research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A cinnamaldehyde Schiff base of S-(4-methyl­benz­yl) di­thio­carbazate: crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia, and bResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 March 2017; accepted 13 March 2017; online 21 March 2017)

The title di­thio­carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl­benzyl 2-[(E)-3-phenyl­allyl­idene]hydrazinecarbodi­thio­ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl­ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol­ecule approximates mirror symmetry with the 4-tolyl group bis­ected by the plane. The configuration about both double bonds in the N—N=C—C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio­amide synthons, {⋯HNCS}2, are formed via N—H⋯S(thione) hydrogen bonds. Connections between the dimers via C—H⋯π inter­actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter­action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N—H⋯S hydrogen bonds is about 0.94 kcal mol−1 more stable than that in (I).

1. Chemical context

A large number of studies have been carried out since 1974 on di­thio­carbazate-derived Schiff bases of general formula NH2NHC(=S)SR which are synthesized from the condensation reaction of S-alkyl or -aryl esters of di­thio­carbazic acid with different types of aldehydes or ketones (Ali & Livingstone, 1974[Ali, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]; Ravoof et al., 2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]; Hamid et al., 2016[Hamid, M. H. S., Said, A. N. A., Mirza, A. H., Karim, M. R., Arifuzzaman, M., Ali, M. A. & Bernhardt, P. V. (2016). Inorg. Chim. Acta, 453, 742-750.]). Recent work has reported electrochemical studies of conjugated copper(II) di­thio­carbazate complexes that undergo an irreversible oxidation/reduction of CuII/CuI (Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]; Paterson et al., 2010[Paterson, B. M., Karas, J. A., Scanlon, D. B., White, J. M. & Donnelly, P. S. (2010). Inorg. Chem. 49, 1884-1893.]). Di­thio­carbazate Schiff bases have also been reported to show variable cytotoxicity against estrogen receptor positive human breast cancer cells (MDA-MB-231) and other cell lines depending on their substituents (Pavan et al., 2010[Pavan, F. R., Maia, P. I. da S., Leite, S. R., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. (2010). Eur. J. Med. Chem. 45, 1898-1905.]; Low et al., 2016[Low, M. L., Maigre, L., Tahir, M. I. M., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J. M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1-12.]). In fact, related 2-acetyl­pyridine Schiff bases of S-methyl- and S-benzyl-di­thio­carbazate have better cytotoxic potential as compared to their complexes (Hamid et al., 2016[Hamid, M. H. S., Said, A. N. A., Mirza, A. H., Karim, M. R., Arifuzzaman, M., Ali, M. A. & Bernhardt, P. V. (2016). Inorg. Chim. Acta, 453, 742-750.]). As part of an on-going study on the potential biological activities and structural chemistry of di­thio­carbazate Schiff bases and their metal complexes (Yusof, Ravoof, Jamsari et al., 2015[Yusof, E. N. M., Ravoof, T. B. S. A., Jamsari, J., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Inorg. Chim. Acta, 438, 85-93.]; Yusof, Ravoof, Tiekink et al., 2015[Yusof, E. N. Md., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Mohamed Tahir, M. I. & Ahmad, H. (2015). Int. J. Mol. Sci. 16, 11034-11054.]; Low et al., 2016[Low, M. L., Maigre, L., Tahir, M. I. M., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J. M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1-12.]), the synthesis of the title compound, (I)[link], its crystal and mol­ecular structures along with an analysis of its Hirshfeld surface and computational modelling are reported herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises three distinct residues with the central CN2S2 group being essentially planar with an r.m.s. deviation of the fitted atoms being 0.0131 Å. Appended to this at the S2 atom is a CH2(tolyl-4) residue [r.m.s. deviation = 0.0192 Å], and at N2, via a C2=N2 imine bond, is a C(H)—C(H)=C(H)Ph group [r.m.s. deviation = 0.0191 Å]. The dihedral angles between the central group and the S2- and N2-bound substituents are 71.65 (4) and 7.08 (8)°, respectively. The dihedral angle between the outer groups is 72.33 (4)° and is indicative of an approximately orthogonal relationship. Indeed, the r.m.s. deviation of all non-hydrogen atom in (I)[link] except those comprising the CH2(tolyl-4) residue is 0.0586 Å, and the angle between this plane and that through the CH2(tolyl-4) residue is 72.25 (4)°. The 1,4-carbon atoms of the 4-tolyl ring lie on the approximate mirror plane defined by the rest of the mol­ecule with the remaining pairs of ring atoms being related across the putative plane.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The configuration about the C2=N2 imine [1.284 (2) Å] and C3=C4 ethene [1.339 (2) Å] bonds is E in each case. This implies the N1—N2=C2—C3=C4 sequence has an all trans conformation as seen in the N1—N2—C2—C3, N2—C2—C3—C4 and C2—C3—C4—C5 torsion angles of 177.41 (13), −178.70 (15) and 178.23 (15)°, respectively. The C1—S2 [1.7455 (16) Å] and, especially, C11—S2 [1.8233 (16) Å] bond lengths are considerably longer than the C1—S1 bond [1.6752 (16) Å] consistent with considerable thione character in the latter. This is borne out also by the observation that the angles about the C1 atom involving S1 are wider, by over 7°, i.e. S1—C1—S2 = 125.20 (10)° and N1—C1—S1 121.06 (12)°, cf. N1—C1—S2 of 113.74 (11)°.

Further discussion on the mol­ecular geometry of (I)[link] is given in Computational chemistry calculations.

3. Supra­molecular features

The most prominent feature of the mol­ecular packing is the formation of an eight-membered, centrosymmetric thio­amide synthon, {⋯HNCS}2 mediated by N—H⋯S(thione) hydrogen bonds, Fig. 2[link]a and Table 1[link]. The dimeric aggregates thus formed are connected into a three-dimensional architecture, Fig. 2[link]b, via methyl­ene-C—H⋯π(tol­yl), tolyl-C—H⋯π(phen­yl) and phenyl-C—H⋯π(tol­yl) inter­actions, Table 1[link], indicating the tolyl ring accepts two such contacts. In essence, the C—H⋯π inter­actions connect mol­ecules into layers in the bc plane and these are linked by the N—H⋯S hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (C5–C10) and (C12—C17) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.87 (2) 2.57 (2) 3.3984 (17) 158 (2)
C14—H14⋯Cg1ii 0.95 2.95 3.6749 (19) 134
C8—H8⋯Cg2iii 0.95 2.75 3.5571 (19) 143
C11—H11BCg2iv 0.99 2.78 3.5110 (18) 131
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+2, -z; (iii) -x, -y+2, -z; (iv) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) a view of the supra­molecular dimer sustained by N—H⋯S(thione) hydrogen bonds and (b) a view of the unit-cell contents shown in projection down the a axis. The N—H⋯S and C—H⋯π inter­actions are shown as orange and purple dashed lines, respectively.

4. Analysis of the Hirshfeld surfaces

The most closely related compound in the crystallographic literature is one with a benzyl substituent at the S2 atom (Tarafder et al., 2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.]) rather than a CH2(tolyl-4) group, that might be regarded as the `parent' compound, hereafter referred to as (II). While detailed discussion on the comparison of their mol­ecular geometries and computational modelling are given in Computational chemistry calculations, the present section focuses upon the study of inter­molecular inter­actions formed by (I)[link] and (II) in their respective crystals by Hirshfeld surface analysis in accord with the method described recently (Yeo et al., 2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 653-661.]).

Both (I)[link] and (II) exhibit closely related topological inter­actions as evidenced by the relative distribution of similar contacts, Fig. 3[link], computed based upon the mapping of the contact distances at specific points on their Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Among the inter­actions, H⋯H contacts constitute the most dominant contacts in (I)[link] and (II) at approximately 46.2 and 45.4%, respectively. This is followed by C⋯H/H⋯C [ca 25.4% for (I)[link] and 23.8% for (II)], S⋯H/H⋯S [ca 17.5 and 16.9%], N⋯H/H⋯N [ca 5.6 and 5.5%] as well as other minor inter­actions including N⋯C/C⋯N, S⋯C/C⋯S and S⋯N/N⋯S, which constitute less than 5% of the overall contacts.

[Figure 3]
Figure 3
Relative percentage contributions of close contacts to the Hirshfeld surfaces of (I)[link] and (II).

A detailed comparison of the two-dimensional fingerprint plots of di vs de at the inter­vals of 0.01 Å reveals that (I)[link] and (II) are qu­anti­tatively different, despite both having a wasp-shape full fingerprint and similar Hirshfeld surface profiles, Fig. 4[link]a,. Specifically, the decomposed fingerprint plot of H⋯H for (I)[link] displays a de + di contact distance of 1.96 Å which is approximately 0.43 Å (17%) shorter cf. 2.36 Å for (II), Fig. 4[link]b. Both (I)[link] and (II)[link] possess similar C⋯H/H⋯C contact distance, Fig. 4[link]c, at approximately 2.7 Å, which is slightly shorter than the van der Waals radii of 2.9 Å. The decomposed fingerprint plots of S⋯H/H⋯S (Fig. 4[link]d) and N⋯H/H⋯N contacts (Fig. 4[link]e) for (I)[link] register contact distances of 2.47 and 2.90 Å, respectively, which is about 0.05 Å (1.7–2.0%) longer than those of (II). It is noteworthy that the H⋯H contact of (I)[link] is significantly shorter than the sum of their van der Waals radii, by 0.44 Å (22.4%) cf. (II), in which the difference is merely 0.04 Å (1.7%). Similarly, the S⋯H/ H⋯S contacts of both (I)[link] and (II) exhibit shorter contact distances cf. the sum of their van der Waals radii by 0.53 and 0.58 Å, respectively (21.5 and 24.0%). As a result, those contacts display intense red spots on their Hirshfeld surface, Fig. 4[link]d.

[Figure 4]
Figure 4
Fingerprint plots for (I)[link] and (II): (a) overall and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S and (e) N⋯H/H⋯N contacts. Note that the Hirshfeld surface showing H⋯H contacts for (I)[link] and (II) are illustrated in the reverse orientation so as to show the close contacts.

In view of the close structural similarity between (I)[link] and (II), their physical properties such as mol­ecular volume, surface area, shape, density and packing efficiency were computed either by Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, version 3.1, University of Western Australia, Crawley.]) or PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and data are compared in Table 2[link]. As expected, the mol­ecule of (I)[link], which has an additional methyl group cf. (II), exhibits a greater mol­ecular volume and surface area, and is slightly less globular. This results in a lower surface-to-volume ratio and density for (I)[link], and ultimately leads to reduced packing efficiency when compared to (II).

Table 2
Comparison of some physical properties between (I)[link] and (II)

Property (I) (II)
Volume, V3) 416.41 384.29
Surface area, A2) 399.66 372.94
A:V 0.96 0.97
Density, d (g cm−1) 1.274 1.320
Kitaigorodskii Packing Index, KPI (%) 67.5 68.5
Globularity, G 0.675 0.685
Asphericity, Ω 0.326 0.359

5. Database survey

As mentioned in the previous section, the `parent' compound represents the most closely related analogue to (I)[link] in the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and hence, it is adopted for direct comparison in terms of their geometric parameters; selected data are collated in Table 3[link]. All bond lengths are equal within experimental error and bond angles agree to within 1°. The influence, if any, upon the mol­ecular conformation exerted by the tolyl substituent in (I)[link] might be manifested in the twists about the C11—C12 bond as the S2—C11—C12—C13 torsion angles vary between 3–6°. Equivalent twists are also noted about the C5—C6 bond.

Table 3
Selected geometric parameters (Å, °) in (I)[link] and (II) and in geometry-optimized-(I) and -(II)

Parameter (I) (II) optimized-(I) optimized-(II)
C1—S1 1.6752 (16) 1.670 (2) 1.665 1.665
C1—S2 1.7455 (16) 1.747 (2) 1.769 1.771
C11—S2 1.8233 (16) 1.8189 (17) 1.850 1.850
C1—N1 1.334 (2) 1.333 (2) 1.365 1.365
N1—N2 1.3845 (18) 1.382 (2) 1.354 1.353
C2—N2 1.284 (2) 1.285 (2) 1.288 1.290
C2—C3 1.435 (2) 1.433 (3) 1.439 1.439
C3—C4 1.339 (2) 1.337 (2) 1.350 1.350
         
C1—S2—C11 103.44 (7) 102.59 (9) 101.5 101.4
C1—N1—N2 120.95 (13) 120.48 (15) 122.8 122.8
N1—N2—C2 114.17 (13) 114.00 (15) 117.2 117.2
S1—C1—S2 125.20 (10) 124.67 (11) 127.0 127.0
S1—C1—N1 121.06 (12) 121.57 (13) 119.8 119.9
S2—C1—N1 113.74 (11) 113.77 (14) 113.2 113.1
C2—C3—C4 121.28 (15) 121.03 (16) 122.6 122.6
C3—C4—C5 127.33 (16) 128.25 (16) 127.5 127.5
         
S2—C11—C12—C13 106.09 (15) −102.67 (18) 91.2 89.7
S2—C11—C12—C17 −71.41 (17) 74.56 (19) −88.8 −90.3
C3—C4—C5—C6 −0.2 (3) −7.0 (3) −2.0 1.3
C3—C4—C5—C10 178.69 (16) 173.64 (19) 178.0 −178.8

6. Computational chemistry calculations

Both (I)[link] and (II) were subjected to geometry optimization calculations assuming a gas-phase environment in order to compare the structural difference between the experimental and theoretical models. The corresponding theoretical models were first drawn using GaussView5 (Dennington et al., 2009[Dennington, R., Keith, T. & Millam, J. (2009). GaussView, Semichem Inc., Shawnee Mission KS.]) based on the geometrical conformation of the structure (trans–cis along C1=S1 and E, E along N2—C2, C3—C4) and pre-optimized using a semi empirical method (PM6) with a precise self-consistent field criterion. Subsequently, the geometries were further optimized at B3LYP/6-311+G(d,p) without imposing symmetry constraints. A frequency analysis was performed on each optimized structure using the same level of theory and basis set to validate that each structure was indeed the local minimum structure with no imaginary frequency. All calculations were performed using the Gaussian09 software package (Frisch et al., 2016[Frisch, M. J., et al. (2016). Gaussian 09, Revision E. 01. Gaussian, Inc., Wallingford CT, USA.]).

The results, as shown from the superposition of the experimental structure and theoretical model of (I)[link] and (II), Fig. 5[link], indicate that there is not much difference between the experimental and optimized structures with the r.m.s. deviation of about 0.2110 Å in the case of (I)[link] and 0.1747 Å in the case of (II). The key geometric parameters obtained from the calculations are also listed in Table 3[link]. The energy-minimized structures have effective mirror symmetry whereby the S-bound aryl ring is bis­ected by the plane. The bond lengths and angles for optimized-(I) and -(II) are identical indicating no influence upon the electronic structure is exerted by the addition of a methyl group in (I)[link]. Indeed, the optimized geometries for (I)[link] and (II) are superimposable, Fig. 5[link]. Despite the close similarity between the optimized structures, some differences are noted between the experimental and optimized structures. For example, the C1—S2 and C11—S2 bond lengths have elongated by ca 0.02 and 0.03 Å, respectively. In the chain, the C1—N1 bond lengths have lengthened by ca 0.03 Å, a difference accompanied by a contraction in the N1—N2 bond length by about the same amount. Minor differences are also noted in bond angles with widening of S1—C1—S2 and the angles subtended at the nitro­gen atoms by 2–3° with similar contractions in the C1—S1—C11 and S1—C1—N1 angles.

[Figure 5]
Figure 5
Structural overlay between the crystal and optimized structures of (I)[link] (red image), (Io) (green), (II) blue) and (IIo) (purple).

Apart from geometry optimization, both (I)[link] and (II) were also subjected to computational modelling for calculation of their inter­action energies. Briefly, the crystallographic coordinates of the experimental dimeric structures of (I)[link] and (II) connected through N—H⋯S inter­actions were used as the input without further optimization. In order to preserve the integrity of the structure for best possible estimation of the inter­action energy from the experimental model, the positions of all hydrogen atoms obtained during crystal refinement were kept unchanged, despite that this method (riding-model approximation) is commonly known to induce deviations by as much as 0.1 to 0.2 Å shorter C—H bond lengths. The respective input structures were submitted to single point inter­action energy calculation by long-range corrected ωB97XD functional combining the D2 version of Grimme's dispersion model and the 6-31G(d,p) basis set. It has been demonstrated that the long-range corrected hybrid method can greatly reduce self-inter­action errors (Chai & Head-Gordon, 2008[Chai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615-6620.]) and gives a better accuracy in binding energy as compared to coupled cluster calculations (Andersen et al., 2014[Andersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S. & Kjaergaard, H. G. (2014). J. Phys. Chem. A, 118, 11074-11082.]). The computed inter­action energy (i.e. the energy difference between the dimer and the sum of energies for the corresponding monomers) was obtained upon the correction of basis set superposition error (BSSE) by counterpoise correction. All calculations were performed in gas phase using Gaussian09 software (Frisch et al., 2016[Frisch, M. J., et al. (2016). Gaussian 09, Revision E. 01. Gaussian, Inc., Wallingford CT, USA.]).

The dimeric species of (I)[link] and (II) possesses the inter­action energy (EBSSEint) of −12.92 and −13.86 kcal mol−1, respectively. The range is approximately 3.89 to 5.23 kcal mol−1 less than the energy computed for a pair of thio­urea dimers at the RIMP2/cc-pVDZ and cc-pVTZ levels of theory (AlDamen & Sinnokrot, 2014[AlDamen, M. A. & Sinnokrot, M. (2014). J. Struct. Chem. 55, 53-60.]). Apparently, the corresponding EBSSEint energies were overestimated due to the use of the split-valence double basis set as an necessary compromise between accuracy and computational cost since the calculations involve a rather large mol­ecular system with over 80 atoms. Despite the difference, the dimer of (II) is lower in energy (ca 0.94 kcal mol−1) cf. (I)[link], indicating that the former is connected by relatively stronger N—H⋯S inter­actions and hence, the dimeric aggregate in (II) is more stable. The theoretical result is in accord with the experimental data, in which the H⋯S [2.53 (2) Å] and N⋯S [3.3714 (19) Å] bond lengths are shorter and the N—H⋯S [165 (2)°] bond angle is wider in (II) cf. (I)[link], Table 1[link].

7. Synthesis and crystallization

The following procedure was adapted from the literature (Ravoof et al., 2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]): S-4-methyl­benzyl­dithio­carbazate (2.12 g, 0.01 mol) was dissolved in hot aceto­nitrile (100 ml) and added to an equimolar amount of cinnamaldehyde (Merck, 1.32 g) in absolute ethanol (20 ml). The mixture was heated for about 2 h and was then allowed to stand overnight. The pale-brown crystals that formed were filtered and washed with absolute ethanol at room temperature. Yield: 70%. M.p. 463–466 K. Analysis: Calculated for C18H18N2S2: C, 66.22; H, 5.56; N, 8.58. Found: C, 65.87; H, 5.77; N, 9.00%. FT–IR (ATR, cm−1): 3102, ν(N—H); 1613, ν(C=N); 1021, ν(N—N); 749, ν(CSS).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The nitro­gen-bound H atom was located in a difference-Fourier map but was refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Table 4
Experimental details

Crystal data
Chemical formula C18H18N2S2
Mr 326.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.6720 (3), 12.6288 (7), 13.4690 (8)
α, β, γ (°) 62.451 (6), 84.441 (5), 88.930 (5)
V3) 851.00 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.80
Crystal size (mm) 0.19 × 0.18 × 0.08
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini
Absorption correction Multi-scan CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.802, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11378, 3272, 2922
Rint 0.025
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.03
No. of reflections 3272
No. of parameters 203
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.21
Computer programs: CrysAlis (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis (Agilent, 2011); cell refinement: CrysAlis (Agilent, 2011); data reduction: CrysAlis (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-4-Methylbenzyl 2-[(E)-3-phenylallylidene]hydrazinecarbodithioate top
Crystal data top
C18H18N2S2Z = 2
Mr = 326.46F(000) = 344
Triclinic, P1Dx = 1.274 Mg m3
a = 5.6720 (3) ÅCu Kα radiation, λ = 1.5418 Å
b = 12.6288 (7) ÅCell parameters from 5602 reflections
c = 13.4690 (8) Åθ = 3.7–71.2°
α = 62.451 (6)°µ = 2.80 mm1
β = 84.441 (5)°T = 100 K
γ = 88.930 (5)°Prism, light-brown
V = 851.00 (9) Å30.19 × 0.18 × 0.08 mm
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
3272 independent reflections
Radiation source: Enhance (Cu) X-ray Source2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1952 pixels mm-1θmax = 71.3°, θmin = 3.7°
ω scansh = 66
Absorption correction: multi-scan
CrysAlisPro (Agilent, 2011)
k = 1515
Tmin = 0.802, Tmax = 1.000l = 1616
11378 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2179P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.38 e Å3
3272 reflectionsΔρmin = 0.21 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70595 (7)0.83091 (3)0.55216 (3)0.02412 (13)
S20.61163 (7)0.76634 (3)0.36831 (3)0.02024 (13)
N10.3820 (2)0.92216 (12)0.41092 (11)0.0213 (3)
H1N0.356 (3)0.9703 (15)0.4406 (15)0.026*
N20.2657 (2)0.93744 (12)0.31965 (11)0.0218 (3)
C10.5581 (3)0.84581 (13)0.44483 (13)0.0194 (3)
C20.0948 (3)1.01051 (14)0.29902 (13)0.0211 (3)
H20.05581.04550.34740.025*
C30.0385 (3)1.04062 (14)0.20473 (14)0.0225 (3)
H30.00201.00450.15720.027*
C40.2135 (3)1.11863 (14)0.18249 (14)0.0226 (3)
H40.24651.15060.23360.027*
C50.3594 (3)1.16011 (14)0.08835 (13)0.0213 (3)
C60.3306 (3)1.12110 (15)0.00607 (14)0.0257 (4)
H60.20761.06810.00850.031*
C70.4800 (3)1.15911 (15)0.07886 (14)0.0286 (4)
H70.46001.13110.13350.034*
C80.6589 (3)1.23796 (16)0.08460 (14)0.0287 (4)
H80.76151.26350.14270.034*
C90.6863 (3)1.27894 (16)0.00499 (15)0.0294 (4)
H90.80711.33350.00900.035*
C100.5382 (3)1.24059 (16)0.08037 (14)0.0262 (4)
H100.55841.26950.13440.031*
C110.8493 (3)0.66793 (14)0.43635 (13)0.0209 (3)
H11A0.99140.71490.43180.025*
H11B0.79810.61390.51650.025*
C120.9009 (3)0.59760 (13)0.37170 (13)0.0186 (3)
C131.1047 (3)0.62246 (15)0.29770 (14)0.0233 (3)
H131.21600.68170.29010.028*
C141.1471 (3)0.56131 (16)0.23458 (14)0.0260 (4)
H141.28760.57930.18450.031*
C150.9884 (3)0.47474 (14)0.24348 (13)0.0226 (3)
C160.7849 (3)0.44935 (15)0.31824 (15)0.0274 (4)
H160.67400.38980.32610.033*
C170.7425 (3)0.50994 (15)0.38120 (15)0.0267 (4)
H170.60260.49130.43180.032*
C181.0331 (4)0.40915 (17)0.17430 (16)0.0326 (4)
H18A1.16630.44810.11680.049*
H18B0.89100.41070.13770.049*
H18C1.07090.32610.22340.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0306 (2)0.0249 (2)0.0242 (2)0.00799 (17)0.01188 (17)0.01611 (17)
S20.0252 (2)0.0196 (2)0.0208 (2)0.00461 (15)0.00790 (15)0.01252 (16)
N10.0254 (7)0.0217 (7)0.0226 (7)0.0054 (6)0.0082 (5)0.0141 (6)
N20.0242 (7)0.0220 (7)0.0204 (7)0.0018 (6)0.0062 (5)0.0101 (5)
C10.0226 (8)0.0183 (7)0.0183 (7)0.0005 (6)0.0024 (6)0.0094 (6)
C20.0219 (8)0.0205 (8)0.0234 (8)0.0005 (6)0.0030 (6)0.0121 (6)
C30.0247 (9)0.0209 (8)0.0220 (8)0.0002 (6)0.0033 (6)0.0098 (6)
C40.0237 (8)0.0230 (8)0.0222 (8)0.0018 (6)0.0022 (6)0.0113 (6)
C50.0206 (8)0.0190 (7)0.0210 (8)0.0014 (6)0.0024 (6)0.0062 (6)
C60.0290 (9)0.0219 (8)0.0264 (9)0.0035 (7)0.0059 (7)0.0108 (7)
C70.0383 (10)0.0246 (8)0.0227 (8)0.0004 (7)0.0067 (7)0.0099 (7)
C80.0258 (9)0.0293 (9)0.0228 (8)0.0015 (7)0.0078 (7)0.0041 (7)
C90.0232 (9)0.0322 (9)0.0271 (9)0.0067 (7)0.0034 (7)0.0089 (7)
C100.0249 (9)0.0298 (9)0.0228 (8)0.0037 (7)0.0011 (7)0.0117 (7)
C110.0228 (8)0.0208 (8)0.0222 (8)0.0042 (6)0.0070 (6)0.0119 (6)
C120.0213 (8)0.0172 (7)0.0178 (7)0.0048 (6)0.0057 (6)0.0080 (6)
C130.0199 (8)0.0263 (8)0.0256 (8)0.0009 (6)0.0040 (6)0.0133 (7)
C140.0208 (8)0.0337 (9)0.0247 (8)0.0026 (7)0.0001 (6)0.0150 (7)
C150.0283 (9)0.0227 (8)0.0191 (7)0.0073 (7)0.0058 (6)0.0112 (6)
C160.0317 (9)0.0233 (8)0.0297 (9)0.0050 (7)0.0008 (7)0.0151 (7)
C170.0276 (9)0.0279 (9)0.0275 (9)0.0050 (7)0.0064 (7)0.0168 (7)
C180.0408 (11)0.0339 (10)0.0314 (9)0.0077 (8)0.0038 (8)0.0222 (8)
Geometric parameters (Å, º) top
S1—C11.6752 (16)C9—C101.385 (2)
S2—C11.7455 (16)C9—H90.9500
S2—C111.8233 (16)C10—H100.9500
N1—C11.334 (2)C11—C121.513 (2)
N1—N21.3845 (18)C11—H11A0.9900
N1—H1N0.873 (9)C11—H11B0.9900
N2—C21.284 (2)C12—C171.390 (2)
C2—C31.435 (2)C12—C131.389 (2)
C2—H20.9500C13—C141.392 (2)
C3—C41.339 (2)C13—H130.9500
C3—H30.9500C14—C151.383 (2)
C4—C51.463 (2)C14—H140.9500
C4—H40.9500C15—C161.393 (2)
C5—C101.398 (2)C15—C181.510 (2)
C5—C61.402 (2)C16—C171.384 (2)
C6—C71.386 (2)C16—H160.9500
C6—H60.9500C17—H170.9500
C7—C81.390 (3)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C8—C91.386 (3)C18—H18C0.9800
C8—H80.9500
C1—S2—C11103.44 (7)C9—C10—H10119.5
C1—N1—N2120.95 (13)C5—C10—H10119.5
C1—N1—H1N118.5 (13)C12—C11—S2104.86 (10)
N2—N1—H1N119.9 (13)C12—C11—H11A110.8
C2—N2—N1114.17 (13)S2—C11—H11A110.8
N1—C1—S1121.06 (12)C12—C11—H11B110.8
N1—C1—S2113.74 (11)S2—C11—H11B110.8
S1—C1—S2125.20 (10)H11A—C11—H11B108.9
N2—C2—C3121.60 (15)C17—C12—C13118.22 (15)
N2—C2—H2119.2C17—C12—C11121.22 (14)
C3—C2—H2119.2C13—C12—C11120.52 (14)
C4—C3—C2121.28 (15)C12—C13—C14120.52 (15)
C4—C3—H3119.4C12—C13—H13119.7
C2—C3—H3119.4C14—C13—H13119.7
C3—C4—C5127.33 (16)C15—C14—C13121.22 (15)
C3—C4—H4116.3C15—C14—H14119.4
C5—C4—H4116.3C13—C14—H14119.4
C10—C5—C6118.13 (15)C14—C15—C16118.22 (15)
C10—C5—C4119.07 (15)C14—C15—C18121.27 (16)
C6—C5—C4122.79 (15)C16—C15—C18120.51 (15)
C7—C6—C5120.63 (16)C17—C16—C15120.68 (16)
C7—C6—H6119.7C17—C16—H16119.7
C5—C6—H6119.7C15—C16—H16119.7
C6—C7—C8120.42 (17)C16—C17—C12121.16 (15)
C6—C7—H7119.8C16—C17—H17119.4
C8—C7—H7119.8C12—C17—H17119.4
C9—C8—C7119.50 (16)C15—C18—H18A109.5
C9—C8—H8120.3C15—C18—H18B109.5
C7—C8—H8120.3H18A—C18—H18B109.5
C8—C9—C10120.21 (17)C15—C18—H18C109.5
C8—C9—H9119.9H18A—C18—H18C109.5
C10—C9—H9119.9H18B—C18—H18C109.5
C9—C10—C5121.09 (17)
C1—N1—N2—C2177.67 (14)C6—C5—C10—C91.3 (2)
N2—N1—C1—S1177.67 (11)C4—C5—C10—C9177.62 (15)
N2—N1—C1—S22.77 (19)C1—S2—C11—C12179.86 (10)
C11—S2—C1—N1178.08 (11)S2—C11—C12—C1771.41 (17)
C11—S2—C1—S11.45 (13)S2—C11—C12—C13106.09 (15)
N1—N2—C2—C3177.41 (13)C17—C12—C13—C140.4 (2)
N2—C2—C3—C4178.70 (15)C11—C12—C13—C14177.20 (15)
C2—C3—C4—C5178.23 (15)C12—C13—C14—C150.1 (3)
C3—C4—C5—C10178.69 (16)C13—C14—C15—C160.5 (3)
C3—C4—C5—C60.2 (3)C13—C14—C15—C18179.43 (16)
C10—C5—C6—C71.7 (2)C14—C15—C16—C170.4 (3)
C4—C5—C6—C7177.21 (15)C18—C15—C16—C17179.51 (17)
C5—C6—C7—C80.9 (3)C15—C16—C17—C120.1 (3)
C6—C7—C8—C90.3 (3)C13—C12—C17—C160.5 (3)
C7—C8—C9—C100.7 (3)C11—C12—C17—C16177.10 (15)
C8—C9—C10—C50.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C5–C10) and (C12—C17) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.87 (2)2.57 (2)3.3984 (17)158 (2)
C14—H14···Cg1ii0.952.953.6749 (19)134
C8—H8···Cg2iii0.952.753.5571 (19)143
C11—H11B···Cg2iv0.992.783.5110 (18)131
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x, y+2, z; (iv) x+2, y+1, z+1.
Comparison of some physical properties between (I) and (II) top
Property(I)(II)
Volume, V3)416.41384.29
Surface area, A2)399.66372.94
A:V0.960.97
Density, d (g cm-1)1.2741.320
Kitaigorodskii Packing Index, KPI (%)67.568.5
Globularity, G0.6750.685
Asphericity, Ω0.3260.359
Selected geometric parameters (Å, °) in (I) and (II) and in geometry-optimized-(I) and -(II) top
Parameter(I)(II)optimized-(I)optimized-(II)
C1—S11.6752 (16)1.670 (2)1.6651.665
C1—S21.7455 (16)1.747 (2)1.7691.771
C11—S21.8233 (16)1.8189 (17)1.8501.850
C1—N11.334 (2)1.333 (2)1.3651.365
N1—N21.3845 (18)1.382 (2)1.3541.353
C2—N21.284 (2)1.285 (2)1.2881.290
C2—C31.435 (2)1.433 (3)1.4391.439
C3—C41.339 (2)1.337 (2)1.3501.350
C1—S2—C11103.44 (7)102.59 (9)101.5101.4
C1—N1—N2120.95 (13)120.48 (15)122.8122.8
N1—N2—C2114.17 (13)114.00 (15)117.2117.2
S1—C1—S2125.20 (10)124.67 (11)127.0127.0
S1—C1—N1121.06 (12)121.57 (13)119.8119.9
S2—C1—N1113.74 (11)113.77 (14)113.2113.1
C2—C3—C4121.28 (15)121.03 (16)122.6122.6
C3—C4—C5127.33 (16)128.25 (16)127.5127.5
S2—C11—C12—C13106.09 (15)-102.67 (18)91.289.7
S2—C11—C12—C17-71.41 (17)74.56 (19)-88.8-90.3
C3—C4—C5—C6-0.2 (3)-7.0 (3)-2.01.3
C3—C4—C5—C10178.69 (16)173.64 (19)178.0-178.8
 

Footnotes

Additional correspondence author, e-mail: thahira@upm.edu.my.

Acknowledgements

We thank the Department of Chemistry (Universiti Putra Malaysia; UPM) for access to facilities. This research was funded by UPM and the Malaysian Government under the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–01-16-1833FR) and Geran Penyelidikan-Inisiatif Putra Siswazah (GP-IPS No. 9504600). ENMY also wishes to acknowledge the MyPhD Malaysian Government Scholarship (MyBrain15). The authors are also grateful to Sunway University (INT-RRO-2017-096) for supporting this research.

Funding information

Funding for this research was provided by: Malaysian Fundamental Research Grant Scheme (award No. 01-01-16-1833FR); Geran Penyelidikan-Inisiatif Putra Siswazah (award No. 9504600); Sunway University (award No. INT-RRO-2017-096).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CrossRef CAS Google Scholar
First citationAlDamen, M. A. & Sinnokrot, M. (2014). J. Struct. Chem. 55, 53–60.  CrossRef CAS Google Scholar
First citationAndersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S. & Kjaergaard, H. G. (2014). J. Phys. Chem. A, 118, 11074–11082.  CrossRef CAS PubMed Google Scholar
First citationBlower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2009). GaussView, Semichem Inc., Shawnee Mission KS.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2016). Gaussian 09, Revision E. 01. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamid, M. H. S., Said, A. N. A., Mirza, A. H., Karim, M. R., Arifuzzaman, M., Ali, M. A. & Bernhardt, P. V. (2016). Inorg. Chim. Acta, 453, 742–750.  CSD CrossRef CAS Google Scholar
First citationLow, M. L., Maigre, L., Tahir, M. I. M., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J. M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12.  CSD CrossRef CAS PubMed Google Scholar
First citationYusof, E. N. Md., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Mohamed Tahir, M. I. & Ahmad, H. (2015). Int. J. Mol. Sci. 16, 11034–11054.  CAS PubMed Google Scholar
First citationPaterson, B. M., Karas, J. A., Scanlon, D. B., White, J. M. & Donnelly, P. S. (2010). Inorg. Chem. 49, 1884–1893.  CSD CrossRef CAS PubMed Google Scholar
First citationPavan, F. R., Maia, P. I. da S., Leite, S. R., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. (2010). Eur. J. Med. Chem. 45, 1898–1905.  CrossRef CAS PubMed Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, version 3.1, University of Western Australia, Crawley.  Google Scholar
First citationYeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 653–661.  CAS Google Scholar
First citationYusof, E. N. M., Ravoof, T. B. S. A., Jamsari, J., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). Inorg. Chim. Acta, 438, 85–93.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds