research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of tri­cyclo­hexyl­phosphane sulfide: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, bDepartment of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom, and cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 March 2017; accepted 4 March 2017; online 10 March 2017)

The title compound, (C6H11)3PS (systematic name: tri­cyclo­hexyl-λ5-phosphane­thione), is a triclinic (P-1, Z′ = 1) polymorph of the previously reported ortho­rhom­bic form (Pnma, Z′ = 1/2) [Kerr et al. (1977[Kerr, K. A., Boorman, P. M., Misener, B. S. & van Roode, J. H. G. (1977). Can. J. Chem. 55, 3081-3085.]). Can. J. Chem. 55, 3081–3085; Reibenspies et al. (1996[Reibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.]). Z. Kristallogr. 211, 400]. While conformational differences exist between the non-symmetric mol­ecule in the triclinic polymorph, cf. the mirror-symmetric mol­ecule in the ortho­rhom­bic form, these differences are not chemically significant. The major feature of the mol­ecular packing in the triclinic polymorph is the formation of linear chains along the a axis sustained by methine-C—H⋯S(thione) inter­actions. The chains pack with no directional inter­actions between them. The analysis of the Hirshfeld surface for both polymorphs indicates a high degree of similarity, being dominated by H⋯H (ca 90%) and S⋯H/H⋯S contacts.

1. Chemical context

Recent inter­est in the chemistry of phosphanegold(I) di­thio­carbamate compounds stems from their potential as anti-cancer agents (de Vos et al. 2004[Vos, D. de, Ho, S. Y. & Tiekink, E. R. T. (2004). Bioinorg. Chem. Appl. 2, 141-154.]; Ronconi et al. 2005[Ronconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G. & Fregona, D. (2005). Inorg. Chem. 44, 1867-1881.]; Gandin et al. 2010[Gandin, V., Fernandes, A. P., Rigobello, M. P., Dani, B., Sorrentino, F., Tisato, F., Björnstedt, M., Bindoli, A., Sturaro, A., Rella, R. & Marzano, C. (2010). Biochem. Pharmacol. 79, 90-101.]; Jamaludin et al. 2013[Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127-141.]; Keter et al. 2014[Keter, F. K., Guzei, I. A., Nell, M., van Zyl, W. E. & Darkwa, J. (2014). Inorg. Chem. 53, 2058-2067.]; Altaf et al. 2015[Altaf, M., Monim-ul-Mehboob, M., Seliman, A. A. A., Sohail, M., Wazeer, M. I. M., Isab, A. A., Li, L., Dhuna, V., Bhatia, G. & Dhuna, K. (2015). Eur. J. Med. Chem. 95, 464-472.]). In keeping with the increasing inter­est in gold compounds as potential anti-microbial agents to meet the challenges of microbes developing resistance to available chemotherapies (Glišić & Djuran, 2014[Glišić, B. Đ. & Djuran, M. I. (2014). Dalton Trans. 43, 5950-5969.]) and in recognition of the potential of metal di­thio­carbamates as anti-microbial agents (Hogarth, 2012[Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202-1215.]), the anti-bacterial properties of phosphanegold(I) di­thio­carbamates have also been explored in recent times (Sim et al., 2014[Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.]; Chen et al., 2016[Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68-80.]). For example, the `all-eth­yl' compound, Et3PAu(S2CNEt2), exhibits broad-range activity against Gram-positive and Gram-negative bacteria and was shown to be bactericidal against methicillin-resistant Staphylococcus aureus (MRSA) (Chen et al., 2016[Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68-80.]). As an extension of these studies, investigations into the anti-microbial potential of related bis­(phosphane)copper(I) di­thio­carbamates and their silver(I) analogues were undertaken, again revealing inter­esting results and dependency of activity upon phosphane- and di­thio­carbamate-bound substituents (Jamaludin et al., 2016[Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.]). During further investigations in this field, the title compound, Cy3P=S (I)[link], was isolated as a decomposition product from a long-term (months) recrystallization of an acetone solution containing (Cy3P)2Ag(S2CNEt2). The crystal and mol­ecular structures of (I)[link] are reported herein and the results compared with those of a previously determined ortho­rhom­bic polymorph, (II) (Kerr et al., 1977[Kerr, K. A., Boorman, P. M., Misener, B. S. & van Roode, J. H. G. (1977). Can. J. Chem. 55, 3081-3085.]; Reibenspies et al., 1996[Reibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.]). Further, a detailed comparison of the Hirshfeld surfaces for (I)[link] and (II) is presented.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], features a tetra­hedrally coordinated PV centre defined by a thione-S and three α-carbon atoms of the cyclo­hexyl substituents. The P1—C bond lengths span an experimentally distinct range of 1.8350 (14) to 1.8468 (15) Å, Table 1[link]. The distortions from the ideal tetra­hedral geometry are relatively minor with the widest angles generally involving the thione-S atom. The cyclo­hexyl rings, each with a chair conformation, adopt orientations so that the methine-H atom is directed towards the thione-S atom in the cases of the C1- and C13-rings, i.e. are syn, with that of the C7-ring being anti.

Table 1
Geometric parameters (Å, °) for the triclinic (I)[link] and ortho­rhom­bic (II) polymorphs of Cy3P=S

Parameter triclinic polymorph ortho­rhom­bic polymorpha
P1=S1 1.9548 (5) 1.9612 (11)
P1—C1 1.8435 (14) 1.842 (3)
P1—C7 1.8350 (14) 1.836 (2)
P1—C13 1.8468 (15) 1.836 (2)
S1—P1—C1 109.99 (5) 112.16 (11)
S1—P1—C7 112.11 (5) 110.15 (7)
S1—P1—C13 111.60 (5) 110.15 (7)
C1—P1—C7 105.82 (6) 105.22 (9)
C1—P1—C13 105.70 (6) 105.22 (9)
C7—P1—C13 111.43 (6) 113.80 (10)
Notes: (a) the mol­ecule has crystallographic mirror symmetry with the S1, P1 and C1 atoms lying on the plane.
[Figure 1]
Figure 1
The mol­ecular structure of polymorph (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

As mentioned above, the structure of (I)[link] has been reported previously in an ortho­rhom­bic form in two separate determinations (Kerr et al., 1977[Kerr, K. A., Boorman, P. M., Misener, B. S. & van Roode, J. H. G. (1977). Can. J. Chem. 55, 3081-3085.]; Reibenspies et al., 1996[Reibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.]). Data from the more recent determination, measured at 163 K (Reibenspies et al., 1996[Reibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.]), are included in Table 1[link]. The major difference in (II) is that the mol­ecule lies on a crystallographic mirror plane; the 2 × syn plus 1 × anti-conformation of the methine-H atoms with respect to the thione-S atom persists. In (II), the P—C bond lengths are equal within experimental error. However, differences are apparent in the bond angles subtended at the PV centre whereby the angles in (II) span a wider range, i.e. 8.5°, cf. 6.3 ° in (I)[link]. Also, the widest angle at the P1 atom in (II) is subtended by the symmetry-related cyclo­hexyl rings.

An overlay diagram for (I)[link] and (II) is shown in Fig. 2[link], which highlights the coincidence of the cyclo­hexyl ring associated with the methine-H atom having the anti-disposition with respect to the thione-S atom. Clearly, there are conformational differences apparent between the cyclo­hexyl rings related across the pseudo- and crystallographic mirror planes in (I)[link] and (II), respectively.

[Figure 2]
Figure 2
Overlay diagram of polymorphs (I)[link], red image, and (II), blue image. The mol­ecules are overlapped so the three α-C atoms of the cyclo­hexyl rings are coincident.

3. Supra­molecular features

The only directional supra­molecular inter­actions in the crystal of (I)[link] identified in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) are methine-C—H7⋯S(thione) contacts, i.e. involving the anti-disposed thione-S and methine-H atoms, Table 2[link]. These lead to a linear chain aligned along the a axis as illustrated in Fig. 3[link]a. The chains pack with no directional inter­actions between them, Fig. 3[link]b.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S1i 1.00 2.65 3.5961 (14) 157
Symmetry code: (i) x+1, y, z.
[Figure 3]
Figure 3
Mol­ecular packing in polymorph (I)[link], showing (a) a linear supra­molecular chain mediated by methine-C—H⋯S(thione) inter­actions aligned along the a axis and (b) a view of the unit-cell contents in projection down the a axis. The C—H⋯S inter­actions are shown as orange dashed lines.

In the original report of polymorph (II), it was stated `There are no unusual inter-mol­ecular contacts' (Kerr et al., 1977[Kerr, K. A., Boorman, P. M., Misener, B. S. & van Roode, J. H. G. (1977). Can. J. Chem. 55, 3081-3085.]); no comment on the mol­ecular packing was made in the redetermination (Reibenspies et al., 1996[Reibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.]). As seen from Fig. 4[link], supra­molecular zigzag chains are evident in the mol­ecular packing of (II), but these are sustained by weak methyl­ene-C—H⋯S(thione) inter­actions [H⋯Si = 3.027 (2) Å, C⋯Si = 3.938 (2) Å with the angle at H = 159° for (i) 1 + x, y, z] formed on either side of the mirror plane, so the sulfur atom forms two such contacts, and propagate along the a axis.

[Figure 4]
Figure 4
Mol­ecular packing in polymorph (II), showing a zigzag supra­molecular chain along the a axis mediated by methyl­ene-C—H⋯S(thione) inter­actions, shown as orange dashed lines.

A more detailed analysis of the mol­ecular packing in (I)[link] and (II) is given in Hirshfeld surface analysis.

4. Hirshfeld surface analysis

In order to gain more insight into the mol­ecular packing found in (I)[link] and (II), the structures were subjected to a Hirshfeld surface analysis which was performed as described in a recent publication (Jotani et al., 2016[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085-1092.]).

The different shapes of Hirshfeld surfaces mapped over electrostatic potential in Fig. 5[link] are indicative of the different mol­ecular conformations adopted by the cyclo­hexane rings in (I)[link] and (II). A pair of bright-red spots appearing on the Hirshfeld surface mapped over dnorm near methine-H7 and thione-S1 for (I)[link], Fig. 6[link], on the extremities of the mol­ecule represent the donor and acceptor of the C—H⋯S inter­action, Table 2[link]. They are viewed as the respective blue (positive) and red (negative) regions on the Hirshfeld surface mapped over electrostatic potential, Fig. 5[link]. The absence of characteristic spots on the dnorm-mapped Hirshfeld surfaces in the ortho­rhom­bic polymorph (II) (not shown) indicates no similar inter­actions within the sum of the van der Waals radii; see below. The immediate environments about reference mol­ecules of (I)[link] and (II) within the dnorm-mapped Hirshfeld surfaces showing inter­molecular C—H⋯S inter­actions are displayed in Fig. 7[link]a and b, respectively. In the crystal of (II), the zigzag chain of weak inter­molecular methyl­ene-C—H⋯S(thione) contacts on either side of the crystallographic mirror plane is viewed as the pair of red dashed lines in Fig. 7[link]b (see above).

[Figure 5]
Figure 5
Views of the Hirshfeld surfaces for mapped over the electrostatic potential in the range ±0.075 au for (a) polymorph (I)[link] and (b) polymorph (II).
[Figure 6]
Figure 6
Views of the Hirshfeld surface for polymorph (I)[link] mapped over dnorm over the range −0.160 to 1.823 au.
[Figure 7]
Figure 7
Views of the Hirshfeld surfaces mapped over dnorm about a reference mol­ecule highlighting inter­molecular C—H⋯S inter­actions and short inter­atomic H⋯H contacts as white and red dashed lines, respectively, for (a) polymorph (I)[link] and (b) polymorph (II).

The overall two-dimensional fingerprint plots for (I)[link] and (II), and those delineated into H⋯H and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 8[link]. It is inter­esting to note that in both polymorphs only sulfur and hydrogen atoms lie on the periphery of the Hirshfeld surfaces and contribute to inter­atomic contacts such as they are; the percentage contributions are as qu­anti­fied in Table 3[link]. The different relative orientations of the cyclo­hexane rings in the two forms are also evident through the distinct distribution of points in their respective two-dimensional fingerprint plots, Fig. 8[link]a. In particular for (II), Fig. 8[link]a, the top region, corresponding to donor inter­actions is stunted with respect to the lower, acceptor region. For (I)[link], a pair of small peaks at de + di < 2.4 Å in the fingerprint plot delineated into H⋯H contacts, Fig. 8[link]b, show the contribution from short inter­atomic H⋯H contacts in the mol­ecular packing, Table 4[link]. This contrasts the situation for (II), where the pair of peaks occur at de + di > 2.4 Å, i.e. at separations greater than the sum of van der Waals radii. The relative strength of the inter­molecular C—H⋯S inter­actions in (I)[link] and (II) are characterized from the fingerprint plots delineated into S⋯H/H⋯S contacts, Fig. 8[link]c, through the pair of spikes at de + di ∼ 2.7 Å and de + di ∼ 3.1 Å, respectively. The asymmetric distribution of points in the fingerprint plot delineated into S⋯H/H⋯S contacts for (II) in Fig. 8[link]c is the result of the orientation of the cyclo­hexane rings with respect to the crystallographic mirror plane. The upper region, corresponding to donor H⋯S contacts, contributes 4.7% to the surface cf. 6.5% in the lower region, corresponding to S⋯H acceptor contacts.

Table 3
Percentage contributions of the different inter­molecular contacts to the Hirshfeld surface in (I) and (II)

Contact % contribution in (I) % contribution in (II)
H⋯H 89.8 88.8
S⋯H/H⋯S 10.2 11.2

Table 4
Short inter­atomic contacts in (I)[link]

Contact distance symmetry operation
H6A⋯H15B 2.32 1 − x, 1 − y, 2 − z
H10B⋯H15A 2.37 1 − x, 1 − y, 1 − z
[Figure 8]
Figure 8
Fingerprint plots for polymorph (I)[link] and polymorph (II), showing (a) overall and those delineated into (b) H⋯H and (c) S⋯H/H⋯S contacts.

The similarity in the mol­ecular packing of (I)[link] and (II) is reflected in the similarity in the physiochemical data collated in Table 5[link] and calculated in Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). While it is noted the values are very close for (I)[link] and (II) (Table 5[link]), the volume of the mol­ecule in (I)[link] is slightly greater than that in (II), as is the surface area. However, the mol­ecule in (II) is marginally more globular and reflecting the lack of directional inter­actions between mol­ecules, allowing a closer approach, the density is greater than in (I)[link]. Nevertheless, the packing efficiency is marginally greater in (I)[link], probably reflecting the lack of symmetry in the mol­ecule cf. (I)[link].

Table 5
Physiochemical properties for polymorphs (I)[link] and (II)

Property (I) (II)
Volume, V3) 436.83 430.96
Surface area, A2) 351.03 345.83
A:V−1) 0.804 0.802
Globularity, G 0.793 0.798
Asphericity, Ω 0.051 0.046
Density (g cm−3) 1.170 1.186
Packing index (%) 68.6 68.4

5. Database survey

There are a number of triorganophosphane sulfide structures in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with those conforming to the general formula R3P=S being summarized here. Thus, structures have been described with fractional atomic coordinates, for example with R = Me (Tasker et al., 2005[Tasker, P., Coventry, D., Parsons, S. & Messenger, D. (2005). Private communication (refcode METPHS01). CCDC, Cambridge, England.]), iPr (Staples & Segal, 2001[Staples, R. J. & Segal, B. M. (2001). Acta Cryst. E57, o432-o433.]), tBu (Steinberger et al., 2001[Steinberger, H.-U., Ziemer, B. & Meisel, M. (2001). Acta Cryst. C57, 835-837.]), Ph (Foces-Foces & Llamas-Saiz, 1998[Foces-Foces, C. & Llamas-Saiz, A. L. (1998). Acta Cryst. (1998). C54, IUC9800013.]; monoclinic polymorph), Ph (Ziemer et al., 2000[Ziemer, B., Rabis, A. & Steinberger, H.-U. (2000). Acta Cryst. C56, e58-e59.]; triclinic polymorph), 2-tolyl (Cameron & Dahlèn, 1975[Cameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737-1751.]), 3-tolyl (Cameron et al., 1978[Cameron, T. S., Howlett, K. D. & Miller, K. (1978). Acta Cryst. B34, 1639-1644.]), 4-FPh (Barnes et al., 2007[Barnes, N. A., Godfrey, S. M., Halton, R. T. A., Khan, R. Z., Jackson, S. L. & Pritchard, R. G. (2007). Polyhedron, 26, 4294-4302.]), 2-(Me2NCH2)3Ph (Rotar et al., 2010[Rotar, A., Covaci, A., Pop, A. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 823-829.]), 2,4,6-Me3Ph (Garland et al., 2013[Garland, J., Slawin, A. M. Z. & Woollins, J. D. (2013). Private communication (refcode ZIVRAZ). CCDC, Cambridge, England.]) and 2,4,6-(OMe)3Ph (Finnen et al., 1994[Finnen, D. C. & Pinkerton, A. A. (1994). Phosphorus Sulfur Silicon Relat. Elem. 90, 11-19.]). Selected geometric data for these structures along with those for (I)[link] and (II) are collected in Table 6[link]. The R = Me and iPr mol­ecules have crystallographic mirror symmetry as for (II) whereas the R = tBu compound has crystallographically imposed threefold symmetry. Two polymorphs have been found for R = Ph, and each of these features two independent mol­ecules in the asymmetric unit.

Table 6
Geometric parameters (Å, °) for selected R3P=S mol­ecules

R P=S S—P—C C—P—C Reference
Mea 1.9664 (7) 112.88 (6)–113.22 (8) 105.33 (8)–106.53 (8) Tasker et al., 2005[Tasker, P., Coventry, D., Parsons, S. & Messenger, D. (2005). Private communication (refcode METPHS01). CCDC, Cambridge, England.]
iPra 1.926 (3) 110.08 (19)–112.3 (2) 103.88 (19)–116.3 (4) Staples et al., 2001[Staples, R. J. & Segal, B. M. (2001). Acta Cryst. E57, o432-o433.]
tBub 1.9627 (15) 109.29 (14) 109.65 (19) Steinberger et al., 2001[Steinberger, H.-U., Ziemer, B. & Meisel, M. (2001). Acta Cryst. C57, 835-837.]
Phc,d 1.9554 (7) 112.16 (6)–113.47 (6) 103.70 (8)–107.76 (8) Foces-Foces & Llamas-Saiz, 1998[Foces-Foces, C. & Llamas-Saiz, A. L. (1998). Acta Cryst. (1998). C54, IUC9800013.]
  1.9547 (7) 112.28 (7)–113.67 (6) 103.12 (8)–107.53 (9)  
Phd,e 1.9544 (9) 112.47 (7)–113.99 (7) 103.43 (8)–106.83 (8) Ziemer et al., 2000[Ziemer, B., Rabis, A. & Steinberger, H.-U. (2000). Acta Cryst. C56, e58-e59.]
  1.9529 (8) 111.97 (7)–113.19 (7) 103.61 (8)–107.38 (8)  
2-tol­yld 1.953 (6) 110.7 (3)–114.2 (3) 101.4 (3)–110.6 (4) Cameron & Dahlèn, 1975[Cameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737-1751.]
  1.942 (5) 111.6 (2)–114.3 (2) 104.9 (3)–107.9 (3)  
3-tol­yl 1.937 (4) 112.1 (8)–112.6 (4) 105.5 (7)–108.2 (10) Cameron et al., 1978[Cameron, T. S., Howlett, K. D. & Miller, K. (1978). Acta Cryst. B34, 1639-1644.]
4-FPh 1.9540 (9) 113.27 (8)–113.59 (8) 104.97 (10)–105.92 (10) Barnes et al., 2007[Barnes, N. A., Godfrey, S. M., Halton, R. T. A., Khan, R. Z., Jackson, S. L. & Pritchard, R. G. (2007). Polyhedron, 26, 4294-4302.]
2,4,6-Me3Ph 1.9748 (13) 107.32 (11)–109.49 (12) 108.90 (16)–112.45 (15) Garland et al., 2013[Garland, J., Slawin, A. M. Z. & Woollins, J. D. (2013). Private communication (refcode ZIVRAZ). CCDC, Cambridge, England.]
2,4,6-(OMe)3Ph 1.9619 (12) 109.22 (11)–116.15 (11) 100.77 (14)–110.58 (14) Finnen et al., 1994[Finnen, D. C. & Pinkerton, A. A. (1994). Phosphorus Sulfur Silicon Relat. Elem. 90, 11-19.]
2-(Me2NCH2)3Ph 1.9622 (17) 110.66 (8)–116.15 (10) 103.51 (13)–106.33 (11) Rotar et al., 2010[Rotar, A., Covaci, A., Pop, A. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 823-829.]
Cya,f 1.9612 (11) 110.15 (7)–112.16 (11) 105.22 (9)–113.80 (10) Reibenspies et al., 1996[Reibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.]
Cye 1.9548 (5) 109.99 (5)–112.11 (5) 105.70 (6)–111.43 (6) this work
Notes: (a) The mol­ecule has crystallographic mirror symmetry with the S1, P1 and C1 atoms lying on the plane; (b) the mol­ecule has crystallographic threefold symmetry with the S1 and P1 atoms lying on the axis; (c) monoclinic polymorph; (d) two independent mol­ecules in the asymmetric unit; (e) triclinic polymorph; (f) ortho­rhom­bic polymorph.

The longest P=S bond length, i.e. 1.9748 (13) Å, is found in sterically encumbered (2,4,6-Me3Ph)3P=S (Garland et al., 2013[Garland, J., Slawin, A. M. Z. & Woollins, J. D. (2013). Private communication (refcode ZIVRAZ). CCDC, Cambridge, England.]). That steric effects are not the only factors influencing the magnitude of the P=S bond length is realized in the structure of Me3P=S, with small, electron-donating groups, which has the second longest P=S bond length across the series. The comments on the lack of definitive trends in the S—P—C and C—P—C bond angles made above for (I)[link] and (II) hold true across the series although, generally, the former are wider than the latter. Inter­estingly, in the threefold symmetric tBu3P=S structure, all angles are about 109°.

6. Synthesis and crystallization

The title compound (I)[link] is an unexpected product from the in situ reaction of (Cy3P)2AgCl with Na[S2CNEt2] in a 2:1 ratio. The preparation was as follows: Cy3P (Sigma–Aldrich; 0.6 mmol, 0.196 g) dissolved in acetone (20 ml) was added to an acetone solution (20 ml) of AgCl (Sigma–Aldrich; 0.3 mmol, 0.05 g) at room temperature. Then, Na[S2CNEt2] (BDH, 0.3 mmol, 0.08 g) in acetone (20 ml) was added to the reaction mixture followed by stirring for 4 h. The resulting mixture was filtered, covered to exclude light and left for evaporation at room temperature. Colourless crystals were obtained after four months. Yield: 0.132 g (55%), m.p.: 437–440 K. IR (cm−1): ν(P=S) 624 (s).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.99–1.00 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 7
Experimental details

Crystal data
Chemical formula C18H33PS
Mr 312.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.6400 (5), 10.8089 (9), 12.8818 (10)
α, β, γ (°) 103.430 (7), 98.467 (7), 91.912 (7)
V3) 887.26 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.40 × 0.20 × 0.17
 
Data collection
Diffractometer Agilent SuperNova, Dual, Mo at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.926, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8658, 4208, 3739
Rint 0.022
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.01
No. of reflections 4208
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.35
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tricyclohexyl-λ5-phosphanethione top
Crystal data top
C18H33PSZ = 2
Mr = 312.47F(000) = 344
Triclinic, P1Dx = 1.170 Mg m3
a = 6.6400 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8089 (9) ÅCell parameters from 4800 reflections
c = 12.8818 (10) Åθ = 3.7–29.5°
α = 103.430 (7)°µ = 0.26 mm1
β = 98.467 (7)°T = 100 K
γ = 91.912 (7)°Prism, colourless
V = 887.26 (12) Å30.40 × 0.20 × 0.17 mm
Data collection top
Agilent SuperNova, Dual, Mo at zero, AtlasS2
diffractometer
4208 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3739 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
ω scansθmax = 29.7°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 89
Tmin = 0.926, Tmax = 1.000k = 1312
8658 measured reflectionsl = 1617
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4808P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4208 reflectionsΔρmax = 0.47 e Å3
181 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28983 (5)0.28303 (4)0.60522 (3)0.02266 (11)
P10.58024 (5)0.29616 (3)0.66467 (3)0.01328 (10)
C10.6361 (2)0.17062 (13)0.73806 (11)0.0155 (3)
H10.57110.08980.68770.019*
C20.8619 (2)0.14502 (14)0.76697 (12)0.0176 (3)
H2A0.92690.13000.70120.021*
H2B0.93470.22050.81970.021*
C30.8780 (2)0.02835 (15)0.81546 (12)0.0215 (3)
H3A0.81730.04840.75990.026*
H3B1.02380.01570.83710.026*
C40.7689 (2)0.04367 (15)0.91382 (12)0.0215 (3)
H4A0.83960.11430.97270.026*
H4B0.77510.03550.94000.026*
C50.5457 (2)0.07171 (15)0.88609 (12)0.0210 (3)
H5A0.47080.00330.83370.025*
H5B0.48200.08730.95240.025*
C60.5286 (2)0.18808 (14)0.83768 (12)0.0183 (3)
H6A0.59100.26490.89270.022*
H6B0.38280.20120.81680.022*
C70.7413 (2)0.27103 (13)0.55847 (11)0.0151 (3)
H70.88720.27990.59400.018*
C80.7119 (2)0.37069 (14)0.49033 (12)0.0209 (3)
H8A0.56630.36720.45810.025*
H8B0.74960.45700.53760.025*
C90.8424 (3)0.34686 (15)0.40031 (12)0.0252 (3)
H9A0.81700.41050.35650.030*
H9B0.98860.35710.43250.030*
C100.7926 (3)0.21275 (15)0.32763 (12)0.0254 (3)
H10A0.88100.19840.27100.030*
H10B0.64880.20420.29150.030*
C110.8260 (2)0.11291 (14)0.39418 (12)0.0203 (3)
H11A0.78890.02670.34650.024*
H11B0.97210.11720.42570.024*
C120.6967 (2)0.13517 (14)0.48499 (11)0.0178 (3)
H12A0.72610.07200.52900.021*
H12B0.55030.12240.45320.021*
C130.6633 (2)0.45629 (13)0.75178 (11)0.0155 (3)
H130.66740.51360.70120.019*
C140.5091 (2)0.51104 (15)0.82558 (12)0.0202 (3)
H14A0.37160.50460.78200.024*
H14B0.50270.46090.88040.024*
C150.5722 (2)0.65042 (15)0.88193 (12)0.0219 (3)
H15A0.56890.70140.82710.026*
H15B0.47360.68380.93040.026*
C160.7857 (2)0.66490 (14)0.94750 (12)0.0205 (3)
H16A0.78630.62021.00640.025*
H16B0.82460.75630.98070.025*
C170.9411 (2)0.60985 (15)0.87601 (13)0.0242 (3)
H17A1.07680.61540.92120.029*
H17B0.95160.66090.82220.029*
C180.8796 (2)0.47037 (14)0.81713 (12)0.0200 (3)
H18A0.88460.41750.87060.024*
H18B0.97790.43920.76780.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01585 (19)0.0258 (2)0.0254 (2)0.00077 (14)0.00114 (14)0.00571 (15)
P10.01333 (18)0.01384 (18)0.01275 (17)0.00045 (12)0.00201 (12)0.00351 (13)
C10.0171 (7)0.0152 (7)0.0156 (6)0.0008 (5)0.0049 (5)0.0050 (5)
C20.0175 (7)0.0190 (7)0.0197 (7)0.0038 (5)0.0062 (5)0.0090 (6)
C30.0237 (8)0.0200 (8)0.0248 (8)0.0066 (6)0.0081 (6)0.0101 (6)
C40.0263 (8)0.0204 (8)0.0222 (7)0.0040 (6)0.0074 (6)0.0116 (6)
C50.0240 (8)0.0209 (8)0.0217 (7)0.0008 (6)0.0083 (6)0.0095 (6)
C60.0197 (7)0.0197 (7)0.0189 (7)0.0034 (5)0.0074 (5)0.0084 (6)
C70.0200 (7)0.0129 (7)0.0130 (6)0.0013 (5)0.0047 (5)0.0026 (5)
C80.0334 (8)0.0140 (7)0.0174 (7)0.0034 (6)0.0080 (6)0.0054 (5)
C90.0427 (10)0.0172 (8)0.0207 (7)0.0040 (6)0.0140 (7)0.0089 (6)
C100.0429 (10)0.0208 (8)0.0152 (7)0.0069 (7)0.0094 (6)0.0061 (6)
C110.0293 (8)0.0151 (7)0.0169 (7)0.0029 (6)0.0066 (6)0.0026 (5)
C120.0249 (7)0.0129 (7)0.0165 (7)0.0009 (5)0.0058 (5)0.0039 (5)
C130.0162 (7)0.0158 (7)0.0146 (6)0.0008 (5)0.0029 (5)0.0034 (5)
C140.0166 (7)0.0219 (8)0.0194 (7)0.0024 (5)0.0032 (5)0.0006 (6)
C150.0252 (8)0.0205 (8)0.0185 (7)0.0075 (6)0.0025 (6)0.0012 (6)
C160.0250 (8)0.0150 (7)0.0194 (7)0.0003 (5)0.0024 (6)0.0004 (5)
C170.0205 (8)0.0203 (8)0.0282 (8)0.0052 (6)0.0047 (6)0.0011 (6)
C180.0164 (7)0.0177 (7)0.0233 (7)0.0001 (5)0.0028 (6)0.0003 (6)
Geometric parameters (Å, º) top
S1—P11.9548 (5)C9—H9A0.9900
P1—C11.8435 (14)C9—H9B0.9900
P1—C71.8350 (14)C10—C111.529 (2)
P1—C131.8468 (15)C10—H10A0.9900
C1—C61.5356 (18)C10—H10B0.9900
C1—C21.5408 (19)C11—C121.5302 (19)
C1—H11.0000C11—H11A0.9900
C2—C31.532 (2)C11—H11B0.9900
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C41.530 (2)C13—C181.5376 (19)
C3—H3A0.9900C13—C141.5391 (19)
C3—H3B0.9900C13—H131.0000
C4—C51.530 (2)C14—C151.527 (2)
C4—H4A0.9900C14—H14A0.9900
C4—H4B0.9900C14—H14B0.9900
C5—C61.529 (2)C15—C161.523 (2)
C5—H5A0.9900C15—H15A0.9900
C5—H5B0.9900C15—H15B0.9900
C6—H6A0.9900C16—C171.527 (2)
C6—H6B0.9900C16—H16A0.9900
C7—C81.540 (2)C16—H16B0.9900
C7—C121.5437 (19)C17—C181.533 (2)
C7—H71.0000C17—H17A0.9900
C8—C91.528 (2)C17—H17B0.9900
C8—H8A0.9900C18—H18A0.9900
C8—H8B0.9900C18—H18B0.9900
C9—C101.528 (2)
C7—P1—C1105.82 (6)C10—C9—H9B109.5
C7—P1—C13105.70 (6)C8—C9—H9B109.5
C1—P1—C13111.43 (6)H9A—C9—H9B108.1
C7—P1—S1112.11 (5)C9—C10—C11110.38 (12)
C1—P1—S1109.99 (5)C9—C10—H10A109.6
C13—P1—S1111.60 (5)C11—C10—H10A109.6
C6—C1—C2110.75 (11)C9—C10—H10B109.6
C6—C1—P1111.78 (10)C11—C10—H10B109.6
C2—C1—P1117.32 (10)H10A—C10—H10B108.1
C6—C1—H1105.3C12—C11—C10110.93 (12)
C2—C1—H1105.3C12—C11—H11A109.5
P1—C1—H1105.3C10—C11—H11A109.5
C3—C2—C1110.13 (12)C12—C11—H11B109.5
C3—C2—H2A109.6C10—C11—H11B109.5
C1—C2—H2A109.6H11A—C11—H11B108.0
C3—C2—H2B109.6C11—C12—C7111.43 (12)
C1—C2—H2B109.6C11—C12—H12A109.3
H2A—C2—H2B108.1C7—C12—H12A109.3
C4—C3—C2111.72 (12)C11—C12—H12B109.3
C4—C3—H3A109.3C7—C12—H12B109.3
C2—C3—H3A109.3H12A—C12—H12B108.0
C4—C3—H3B109.3C18—C13—C14110.45 (11)
C2—C3—H3B109.3C18—C13—P1115.68 (10)
H3A—C3—H3B107.9C14—C13—P1113.42 (10)
C3—C4—C5111.30 (12)C18—C13—H13105.4
C3—C4—H4A109.4C14—C13—H13105.4
C5—C4—H4A109.4P1—C13—H13105.4
C3—C4—H4B109.4C15—C14—C13110.25 (12)
C5—C4—H4B109.4C15—C14—H14A109.6
H4A—C4—H4B108.0C13—C14—H14A109.6
C6—C5—C4111.10 (12)C15—C14—H14B109.6
C6—C5—H5A109.4C13—C14—H14B109.6
C4—C5—H5A109.4H14A—C14—H14B108.1
C6—C5—H5B109.4C16—C15—C14111.29 (12)
C4—C5—H5B109.4C16—C15—H15A109.4
H5A—C5—H5B108.0C14—C15—H15A109.4
C5—C6—C1111.04 (12)C16—C15—H15B109.4
C5—C6—H6A109.4C14—C15—H15B109.4
C1—C6—H6A109.4H15A—C15—H15B108.0
C5—C6—H6B109.4C15—C16—C17110.86 (12)
C1—C6—H6B109.4C15—C16—H16A109.5
H6A—C6—H6B108.0C17—C16—H16A109.5
C8—C7—C12110.18 (11)C15—C16—H16B109.5
C8—C7—P1111.69 (10)C17—C16—H16B109.5
C12—C7—P1110.46 (10)H16A—C16—H16B108.1
C8—C7—H7108.1C16—C17—C18111.30 (12)
C12—C7—H7108.1C16—C17—H17A109.4
P1—C7—H7108.1C18—C17—H17A109.4
C9—C8—C7111.28 (12)C16—C17—H17B109.4
C9—C8—H8A109.4C18—C17—H17B109.4
C7—C8—H8A109.4H17A—C17—H17B108.0
C9—C8—H8B109.4C17—C18—C13111.07 (12)
C7—C8—H8B109.4C17—C18—H18A109.4
H8A—C8—H8B108.0C13—C18—H18A109.4
C10—C9—C8110.78 (13)C17—C18—H18B109.4
C10—C9—H9A109.5C13—C18—H18B109.4
C8—C9—H9A109.5H18A—C18—H18B108.0
C7—P1—C1—C6173.93 (10)P1—C7—C8—C9178.51 (10)
C13—P1—C1—C659.51 (11)C7—C8—C9—C1057.32 (17)
S1—P1—C1—C664.79 (10)C8—C9—C10—C1157.82 (18)
C7—P1—C1—C244.45 (12)C9—C10—C11—C1257.32 (17)
C13—P1—C1—C269.97 (12)C10—C11—C12—C756.28 (16)
S1—P1—C1—C2165.73 (9)C8—C7—C12—C1154.86 (16)
C6—C1—C2—C356.61 (16)P1—C7—C12—C11178.74 (10)
P1—C1—C2—C3173.43 (10)C7—P1—C13—C1867.43 (12)
C1—C2—C3—C456.03 (16)C1—P1—C13—C1847.06 (12)
C2—C3—C4—C555.46 (17)S1—P1—C13—C18170.45 (9)
C3—C4—C5—C654.99 (17)C7—P1—C13—C14163.46 (10)
C4—C5—C6—C155.98 (16)C1—P1—C13—C1482.05 (11)
C2—C1—C6—C557.02 (16)S1—P1—C13—C1441.34 (11)
P1—C1—C6—C5170.15 (10)C18—C13—C14—C1556.93 (16)
C1—P1—C7—C8179.57 (10)P1—C13—C14—C15171.34 (10)
C13—P1—C7—C861.26 (11)C13—C14—C15—C1657.70 (16)
S1—P1—C7—C860.53 (11)C14—C15—C16—C1756.93 (17)
C1—P1—C7—C1257.43 (11)C15—C16—C17—C1855.49 (18)
C13—P1—C7—C12175.73 (9)C16—C17—C18—C1355.34 (17)
S1—P1—C7—C1262.47 (10)C14—C13—C18—C1755.97 (16)
C12—C7—C8—C955.35 (16)P1—C13—C18—C17173.48 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···S1i1.002.653.5961 (14)157
Symmetry code: (i) x+1, y, z.
Geometric parameters (Å, °) for the triclinic (I) and orthorhombic (II) polymorphs of Cy3PS top
Parametertriclinic polymorphorthorhombic polymorpha
P1S11.9548 (5)1.9612 (11)
P1—C11.8435 (14)1.842 (3)
P1—C71.8350 (14)1.836 (2)
P1—C131.8468 (15)1.836 (2)
S1—P1—C1109.99 (5)112.16 (11)
S1—P1—C7112.11 (5)110.15 (7)
S1—P1—C13111.60 (5)110.15 (7)
C1—P1—C7105.82 (6)105.22 (9)
C1—P1—C13105.70 (6)105.22 (9)
C7—P1—C13111.43 (6)113.80 (10)
Notes: (a) the molecule has crystallographic mirror symmetry with the S1, P1 and C1 atoms lying on the plane.
Percentage contributions of the different intermolecular contacts to the Hirshfeld surface in (I) and (II) top
Contact% contribution in (I)% contribution in (II)
H···H89.888.8
S···H/H···S10.211.2
Short interatomic contacts in (I). top
Contactdistancesymmetry operation
H6A···H15B2.321 - x, 1 - y, 2 - z
H10B···H15A2.371 - x, 1 - y, 1 - z
Physiochemical properties for polymorphs (I) and (II) top
Property(I)(II)
Volume, V3)436.83430.96
Surface area, A2)351.03345.83
A:V-1)0.8040.802
Globularity, G0.7930.798
Asphericity, Ω0.0510.046
Density (g cm-3)1.1701.186
Packing index (%)68.668.4
Geometric parameters (Å, °) for selected R3PS molecules top
RPSS—P—CC—P—CReference
Mea1.9664 (7)112.88 (6)–113.22 (8)105.33 (8)–106.53 (8)Tasker et al., 2005
iPra1.926 (3)110.08 (19)–112.3 (2)103.88 (19)–116.3 (4)Staples et al., 2001
tBub1.9627 (15)109.29 (14)109.65 (19)Steinberger et al., 2001
Phc,d1.9554 (7)112.16 (6)–113.47 (6)103.70 (8)–107.76 (8)Foces-Foces & Llamas-Saiz, 1998
1.9547 (7)112.28 (7)–113.67 (6)103.12 (8)–107.53 (9)
Phd,e1.9544 (9)112.47 (7)–113.99 (7)103.43 (8)–106.83 (8)Ziemer et al., 2000
1.9529 (8)111.97 (7)–113.19 (7)103.61 (8)–107.38 (8)
2-tolyld1.953 (6)110.7 (3)–114.2 (3)101.4 (3)–110.6 (4)Cameron & Dahlèn, 1975
1.942 (5)111.6 (2)–114.3 (2)104.9 (3)–107.9 (3)
3-tolyl1.937 (4)112.1 (8)–112.6 (4)105.5 (7)–108.2 (10)Cameron et al., 1978
4-FPh1.9540 (9)113.27 (8)–113.59 (8)104.97 (10)–105.92 (10)Barnes et al., 2007
2,4,6-Me3Ph1.9748 (13)107.32 (11)–109.49 (12)108.90 (16)–112.45 (15)Garland et al., 2013
2,4,6-(OMe)3Ph1.9619 (12)109.22 (11)–116.15 (11)100.77 (14)–110.58 (14)Finnen et al., 1994
2-(Me2NCH2)3Ph1.9622 (17)110.66 (8)–116.15 (10)103.51 (13)–106.33 (11)Rotar et al., 2010
Cya,f1.9612 (11)110.15 (7)–112.16 (11)105.22 (9)–113.80 (10)Reibenspies et al., 1996
Cye1.9548 (5)109.99 (5)–112.11 (5)105.70 (6)–111.43 (6)this work
Notes: (a) The molecule has crystallographic mirror symmetry with the S1, P1 and C1 atoms lying on the plane; (b) the molecule has crystallographic threefold symmetry with the S1 and P1 atoms lying on the axis; (c) monoclinic polymorph; (d) two independent molecules in the asymmetric unit; (e) triclinic polymorph; (f) orthorhombic polymorph.
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors are grateful to Sunway University (INT-RRO-2017–096) for supporting this research.

References

First citationAltaf, M., Monim-ul-Mehboob, M., Seliman, A. A. A., Sohail, M., Wazeer, M. I. M., Isab, A. A., Li, L., Dhuna, V., Bhatia, G. & Dhuna, K. (2015). Eur. J. Med. Chem. 95, 464–472.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBarnes, N. A., Godfrey, S. M., Halton, R. T. A., Khan, R. Z., Jackson, S. L. & Pritchard, R. G. (2007). Polyhedron, 26, 4294–4302.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737–1751.  CSD CrossRef Web of Science Google Scholar
First citationCameron, T. S., Howlett, K. D. & Miller, K. (1978). Acta Cryst. B34, 1639–1644.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinnen, D. C. & Pinkerton, A. A. (1994). Phosphorus Sulfur Silicon Relat. Elem. 90, 11–19.  CSD CrossRef CAS Web of Science Google Scholar
First citationFoces-Foces, C. & Llamas-Saiz, A. L. (1998). Acta Cryst. (1998). C54, IUC9800013.  Google Scholar
First citationGandin, V., Fernandes, A. P., Rigobello, M. P., Dani, B., Sorrentino, F., Tisato, F., Björnstedt, M., Bindoli, A., Sturaro, A., Rella, R. & Marzano, C. (2010). Biochem. Pharmacol. 79, 90–101.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGarland, J., Slawin, A. M. Z. & Woollins, J. D. (2013). Private communication (refcode ZIVRAZ). CCDC, Cambridge, England.  Google Scholar
First citationGlišić, B. Đ. & Djuran, M. I. (2014). Dalton Trans. 43, 5950–5969.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202–1215.  CrossRef CAS PubMed Google Scholar
First citationJamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349.  CAS Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKerr, K. A., Boorman, P. M., Misener, B. S. & van Roode, J. H. G. (1977). Can. J. Chem. 55, 3081–3085.  CSD CrossRef CAS Web of Science Google Scholar
First citationKeter, F. K., Guzei, I. A., Nell, M., van Zyl, W. E. & Darkwa, J. (2014). Inorg. Chem. 53, 2058–2067.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationReibenspies, J. H., Draper, J. D., Struck, G. & Darensbourg, D. J. (1996). Z. Kristallogr. 211, 400.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationRonconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G. & Fregona, D. (2005). Inorg. Chem. 44, 1867–1881.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRotar, A., Covaci, A., Pop, A. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 823–829.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaples, R. J. & Segal, B. M. (2001). Acta Cryst. E57, o432–o433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteinberger, H.-U., Ziemer, B. & Meisel, M. (2001). Acta Cryst. C57, 835–837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTasker, P., Coventry, D., Parsons, S. & Messenger, D. (2005). Private communication (refcode METPHS01). CCDC, Cambridge, England.  Google Scholar
First citationVos, D. de, Ho, S. Y. & Tiekink, E. R. T. (2004). Bioinorg. Chem. Appl. 2, 141–154.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationZiemer, B., Rabis, A. & Steinberger, H.-U. (2000). Acta Cryst. C56, e58–e59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds