research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Butyl-1-chloro-3-methyl-3H-2,1λ4-benzoxa­tellurole: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bCentro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. Dos Estados 5001, Bairro Bangu, CEP 09210-580 Santo André, SP, Brazil, and cCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 2 March 2017; accepted 9 March 2017; online 24 March 2017)

Two independent mol­ecules comprise the asymmetric unit in the title benzoxatellurole compound, C12H17ClOTe. The mol­ecules, with the same chirality at the methine C atom, are connected into a loosely associated dimer by Te⋯O inter­actions, leading to a {⋯Te—O}2 core. The resultant C2ClO2 donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Inter­estingly, the TeIV atoms exhibit opposite chirality. The major difference between the independent mol­ecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one mol­ecule and is twisted about the O—C(methine) bond in the other. No directional inter­molecular inter­actions are noted in the mol­ecular packing beyond the aforementioned Te⋯O secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of H⋯H contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent mol­ecules in terms of both H⋯H and H⋯Cl/Cl⋯H contacts.

1. Chemical context

Tellurium is not the first element that comes to mind when considering the modern pharmacopoeia (Tiekink, 2012[Tiekink, E. R. T. (2012). Dalton Trans. 41, 6390-6395.]). However, investigations into pharmaceutical applications of compounds of this generally regarded as relatively non-toxic element (Nogueira et al., 2004[Nogueira, C. W., Zeni, G. W. & Rocha, J. B. (2004). Chem. Rev. 104, 6255-6286.]) date back to the times of Sir Alexander Fleming who tested the efficacy of potassium tellurite, K2[TeO3], against microbes, such as penicillin-insensitive bacteria (Fleming, 1932[Fleming, A. (1932). J. Pathol. 35, 831-842.]). It is in fact another salt, ammonium tri­chloro­(di­oxy­ethyl­ene-O,O′)tellurate, [NH4][(OCH2CH2O)TeCl3] (Albeck et al., 1998[Albeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704-1712.]), also known as AS-101, that has attracted the most attention as a potential tellurium-based pharmaceutical, being in clinical trials for the treatment of psoriasis (Halpert & Sredni, 2014[Halpert, G. & Sredni, B. (2014). Autoimmun. Rev. 13, 1230-1235.]). Other potential applications of AS-101 include its use as an anti-inflammatory agent (Brodsky, et al., 2010[Brodsky, M., Halpert, G., Albeck, M. & Sredni, B. J. (2010). J. Inflamm. 7, doi 10.1186/1476-9255-7-3.]), as a topical treatment for human papilloma virus (Friedman et al., 2009[Friedman, M., Bayer, I., Letko, I., Duvdevani, R., Zavaro-Levy, O., Ron, B., Albeck, M. & Sredni, B. (2009). Br. J. Dermatol. 160, 403-408.]) and its ability to inhibit angiogenesis (Sredni, 2012[Sredni, B. (2012). Semin. Cancer Biol. 22, 60-69.]). The anti-cancer potential of tellurium compounds has also attracted attention (Seng & Tiekink, 2012[Seng, H. L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655-662.]; Silberman et al., 2016[Silberman, A., Kalechman, Y., Hirsch, S., Erlich, Z., Sredni, B. & Albeck, A. (2016). ChemBioChem, 17, 918-927.]). The cation in AS-101 has long been known to be a specific inhibitor of both papain and cathepsin B, i.e. cysteine proteases, by forming a covalent Te—S(cysteine) bond (Albeck et al., 1998[Albeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704-1712.]). Organotellurium compounds also inhibit cathepsin B (Cunha et al., 2005[Cunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. & Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755-760.]) and docking studies confirm this hypothesis (Caracelli et al., 2012[Caracelli, I., Vega-Teijido, M., Zukerman-Schpector, J., Cezari, M. H. S., Lopes, J. G. S., Juliano, L., Santos, P. S., Comasseto, J. V., Cunha, R. L. O. R. & Tiekink, E. R. T. (2012). J. Mol. Struct. 1013, 11-18.], 2016[Caracelli, I., Zukerman-Schpector, J., Madureira, L. S., Maganhi, S. H., Stefani, H. A., Guadagnin, R. C. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 321-328.]). It was in this context that the title compound, (I)[link], was prepared. Herein, the crystal and mol­ecular structures of (I)[link] are described as well as an analysis of its Hirshfeld surface. Finally, a preliminary inhibition assay on (I)[link] against cathepsin B has been performed.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises two independent mol­ecules, which are connected into a loosely associated dimer via secondary Te⋯O inter­actions, as shown in Fig. 1[link]. The immediate geometry for the TeIV atom in the Te1-containing mol­ecule is defined by chlorido, oxygen and carbon (within the oxatellurole ring) and n-butyl alpha-carbon atoms. While the bridging-O2 atom forms a significantly longer Te⋯O2 bond than the Te—O1 bond, Table 1[link], it must be included in the coordination geometry, which is then best described as being distorted square pyramidal. This arrangement accommodates a stereochemically active lone-pair of electrons in the position trans to the n-butyl group. The coordination geometry for the Te2-containing mol­ecule is essentially the same.

Table 1
Selected geometric parameters (Å, °)

Te1—Cl1 2.6137 (17) Te2—Cl2 2.5944 (17)
Te1—O1 2.021 (4) Te2—O2 2.010 (5)
Te1—C8 2.107 (6) Te2—C20 2.108 (6)
Te1—C9 2.138 (5) Te2—C21 2.136 (6)
Te1—O2 2.945 (4) Te2—O1 2.977 (4)
       
Cl1—Te1—O1 171.04 (13) Cl2—Te2—O2 170.22 (14)
O1—Te1—C8 80.4 (2) O2—Te2—C20 80.5 (2)
C8—Te1—O2 145.0 (2) C20—Te2—O1 145.38 (19)
[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The mol­ecules associate via secondary Te⋯O bonding shown as dashed bonds.

The bond lengths about the TeIV atoms in the independent mol­ecules are similar, Table 1[link]. However, the Te1—Cl1 bond length is longer by approximately 0.02 Å than the chemically equivalent Te—Cl2 bond. The three remaining `short' bond lengths are equal within experimental error. The disparity in the Te—Cl bond lengths is probably compensated by the Te⋯O secondary bond, which is shorter, by approximately 0.03 Å, in the Te1-mol­ecule. The key pairs of bond angles for the mol­ecules are essentially the same with the major difference, i.e. 0.8°, seen in the Cl—Te—Olong angle. A distinguishing feature of the independent mol­ecules is noted in the conformation of the five-membered, chelate rings. Thus, in the Te1-mol­ecule, the chelate ring has the form of an envelope with the flap atom being the O1 atom [the O1 atom lies 0.254 (8) Å out of the plane through the remaining atoms; r.m.s. deviation = 0.0107 Å]. For the Te2-mol­ecule, the chelate ring is twisted about the O2—C13 bond, as seen in the Te2—O2—C13—C15 torsion angle of 12.1 (7)°.

The central {⋯Te—O}2 core of the dimeric aggregate, Fig. 1[link], is almost planar (r.m.s. deviation = 0.0106 Å) and has the form of a parallelogram with distinctive edge lengths of approximately 2.0 and 3.0 Å, reflecting the disparity of the Te⋯O inter­actions. To a first approximation, the fused phenyl ring in each mol­ecule, (C3–C8) and (C13–C20), is co-planar with the core, forming dihedral angles of 14.2 (2) and 13.6 (3)°, respectively; the dihedral angle between the phenyl rings is 8.3 (3)°. As the n-butyl groups lie to either side of the dimeric aggregate, there is a suggestion that the independent mol­ecules are related across a pseudo centre of inversion. However, the configuration of the chiral-C2 and C13 atoms in the Te1- and Te-mol­ecules, respectively, is R. This is highlighted in the overlay diagram shown in Fig. 2[link]. Also highlighted is that the tellurium atoms have opposite chirality. When projected down the Te—C(n-but­yl) bond, the chirality about the Te1 atom is S and that about Te2, R.

[Figure 2]
Figure 2
An overlay diagram of the Te1- and Te2-containing mol­ecules, shown as red and blue images, respectively. The mol­ecules have been overlapped so that the phenyl rings are coincident.

3. Supra­molecular features

Beyond the secondary Te⋯O secondary contacts, leading to dimeric aggregates, Fig. 1[link], no directional inter­actions, according to the criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), are apparent in the crystal of (I)[link]. A view of the unit-cell contents is shown in Fig. 3[link].

[Figure 3]
Figure 3
A view in projection down the a axis of the mol­ecular packing in (I)[link].

4. Hirshfeld surface analysis

An analysis of the Hirshfeld surface for (I)[link] was conducted using protocols established earlier (Jotani et al., 2016[Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415-425.]). The overall two-dimensional fingerprint plot for the asymmetric unit is shown in Fig. 4[link]a and those for the individual Te1- and Te2-containing mol­ecules are shown in Fig. 4[link] b and c. The shape-index surface properties are also illustrated in Fig. 4[link]. These confirm the absence of significant directional inter­actions in the crystal.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots and shape index surface properties of the Hirshfeld surface analysis for (a) (I)[link], (b) the Te1-mol­ecule in (I)[link] and (c) the Te2-mol­ecule in (I)[link].

Referring to Fig. 5[link] and Table 2[link], the Hirshfeld surface is dominated by H⋯H inter­actions, contributing around 70% to the overall surface of the asymmetric unit and about 65% for each independent mol­ecule. While not within the sum of the respective van de Waals radii, the C—H⋯Cl contacts make the next greatest contribution to the overall surface, i.e. ca 15%. Others inter­actions each contribute less than 5% to the Hirshfeld surface. It should be noted that the C—H⋯O contacts, Te⋯O secondary inter­actions and most of the C—H⋯Te contacts are formed between the two independent mol­ecules, thus they are overlapped and do not contribute to surface area of the asymmetric unit.

Table 2
Percentage contributions of the different inter­molecular contacts to the Hirshfeld surface in (I)[link], Te1-mol­ecule in (I)[link] and Te2-mol­ecule in (I)

Contact overall (I) Te1-mol­ecule in (I) Te-2 mol­ecule in (I)
H⋯H 70.3 65.1 66.2
H⋯C⋯l/Cl⋯H 16.6 15.7 15.4
H⋯π/π⋯H 5.5 4.1 4.2
Te⋯π/π⋯Te 4.0 3.7 3.6
H⋯Te/Te⋯H 0.4 3.3 2.6
H⋯O/O⋯H 0.0 2.9 2.9
O⋯Te/Te⋯O 0.0 1.7 1.6
ππ/ππ 1.7 1.5 1.5
Others 1.5 2.0 2.0
[Figure 5]
Figure 5
Charts of the relative percentage contributions of the inter­molecular contacts to the Hirshfeld surface area for (a) (I)[link], (b) the Te1-mol­ecule in (I)[link] and (c) the Te2-mol­ecule in (I)[link].

The main differences between the surface areas of the independent mol­ecules are in the inter­actions of the type H⋯H and C—H⋯Cl. Referring to Fig. 6[link], the red circles on the fingerprint plots delineated into H⋯H, Fig. 6[link]a and H⋯Cl/Cl⋯H contacts, Fig. 6[link]b, highlight the distinctive features of the inter­actions for the two mol­ecules. For example, short H⋯H inter­actions for the Te2-mol­ecule, Fig. 6[link]a, occur at shorter distances that those of the Te1-mol­ecules. With regard to the H⋯Cl/Cl⋯H contacts, there is a wider spread at lower de + di for the Te1- cf. the Te2-mol­ecule.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots delineated into (a) H⋯H contacts and (b) H⋯Cl/Cl⋯H contacts for the Te1- and Te2-mol­ecules. The red circles highlight regions distinguishing the two independent mol­ecules.

5. Database survey

A search of the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals there are only 28 analogous structures featuring the TeOC3 donor set as in (I)[link] without the bond type being specified. The number of `hits' reduces to five with the inclusion of the aromatic ring in the side chain. Of the latter, the most closely related compound is 1-bromo-1-butyl-3H-2,1-benzoxatellurol (Maksimenko et al., 1994[Maksimenko, A. A., Sadekov, I. D., Kompan, O. E., Minkin, V. I. & Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd. 30, 367-369.]), which is in fact very similar to (I)[link], being derived from this by substituting the tellurium-bound chlorido atom with bromido and the removal of the methyl group. Here, the five-membered chelate ring is strictly planar.

6. Inhibition of cathepsin B

Compound (I)[link] was screened for its ability to inhibit cathepsin B employing standard literature procedures (Cunha et al., 2005[Cunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. & Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755-760.]). The determined value of the inhibition constant was 372 ± 40 M−1 s−1, indicating some inhibitory potential, but not as potent as for other organotellurium(IV) compounds studied earlier (Cunha et al., 2005[Cunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. & Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755-760.]).

7. Synthesis and crystallization

The compound was prepared following a literature procedure (Engman, 1984[Engman, L. (1984). Organometallics, 3, 1308-1309.]). The precursor chalcogenide, [2-(R)-MeCH(OH)]C6H4Te(nBu) (1.52 g, 5 mmol), prepared as in the literature (Piovan et al., 2011[Piovan, L. M. F. M., Alves, M. F. M., Juliano, L., Brömme, D., Cunha, R. L. O. R. & Andrade, L. H. (2011). Bioorg. Med. Chem. 19, 2009-2014.]), was dissolved in dry di­chloro­methane (20 ml) and cooled to 253 K. To the stirred, cooled solution, sulfuryl chloride (0.4 ml, 5 mmol) dissolved in di­chloro­methane (5 ml) was added dropwise. The stirring was maintained for 20 minutes at 273 K and the solvent was then removed under reduced pressure. The oily product thus obtained was purified by crystallization from a mixture of dry benzene and pentane, yielding colourless crystals in 89% yield, m.p. 641.3–641.4 K. Analysis calculated for C12H17OClTe: C, 42.35, H, 5.03; Found C, 42.28, H, 4.98%. [α]D26 = +45.5° (CHCl3, c = 1.97). 1H (500.13 MHz, CDCl3, ppm) δ 8.20 (d, 3J 7.6 Hz, 1H), 7.6–7.5 (m, 2H), 7.31 (d, 3J 7.2 Hz, 1H), 5.59 (q, 3J 6.3 Hz, 1H), 3.31 (t, 3J 8.1 Hz, 2H), 1.90 (quin, 3J 7.2 Hz, 2H), 1.59 (d, 3J 6.45 Hz, 3H), 1.46 (sext, 3J 7.4 Hz, 2H), 0.93 (t, 3J 7.4 Hz, 3H). 13C (125 MHz, CDCl3, ppm) δ 148.1, 131.6, 131.2, 128.7, 127.8, 125.4, 75.5 (Br), 45.4, 28.4, 24.6, 23.7, 13.0. 125Te (157.85 MHz, CDCl3-d6, ppm) δ 847.2 (minor), 801.1 (major). 125Te (157.85 MHz, DMSO-d6, ppm) δ 1201.5 (minor), 1189.1 (major).

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C12H17ClOTe
Mr 340.30
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 8.3663 (2), 13.0442 (4), 12.5363 (2)
β (°) 103.460 (2)
V3) 1330.53 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.41
Crystal size (mm) 0.34 × 0.33 × 0.23
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.])
Tmin, Tmax 0.481, 0.550
No. of measured, independent and observed [I > 2σ(I)] reflections 9220, 5115, 4998
Rint 0.061
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.02
No. of reflections 5115
No. of parameters 275
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.82
Absolute structure Flack x determined using 1908 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (3)
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Butyl-1-chloro-3-methyl-3H-2,1λ4-benzoxatellurole top
Crystal data top
C12H17ClOTeF(000) = 664
Mr = 340.30Dx = 1.699 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.3663 (2) ÅCell parameters from 5903 reflections
b = 13.0442 (4) Åθ = 1.0–27.5°
c = 12.5363 (2) ŵ = 2.41 mm1
β = 103.460 (2)°T = 293 K
V = 1330.53 (6) Å3Slab, colourless
Z = 40.34 × 0.33 × 0.23 mm
Data collection top
Nonius KappaCCD
diffractometer
4998 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.061
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 27.5°, θmin = 2.5°
Tmin = 0.481, Tmax = 0.550h = 108
9220 measured reflectionsk = 1516
5115 independent reflectionsl = 1613
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.6419P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.43 e Å3
5115 reflectionsΔρmin = 0.82 e Å3
275 parametersAbsolute structure: Flack x determined using 1908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.47914 (4)0.44547 (2)0.33996 (3)0.04143 (11)
Cl10.6469 (2)0.30011 (15)0.45946 (16)0.0664 (4)
O10.3777 (5)0.5726 (4)0.2598 (3)0.0512 (10)
C10.4636 (7)0.6665 (4)0.2894 (6)0.0475 (12)
H10.41010.70450.33880.057*
C20.4470 (10)0.7276 (6)0.1836 (7)0.075 (2)
H2A0.50400.69270.13610.112*
H2B0.49360.79460.20050.112*
H2C0.33280.73400.14760.112*
C30.6380 (6)0.6452 (5)0.3476 (5)0.0458 (11)
C40.7594 (8)0.7216 (6)0.3717 (7)0.0652 (17)
H40.73450.78800.34620.078*
C50.9147 (8)0.6994 (8)0.4326 (7)0.072 (2)
H50.99410.75050.44910.086*
C60.9523 (7)0.5984 (9)0.4698 (6)0.075 (3)
H61.05700.58310.51130.090*
C70.8366 (6)0.5227 (6)0.4454 (5)0.0533 (15)
H70.86220.45600.46950.064*
C80.6800 (6)0.5467 (5)0.3842 (4)0.0416 (10)
C90.3754 (6)0.4771 (5)0.4770 (4)0.0474 (13)
H9A0.29630.53220.45670.057*
H9B0.31540.41680.49090.057*
C100.4927 (6)0.5063 (6)0.5816 (5)0.0510 (14)
H10A0.55330.56680.56910.061*
H10B0.57110.45110.60400.061*
C110.4067 (7)0.5281 (5)0.6735 (4)0.0479 (14)
H11A0.33290.58580.65240.057*
H11B0.34050.46910.68240.057*
C120.5220 (8)0.5516 (9)0.7815 (5)0.0674 (18)
H12A0.60330.49840.79920.101*
H12B0.46140.55530.83760.101*
H12C0.57530.61610.77670.101*
Te20.01522 (4)0.55421 (2)0.17723 (3)0.04226 (11)
Cl20.1556 (2)0.69208 (15)0.05090 (16)0.0666 (4)
O20.1199 (5)0.4303 (4)0.2604 (4)0.0583 (11)
C130.0191 (7)0.3453 (5)0.2705 (5)0.0530 (13)
H130.00320.34520.34550.064*
C140.1031 (10)0.2471 (6)0.2538 (9)0.083 (3)
H14A0.11770.24450.18010.125*
H14B0.03710.19010.26610.125*
H14C0.20850.24390.30450.125*
C150.1500 (7)0.3589 (5)0.1920 (5)0.0498 (13)
C160.2697 (8)0.2822 (6)0.1731 (6)0.0627 (16)
H160.24860.21910.20800.075*
C170.4201 (8)0.3008 (7)0.1021 (6)0.0646 (19)
H170.49890.24920.08810.077*
C180.4547 (7)0.3946 (7)0.0519 (5)0.0585 (17)
H180.55680.40590.00480.070*
C190.3397 (7)0.4717 (5)0.0709 (5)0.0508 (14)
H190.36360.53560.03800.061*
C200.1858 (5)0.4524 (5)0.1407 (4)0.0413 (10)
C210.1184 (6)0.5194 (6)0.0408 (5)0.0546 (16)
H21A0.16440.58190.01850.066*
H21B0.20840.47170.06520.066*
C220.0033 (7)0.4747 (5)0.0574 (5)0.0485 (14)
H22A0.09140.51940.07940.058*
H22B0.03520.40880.03800.058*
C230.0837 (7)0.4607 (6)0.1542 (5)0.0506 (13)
H23A0.12710.52620.17100.061*
H23B0.17530.41370.13300.061*
C240.0311 (9)0.4209 (8)0.2549 (6)0.079 (3)
H24A0.07370.35560.23920.118*
H24B0.02660.41300.31220.118*
H24C0.12030.46820.27800.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.04719 (18)0.0443 (2)0.02938 (15)0.00273 (13)0.00198 (11)0.00116 (15)
Cl10.0837 (11)0.0546 (9)0.0580 (10)0.0195 (8)0.0106 (8)0.0102 (7)
O10.0467 (18)0.050 (3)0.047 (2)0.0016 (17)0.0085 (15)0.0090 (18)
C10.052 (3)0.033 (2)0.055 (3)0.004 (2)0.007 (2)0.003 (3)
C20.079 (4)0.060 (4)0.076 (5)0.000 (3)0.000 (4)0.025 (4)
C30.047 (2)0.049 (3)0.042 (3)0.001 (2)0.012 (2)0.003 (2)
C40.065 (4)0.059 (4)0.070 (5)0.014 (3)0.012 (3)0.002 (3)
C50.046 (3)0.099 (6)0.068 (5)0.022 (3)0.009 (3)0.004 (4)
C60.034 (3)0.133 (8)0.054 (4)0.001 (4)0.005 (2)0.014 (5)
C70.039 (2)0.078 (5)0.042 (3)0.010 (2)0.008 (2)0.001 (3)
C80.041 (2)0.055 (3)0.030 (2)0.003 (2)0.0091 (17)0.000 (2)
C90.040 (2)0.067 (4)0.034 (2)0.001 (2)0.0074 (19)0.004 (2)
C100.039 (2)0.077 (4)0.037 (3)0.000 (2)0.008 (2)0.010 (3)
C110.047 (2)0.061 (4)0.036 (3)0.002 (2)0.010 (2)0.002 (2)
C120.062 (3)0.096 (5)0.043 (3)0.002 (4)0.008 (2)0.022 (4)
Te20.04777 (18)0.0432 (2)0.03135 (16)0.00212 (13)0.00019 (12)0.00352 (14)
Cl20.0768 (10)0.0535 (9)0.0646 (10)0.0164 (8)0.0063 (8)0.0099 (8)
O20.052 (2)0.056 (3)0.055 (2)0.001 (2)0.0130 (17)0.008 (2)
C130.060 (3)0.056 (3)0.037 (3)0.001 (3)0.001 (2)0.001 (3)
C140.073 (4)0.058 (4)0.110 (7)0.012 (3)0.003 (4)0.004 (4)
C150.052 (3)0.054 (3)0.041 (3)0.005 (2)0.005 (2)0.001 (2)
C160.063 (3)0.065 (4)0.059 (4)0.009 (3)0.013 (3)0.002 (3)
C170.055 (3)0.081 (5)0.059 (4)0.021 (3)0.013 (3)0.017 (4)
C180.038 (3)0.087 (5)0.050 (3)0.003 (3)0.009 (2)0.014 (3)
C190.047 (3)0.067 (4)0.037 (3)0.010 (2)0.006 (2)0.000 (2)
C200.040 (2)0.054 (3)0.029 (2)0.002 (2)0.0053 (16)0.006 (2)
C210.042 (2)0.083 (5)0.037 (3)0.001 (3)0.005 (2)0.010 (3)
C220.046 (2)0.061 (4)0.039 (3)0.003 (2)0.010 (2)0.008 (2)
C230.049 (2)0.062 (4)0.041 (3)0.005 (2)0.012 (2)0.001 (3)
C240.068 (4)0.121 (9)0.045 (3)0.015 (4)0.008 (3)0.019 (4)
Geometric parameters (Å, º) top
Te1—Cl12.6137 (17)C11—H11A0.9700
Te1—O12.021 (4)C11—H11B0.9700
Te1—C82.107 (6)C12—H12A0.9600
Te1—C92.138 (5)C12—H12B0.9600
Te1—O22.945 (4)C12—H12C0.9600
Te2—Cl22.5944 (17)O2—C131.416 (8)
Te2—O22.010 (5)C13—C141.499 (10)
Te2—C202.108 (6)C13—C151.534 (7)
Te2—C212.136 (6)C13—H130.9800
Te2—O12.977 (4)C14—H14A0.9600
O1—C11.424 (7)C14—H14B0.9600
C1—C31.497 (7)C14—H14C0.9600
C1—C21.526 (10)C15—C201.379 (9)
C1—H10.9800C15—C161.396 (9)
C2—H2A0.9600C16—C171.383 (9)
C2—H2B0.9600C16—H160.9300
C2—H2C0.9600C17—C181.376 (12)
C3—C81.382 (9)C17—H170.9300
C3—C41.405 (9)C18—C191.374 (10)
C4—C51.376 (10)C18—H180.9300
C4—H40.9300C19—C201.401 (7)
C5—C61.408 (14)C19—H190.9300
C5—H50.9300C21—C221.494 (7)
C6—C71.367 (11)C21—H21A0.9700
C6—H60.9300C21—H21B0.9700
C7—C81.391 (7)C22—C231.529 (7)
C7—H70.9300C22—H22A0.9700
C9—C101.493 (7)C22—H22B0.9700
C9—H9A0.9700C23—C241.490 (9)
C9—H9B0.9700C23—H23A0.9700
C10—C111.521 (7)C23—H23B0.9700
C10—H10A0.9700C24—H24A0.9600
C10—H10B0.9700C24—H24B0.9600
C11—C121.500 (8)C24—H24C0.9600
Cl1—Te1—O1171.04 (13)C10—C11—H11A108.8
O1—Te1—C880.4 (2)C12—C11—H11B108.8
C8—Te1—O2145.0 (2)C10—C11—H11B108.8
Cl2—Te2—O2170.22 (14)H11A—C11—H11B107.7
O2—Te2—C2080.5 (2)C11—C12—H12A109.5
C20—Te2—O1145.38 (19)C11—C12—H12B109.5
O1—Te1—O266.99 (14)H12A—C12—H12B109.5
O1—Te1—C992.2 (2)C11—C12—H12C109.5
C8—Te1—C996.7 (2)H12A—C12—H12C109.5
C8—Te1—Cl190.85 (17)H12B—C12—H12C109.5
C9—Te1—Cl186.78 (17)C13—O2—Te2118.6 (3)
C9—Te1—O273.25 (17)C13—O2—Te1127.2 (3)
Cl1—Te1—O2121.01 (11)Te2—O2—Te1114.1 (2)
C1—O1—Te1116.6 (3)O2—C13—C14110.4 (5)
C1—O1—Te2124.9 (3)O2—C13—C15109.4 (5)
Te1—O1—Te2112.50 (18)C14—C13—C15113.6 (6)
O2—Te2—C2192.1 (2)O2—C13—H13107.7
C20—Te2—C2198.2 (2)C14—C13—H13107.7
C20—Te2—Cl290.34 (16)C15—C13—H13107.7
C21—Te2—Cl285.79 (19)C13—C14—H14A109.5
O2—Te2—O166.36 (14)C13—C14—H14B109.5
C21—Te2—O174.15 (17)H14A—C14—H14B109.5
Cl2—Te2—O1121.88 (10)C13—C14—H14C109.5
O1—C1—C3110.1 (5)H14A—C14—H14C109.5
O1—C1—C2106.5 (6)H14B—C14—H14C109.5
C3—C1—C2113.7 (5)C20—C15—C16119.0 (5)
O1—C1—H1108.8C20—C15—C13118.0 (5)
C3—C1—H1108.8C16—C15—C13123.0 (6)
C2—C1—H1108.8C17—C16—C15119.5 (7)
C1—C2—H2A109.5C17—C16—H16120.3
C1—C2—H2B109.5C15—C16—H16120.3
H2A—C2—H2B109.5C16—C17—C18120.9 (7)
C1—C2—H2C109.5C16—C17—H17119.5
H2A—C2—H2C109.5C18—C17—H17119.5
H2B—C2—H2C109.5C19—C18—C17120.5 (6)
C8—C3—C4118.3 (5)C19—C18—H18119.8
C8—C3—C1118.5 (5)C17—C18—H18119.8
C4—C3—C1123.1 (6)C18—C19—C20118.7 (6)
C5—C4—C3120.8 (8)C18—C19—H19120.6
C5—C4—H4119.6C20—C19—H19120.6
C3—C4—H4119.6C15—C20—C19121.3 (6)
C4—C5—C6119.4 (7)C15—C20—Te2112.3 (3)
C4—C5—H5120.3C19—C20—Te2126.4 (5)
C6—C5—H5120.3C22—C21—Te2116.1 (4)
C7—C6—C5120.6 (6)C22—C21—H21A108.3
C7—C6—H6119.7Te2—C21—H21A108.3
C5—C6—H6119.7C22—C21—H21B108.3
C6—C7—C8119.2 (7)Te2—C21—H21B108.3
C6—C7—H7120.4H21A—C21—H21B107.4
C8—C7—H7120.4C21—C22—C23112.5 (5)
C3—C8—C7121.7 (6)C21—C22—H22A109.1
C3—C8—Te1111.7 (4)C23—C22—H22A109.1
C7—C8—Te1126.5 (5)C21—C22—H22B109.1
C10—C9—Te1116.6 (3)C23—C22—H22B109.1
C10—C9—H9A108.1H22A—C22—H22B107.8
Te1—C9—H9A108.1C24—C23—C22113.5 (5)
C10—C9—H9B108.1C24—C23—H23A108.9
Te1—C9—H9B108.1C22—C23—H23A108.9
H9A—C9—H9B107.3C24—C23—H23B108.9
C9—C10—C11112.5 (4)C22—C23—H23B108.9
C9—C10—H10A109.1H23A—C23—H23B107.7
C11—C10—H10A109.1C23—C24—H24A109.5
C9—C10—H10B109.1C23—C24—H24B109.5
C11—C10—H10B109.1H24A—C24—H24B109.5
H10A—C10—H10B107.8C23—C24—H24C109.5
C12—C11—C10113.8 (5)H24A—C24—H24C109.5
C12—C11—H11A108.8H24B—C24—H24C109.5
Te1—O1—C1—C318.3 (7)Te2—O2—C13—C14137.8 (6)
Te2—O1—C1—C3168.9 (3)Te1—O2—C13—C1439.0 (7)
Te1—O1—C1—C2142.1 (4)Te2—O2—C13—C1512.1 (7)
Te2—O1—C1—C267.4 (6)Te1—O2—C13—C15164.8 (4)
O1—C1—C3—C813.3 (8)O2—C13—C15—C2010.0 (8)
C2—C1—C3—C8132.8 (6)C14—C13—C15—C20133.9 (7)
O1—C1—C3—C4169.8 (6)O2—C13—C15—C16171.9 (6)
C2—C1—C3—C450.4 (9)C14—C13—C15—C1648.1 (9)
C8—C3—C4—C51.8 (10)C20—C15—C16—C171.2 (10)
C1—C3—C4—C5175.1 (7)C13—C15—C16—C17179.2 (7)
C3—C4—C5—C60.9 (12)C15—C16—C17—C181.6 (11)
C4—C5—C6—C70.3 (12)C16—C17—C18—C190.4 (11)
C5—C6—C7—C80.6 (10)C17—C18—C19—C201.1 (9)
C4—C3—C8—C71.5 (9)C16—C15—C20—C190.4 (9)
C1—C3—C8—C7175.5 (5)C13—C15—C20—C19177.7 (5)
C4—C3—C8—Te1179.6 (5)C16—C15—C20—Te2178.1 (5)
C1—C3—C8—Te12.6 (6)C13—C15—C20—Te23.7 (7)
C6—C7—C8—C30.3 (9)C18—C19—C20—C151.6 (8)
C6—C7—C8—Te1178.1 (5)C18—C19—C20—Te2176.8 (4)
Te1—C9—C10—C11179.5 (5)Te2—C21—C22—C23175.1 (5)
C9—C10—C11—C12176.6 (8)C21—C22—C23—C24177.3 (7)
Percentage contributions of the different intermolecular contacts to the Hirshfeld surface in (I), Te1-molecule in (I) and Te2-molecule in (I) top
Contactoverall (I)Te1-molecule in (I)Te-2 molecule in (I)
H···H70.365.166.2
H···C···l/Cl···H16.615.715.4
H···π/π···H5.54.14.2
Te···π/π···Te4.03.73.6
H···Te/Te···H0.43.32.6
H···O/O···H0.02.92.9
O···Te/Te···O0.01.71.6
ππ/ππ1.71.51.5
Others1.52.02.0
 

Acknowledgements

The Brazilian agency National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013–2).

Funding information

Funding for this research was provided by: National Council for Scientific and Technological Development (award No. 305626/2013-2).

References

First citationAlbeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704–1712.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrodsky, M., Halpert, G., Albeck, M. & Sredni, B. J. (2010). J. Inflamm. 7, doi 10.1186/1476-9255-7-3.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaracelli, I., Vega-Teijido, M., Zukerman-Schpector, J., Cezari, M. H. S., Lopes, J. G. S., Juliano, L., Santos, P. S., Comasseto, J. V., Cunha, R. L. O. R. & Tiekink, E. R. T. (2012). J. Mol. Struct. 1013, 11–18.  CSD CrossRef CAS Google Scholar
First citationCaracelli, I., Zukerman-Schpector, J., Madureira, L. S., Maganhi, S. H., Stefani, H. A., Guadagnin, R. C. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 321–328.  CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. & Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755–760.  CrossRef PubMed CAS Google Scholar
First citationEngman, L. (1984). Organometallics, 3, 1308–1309.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleming, A. (1932). J. Pathol. 35, 831–842.  CrossRef CAS Google Scholar
First citationFriedman, M., Bayer, I., Letko, I., Duvdevani, R., Zavaro-Levy, O., Ron, B., Albeck, M. & Sredni, B. (2009). Br. J. Dermatol. 160, 403–408.  CrossRef PubMed CAS Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHalpert, G. & Sredni, B. (2014). Autoimmun. Rev. 13, 1230–1235.  CrossRef CAS PubMed Google Scholar
First citationJotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415–425.  CAS Google Scholar
First citationMaksimenko, A. A., Sadekov, I. D., Kompan, O. E., Minkin, V. I. & Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd. 30, 367–369.  CrossRef Google Scholar
First citationNogueira, C. W., Zeni, G. W. & Rocha, J. B. (2004). Chem. Rev. 104, 6255–6286.  CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPiovan, L. M. F. M., Alves, M. F. M., Juliano, L., Brömme, D., Cunha, R. L. O. R. & Andrade, L. H. (2011). Bioorg. Med. Chem. 19, 2009–2014.  CrossRef CAS PubMed Google Scholar
First citationSeng, H. L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655–662.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilberman, A., Kalechman, Y., Hirsch, S., Erlich, Z., Sredni, B. & Albeck, A. (2016). ChemBioChem, 17, 918–927.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSredni, B. (2012). Semin. Cancer Biol. 22, 60–69.  CrossRef CAS PubMed Google Scholar
First citationTiekink, E. R. T. (2012). Dalton Trans. 41, 6390–6395.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds