2—C3109.8 (5)N4—C17—C18122.7 (6)
N1—C2—H2A109.7N4—C17—H17118.6
C3—C2—H2A109.7C18—C17—H17118.6
N1—C2—H2B109.7C17—C18—C14119.3 (6)
C3—C2—H2B109.7C17—C18—H18120.3
H2A—C2—H2B108.2C14—C18—H18120.3
C2—C3—H3A109.5C23—N5—C19117.4 (11)
C2—C3—H3B109.5N5—C19—C20122.2 (12)
H3A—C3—H3B109.5N5—C19—H19118.9
C2—C3—H3C109.5C20—C19—H19118.9
H3A—C3—H3C109.5C21—C20—C19119.0 (11)
H3B—C3—H3C109.5C21—C20—C24122.5 (10)
N1—C4—C5110.1 (5)C19—C20—C24118.5 (10)
N1—C4—H4A109.6C20—C21—C22121.2 (11)
C5—C4—H4A109.6C20—C21—H21119.4
N1—C4—H4B109.6C22—C21—H21119.4
C5—C4—H4B109.6C23—C22—C21115.3 (14)
H4A—C4—H4B108.2C23—C22—H22122.3
C9—C5—C6117.4 (7)C21—C22—H22122.3
C9—C5—C4122.5 (7)N5—C23—C22124.6 (14)
C6—C5—C4120.1 (6)N5—C23—H23117.7
C7—C6—C5117.7 (7)C22—C23—H23117.7
C7—C6—H6121.2C20—C24—H24A109.5
C5—C6—H6121.2C20—C24—H24B109.5
N2—C7—C6125.3 (7)H24A—C24—H24B109.5
N2—C7—H7117.3C20—C24—H24C109.5
C6—C7—H7117.3H24A—C24—H24C109.5
N2—C8—C9122.6 (7)H24B—C24—H24C109.5
N2—C8—H8118.7
C4—N1—C1—S17.3 (7)Cd—S3—C10—N3168.9 (5)
C2—N1—C1—S1172.3 (4)Cd—S3—C10—S411.5 (3)
C4—N1—C1—S2173.4 (4)Cd—S4—C10—N3169.0 (5)
C2—N1—C1—S27.0 (8)Cd—S4—C10—S311.3 (3)
Cd—S1—C1—N1177.9 (5)C10—N3—C11—C1285.9 (8)
Cd—S1—C1—S22.8 (3)C13—N3—C11—C1295.6 (7)
Cd—S2—C1—N1177.9 (5)C10—N3—C13—C1498.4 (7)
Cd—S2—C1—S12.8 (3)C11—N3—C13—C1480.2 (7)
C1—N1—C2—C398.4 (7)N3—C13—C14—C15127.2 (7)
C4—N1—C2—C381.3 (7)N3—C13—C14—C1850.9 (8)
C1—N1—C4—C586.5 (7)C18—C14—C15—C160.7 (10)
C2—N1—C4—C593.9 (6)C13—C14—C15—C16179.0 (6)
N1—C4—C5—C986.4 (8)C17—N4—C16—C150.0 (10)
N1—C4—C5—C695.1 (8)Cdiv—N4—C16—C15178.0 (5)
C9—C5—C6—C76.3 (11)C14—C15—C16—N40.1 (11)
C4—C5—C6—C7175.2 (7)C16—N4—C17—C180.6 (10)
C8—N2—C7—C63.1 (12)Cdiv—N4—C17—C18177.3 (5)
Cdiii—N2—C7—C6178.8 (6)N4—C17—C18—C141.3 (10)
C5—C6—C7—N22.0 (12)C15—C14—C18—C171.3 (10)
C7—N2—C8—C94.0 (12)C13—C14—C18—C17179.5 (6)
Cdiii—N2—C8—C9177.9 (6)C23—N5—C19—C203.1 (17)
C6—C5—C9—C85.6 (12)N5—C19—C20—C210.1 (16)
C4—C5—C9—C8175.9 (7)N5—C19—C20—C24179.1 (10)
N2—C8—C9—C50.4 (14)C19—C20—C21—C220.8 (19)
C13—N3—C10—S3176.5 (5)C24—C20—C21—C22180.0 (12)
C11—N3—C10—S32.0 (8)C20—C21—C22—C231 (2)
C13—N3—C10—S43.9 (8)C19—N5—C23—C225 (2)
C11—N3—C10—S4177.7 (5)C21—C22—C23—N54 (2)
Symmetry codes: (i) x, y1/2, z; (ii) x1, y, z; (iii) x, y+1/2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N2/C5–C9 and N4/C14–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13A···N5v0.992.623.264 (15)123
C24—H24C···Cg1vi0.982.723.662 (12)163
C15—H15···S3v0.952.813.738 (7)167
C3—H3C···Cg2vii0.982.733.633 (8)154
Symmetry codes: (v) x+1, y1/2, z+1; (vi) x, y1/2, z+1; (vii) x+1, y+1/2, z+1.
 

Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480.  CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1234–1238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAvila, V., Benson, R. E., Broker, G. A., Daniels, L. M. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m1425–m1427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320–m321.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChai, J., Lai, C.-S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationKumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOnwudiwe, D. C., Strydom, C. A. & Hosten, E. C. (2013). Inorg. Chim. Acta, 401, 1–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodina, T. A. V., Ivanov, A., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737–3748.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. Bt A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds