research communications
1-Butyl-1-chloro-3-methyl-3H-2,1λ4-benzoxatellurole: and Hirshfeld analysis
aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bCentro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. Dos Estados 5001, Bairro Bangu, CEP 09210-580 Santo André, SP, Brazil, and cCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br
Two independent molecules comprise the 12H17ClOTe. The molecules, with the same at the methine C atom, are connected into a loosely associated dimer by Te⋯O interactions, leading to a {⋯Te—O}2 core. The resultant C2ClO2 donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Interestingly, the TeIV atoms exhibit opposite The major difference between the independent molecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one molecule and is twisted about the O—C(methine) bond in the other. No directional intermolecular interactions are noted in the molecular packing beyond the aforementioned Te⋯O secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of H⋯H contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent molecules in terms of both H⋯H and H⋯Cl/Cl⋯H contacts.
in the title benzoxatellurole compound, CCCDC reference: 1537011
1. Chemical context
Tellurium is not the first element that comes to mind when considering the modern pharmacopoeia (Tiekink, 2012). However, investigations into pharmaceutical applications of compounds of this generally regarded as relatively non-toxic element (Nogueira et al., 2004) date back to the times of Sir Alexander Fleming who tested the efficacy of potassium tellurite, K2[TeO3], against microbes, such as penicillin-insensitive bacteria (Fleming, 1932). It is in fact another salt, ammonium trichloro(dioxyethylene-O,O′)tellurate, [NH4][(OCH2CH2O)TeCl3] (Albeck et al., 1998), also known as AS-101, that has attracted the most attention as a potential tellurium-based pharmaceutical, being in clinical trials for the treatment of psoriasis (Halpert & Sredni, 2014). Other potential applications of AS-101 include its use as an anti-inflammatory agent (Brodsky, et al., 2010), as a topical treatment for human papilloma virus (Friedman et al., 2009) and its ability to inhibit angiogenesis (Sredni, 2012). The anti-cancer potential of tellurium compounds has also attracted attention (Seng & Tiekink, 2012; Silberman et al., 2016). The cation in AS-101 has long been known to be a specific inhibitor of both papain and cathepsin B, i.e. cysteine by forming a covalent Te—S(cysteine) bond (Albeck et al., 1998). Organotellurium compounds also inhibit cathepsin B (Cunha et al., 2005) and confirm this hypothesis (Caracelli et al., 2012, 2016). It was in this context that the title compound, (I), was prepared. Herein, the crystal and molecular structures of (I) are described as well as an analysis of its Hirshfeld surface. Finally, a preliminary inhibition assay on (I) against cathepsin B has been performed.
2. Structural commentary
The comprises two independent molecules, which are connected into a loosely associated dimer via secondary Te⋯O interactions, as shown in Fig. 1. The immediate geometry for the TeIV atom in the Te1-containing molecule is defined by chlorido, oxygen and carbon (within the oxatellurole ring) and n-butyl alpha-carbon atoms. While the bridging-O2 atom forms a significantly longer Te⋯O2 bond than the Te—O1 bond, Table 1, it must be included in the coordination geometry, which is then best described as being distorted square pyramidal. This arrangement accommodates a stereochemically active lone-pair of electrons in the position trans to the n-butyl group. The coordination geometry for the Te2-containing molecule is essentially the same.
of (I)
|
The bond lengths about the TeIV atoms in the independent molecules are similar, Table 1. However, the Te1—Cl1 bond length is longer by approximately 0.02 Å than the chemically equivalent Te—Cl2 bond. The three remaining `short' bond lengths are equal within experimental error. The disparity in the Te—Cl bond lengths is probably compensated by the Te⋯O secondary bond, which is shorter, by approximately 0.03 Å, in the Te1-molecule. The key pairs of bond angles for the molecules are essentially the same with the major difference, i.e. 0.8°, seen in the Cl—Te—Olong angle. A distinguishing feature of the independent molecules is noted in the conformation of the five-membered, chelate rings. Thus, in the Te1-molecule, the chelate ring has the form of an envelope with the flap atom being the O1 atom [the O1 atom lies 0.254 (8) Å out of the plane through the remaining atoms; r.m.s. deviation = 0.0107 Å]. For the Te2-molecule, the chelate ring is twisted about the O2—C13 bond, as seen in the Te2—O2—C13—C15 torsion angle of 12.1 (7)°.
The central {⋯Te—O}2 core of the dimeric aggregate, Fig. 1, is almost planar (r.m.s. deviation = 0.0106 Å) and has the form of a parallelogram with distinctive edge lengths of approximately 2.0 and 3.0 Å, reflecting the disparity of the Te⋯O interactions. To a first approximation, the fused phenyl ring in each molecule, (C3–C8) and (C13–C20), is co-planar with the core, forming dihedral angles of 14.2 (2) and 13.6 (3)°, respectively; the dihedral angle between the phenyl rings is 8.3 (3)°. As the n-butyl groups lie to either side of the dimeric aggregate, there is a suggestion that the independent molecules are related across a pseudo centre of inversion. However, the configuration of the chiral-C2 and C13 atoms in the Te1- and Te-molecules, respectively, is R. This is highlighted in the overlay diagram shown in Fig. 2. Also highlighted is that the tellurium atoms have opposite When projected down the Te—C(n-butyl) bond, the about the Te1 atom is S and that about Te2, R.
3. Supramolecular features
Beyond the secondary Te⋯O secondary contacts, leading to dimeric aggregates, Fig. 1, no directional interactions, according to the criteria in PLATON (Spek, 2009), are apparent in the crystal of (I). A view of the unit-cell contents is shown in Fig. 3.
4. Hirshfeld surface analysis
An analysis of the Hirshfeld surface for (I) was conducted using protocols established earlier (Jotani et al., 2016). The overall two-dimensional fingerprint plot for the is shown in Fig. 4a and those for the individual Te1- and Te2-containing molecules are shown in Fig. 4 b and c. The shape-index surface properties are also illustrated in Fig. 4. These confirm the absence of significant directional interactions in the crystal.
Referring to Fig. 5 and Table 2, the Hirshfeld surface is dominated by H⋯H interactions, contributing around 70% to the overall surface of the and about 65% for each independent molecule. While not within the sum of the respective van de Waals radii, the C—H⋯Cl contacts make the next greatest contribution to the overall surface, i.e. ca 15%. Others interactions each contribute less than 5% to the Hirshfeld surface. It should be noted that the C—H⋯O contacts, Te⋯O secondary interactions and most of the C—H⋯Te contacts are formed between the two independent molecules, thus they are overlapped and do not contribute to surface area of the asymmetric unit.
|
The main differences between the surface areas of the independent molecules are in the interactions of the type H⋯H and C—H⋯Cl. Referring to Fig. 6, the red circles on the fingerprint plots delineated into H⋯H, Fig. 6a and H⋯Cl/Cl⋯H contacts, Fig. 6b, highlight the distinctive features of the interactions for the two molecules. For example, short H⋯H interactions for the Te2-molecule, Fig. 6a, occur at shorter distances that those of the Te1-molecules. With regard to the H⋯Cl/Cl⋯H contacts, there is a wider spread at lower de + di for the Te1- cf. the Te2-molecule.
5. Database survey
A search of the Cambridge Crystallographic Database (Groom et al., 2016) reveals there are only 28 analogous structures featuring the TeOC3 donor set as in (I) without the bond type being specified. The number of `hits' reduces to five with the inclusion of the aromatic ring in the side chain. Of the latter, the most closely related compound is 1-bromo-1-butyl-3H-2,1-benzoxatellurol (Maksimenko et al., 1994), which is in fact very similar to (I), being derived from this by substituting the tellurium-bound chlorido atom with bromido and the removal of the methyl group. Here, the five-membered chelate ring is strictly planar.
6. Inhibition of cathepsin B
Compound (I) was screened for its ability to inhibit cathepsin B employing standard literature procedures (Cunha et al., 2005). The determined value of the inhibition constant was 372 ± 40 M−1 s−1, indicating some inhibitory potential, but not as potent as for other organotellurium(IV) compounds studied earlier (Cunha et al., 2005).
7. Synthesis and crystallization
The compound was prepared following a literature procedure (Engman, 1984). The precursor chalcogenide, [2-(R)-MeCH(OH)]C6H4Te(nBu) (1.52 g, 5 mmol), prepared as in the literature (Piovan et al., 2011), was dissolved in dry dichloromethane (20 ml) and cooled to 253 K. To the stirred, cooled solution, sulfuryl chloride (0.4 ml, 5 mmol) dissolved in dichloromethane (5 ml) was added dropwise. The stirring was maintained for 20 minutes at 273 K and the solvent was then removed under reduced pressure. The oily product thus obtained was purified by crystallization from a mixture of dry benzene and pentane, yielding colourless crystals in 89% yield, m.p. 641.3–641.4 K. Analysis calculated for C12H17OClTe: C, 42.35, H, 5.03; Found C, 42.28, H, 4.98%. [α]D26 = +45.5° (CHCl3, c = 1.97). 1H (500.13 MHz, CDCl3, ppm) δ 8.20 (d, 3J 7.6 Hz, 1H), 7.6–7.5 (m, 2H), 7.31 (d, 3J 7.2 Hz, 1H), 5.59 (q, 3J 6.3 Hz, 1H), 3.31 (t, 3J 8.1 Hz, 2H), 1.90 (quin, 3J 7.2 Hz, 2H), 1.59 (d, 3J 6.45 Hz, 3H), 1.46 (sext, 3J 7.4 Hz, 2H), 0.93 (t, 3J 7.4 Hz, 3H). 13C (125 MHz, CDCl3, ppm) δ 148.1, 131.6, 131.2, 128.7, 127.8, 125.4, 75.5 (Br), 45.4, 28.4, 24.6, 23.7, 13.0. 125Te (157.85 MHz, CDCl3-d6, ppm) δ 847.2 (minor), 801.1 (major). 125Te (157.85 MHz, DMSO-d6, ppm) δ 1201.5 (minor), 1189.1 (major).
8. details
Crystal data, data collection and structure . The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1537011
https://doi.org/10.1107/S2056989017003887/hg5483sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017003887/hg5483Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017003887/hg5483Isup3.cml
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C12H17ClOTe | F(000) = 664 |
Mr = 340.30 | Dx = 1.699 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3663 (2) Å | Cell parameters from 5903 reflections |
b = 13.0442 (4) Å | θ = 1.0–27.5° |
c = 12.5363 (2) Å | µ = 2.41 mm−1 |
β = 103.460 (2)° | T = 293 K |
V = 1330.53 (6) Å3 | Slab, colourless |
Z = 4 | 0.34 × 0.33 × 0.23 mm |
Nonius KappaCCD diffractometer | 4998 reflections with I > 2σ(I) |
CCD rotation images, thick slices scans | Rint = 0.061 |
Absorption correction: gaussian (Coppens et al., 1965) | θmax = 27.5°, θmin = 2.5° |
Tmin = 0.481, Tmax = 0.550 | h = −10→8 |
9220 measured reflections | k = −15→16 |
5115 independent reflections | l = −16→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0389P)2 + 0.6419P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.43 e Å−3 |
5115 reflections | Δρmin = −0.82 e Å−3 |
275 parameters | Absolute structure: Flack x determined using 1908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.05 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.47914 (4) | 0.44547 (2) | 0.33996 (3) | 0.04143 (11) | |
Cl1 | 0.6469 (2) | 0.30011 (15) | 0.45946 (16) | 0.0664 (4) | |
O1 | 0.3777 (5) | 0.5726 (4) | 0.2598 (3) | 0.0512 (10) | |
C1 | 0.4636 (7) | 0.6665 (4) | 0.2894 (6) | 0.0475 (12) | |
H1 | 0.4101 | 0.7045 | 0.3388 | 0.057* | |
C2 | 0.4470 (10) | 0.7276 (6) | 0.1836 (7) | 0.075 (2) | |
H2A | 0.5040 | 0.6927 | 0.1361 | 0.112* | |
H2B | 0.4936 | 0.7946 | 0.2005 | 0.112* | |
H2C | 0.3328 | 0.7340 | 0.1476 | 0.112* | |
C3 | 0.6380 (6) | 0.6452 (5) | 0.3476 (5) | 0.0458 (11) | |
C4 | 0.7594 (8) | 0.7216 (6) | 0.3717 (7) | 0.0652 (17) | |
H4 | 0.7345 | 0.7880 | 0.3462 | 0.078* | |
C5 | 0.9147 (8) | 0.6994 (8) | 0.4326 (7) | 0.072 (2) | |
H5 | 0.9941 | 0.7505 | 0.4491 | 0.086* | |
C6 | 0.9523 (7) | 0.5984 (9) | 0.4698 (6) | 0.075 (3) | |
H6 | 1.0570 | 0.5831 | 0.5113 | 0.090* | |
C7 | 0.8366 (6) | 0.5227 (6) | 0.4454 (5) | 0.0533 (15) | |
H7 | 0.8622 | 0.4560 | 0.4695 | 0.064* | |
C8 | 0.6800 (6) | 0.5467 (5) | 0.3842 (4) | 0.0416 (10) | |
C9 | 0.3754 (6) | 0.4771 (5) | 0.4770 (4) | 0.0474 (13) | |
H9A | 0.2963 | 0.5322 | 0.4567 | 0.057* | |
H9B | 0.3154 | 0.4168 | 0.4909 | 0.057* | |
C10 | 0.4927 (6) | 0.5063 (6) | 0.5816 (5) | 0.0510 (14) | |
H10A | 0.5533 | 0.5668 | 0.5691 | 0.061* | |
H10B | 0.5711 | 0.4511 | 0.6040 | 0.061* | |
C11 | 0.4067 (7) | 0.5281 (5) | 0.6735 (4) | 0.0479 (14) | |
H11A | 0.3329 | 0.5858 | 0.6524 | 0.057* | |
H11B | 0.3405 | 0.4691 | 0.6824 | 0.057* | |
C12 | 0.5220 (8) | 0.5516 (9) | 0.7815 (5) | 0.0674 (18) | |
H12A | 0.6033 | 0.4984 | 0.7992 | 0.101* | |
H12B | 0.4614 | 0.5553 | 0.8376 | 0.101* | |
H12C | 0.5753 | 0.6161 | 0.7767 | 0.101* | |
Te2 | 0.01522 (4) | 0.55421 (2) | 0.17723 (3) | 0.04226 (11) | |
Cl2 | −0.1556 (2) | 0.69208 (15) | 0.05090 (16) | 0.0666 (4) | |
O2 | 0.1199 (5) | 0.4303 (4) | 0.2604 (4) | 0.0583 (11) | |
C13 | 0.0191 (7) | 0.3453 (5) | 0.2705 (5) | 0.0530 (13) | |
H13 | 0.0032 | 0.3452 | 0.3455 | 0.064* | |
C14 | 0.1031 (10) | 0.2471 (6) | 0.2538 (9) | 0.083 (3) | |
H14A | 0.1177 | 0.2445 | 0.1801 | 0.125* | |
H14B | 0.0371 | 0.1901 | 0.2661 | 0.125* | |
H14C | 0.2085 | 0.2439 | 0.3045 | 0.125* | |
C15 | −0.1500 (7) | 0.3589 (5) | 0.1920 (5) | 0.0498 (13) | |
C16 | −0.2697 (8) | 0.2822 (6) | 0.1731 (6) | 0.0627 (16) | |
H16 | −0.2486 | 0.2191 | 0.2080 | 0.075* | |
C17 | −0.4201 (8) | 0.3008 (7) | 0.1021 (6) | 0.0646 (19) | |
H17 | −0.4989 | 0.2492 | 0.0881 | 0.077* | |
C18 | −0.4547 (7) | 0.3946 (7) | 0.0519 (5) | 0.0585 (17) | |
H18 | −0.5568 | 0.4059 | 0.0048 | 0.070* | |
C19 | −0.3397 (7) | 0.4717 (5) | 0.0709 (5) | 0.0508 (14) | |
H19 | −0.3636 | 0.5356 | 0.0380 | 0.061* | |
C20 | −0.1858 (5) | 0.4524 (5) | 0.1407 (4) | 0.0413 (10) | |
C21 | 0.1184 (6) | 0.5194 (6) | 0.0408 (5) | 0.0546 (16) | |
H21A | 0.1644 | 0.5819 | 0.0185 | 0.066* | |
H21B | 0.2084 | 0.4717 | 0.0652 | 0.066* | |
C22 | 0.0033 (7) | 0.4747 (5) | −0.0574 (5) | 0.0485 (14) | |
H22A | −0.0914 | 0.5194 | −0.0794 | 0.058* | |
H22B | −0.0352 | 0.4088 | −0.0380 | 0.058* | |
C23 | 0.0837 (7) | 0.4607 (6) | −0.1542 (5) | 0.0506 (13) | |
H23A | 0.1271 | 0.5262 | −0.1710 | 0.061* | |
H23B | 0.1753 | 0.4137 | −0.1330 | 0.061* | |
C24 | −0.0311 (9) | 0.4209 (8) | −0.2549 (6) | 0.079 (3) | |
H24A | −0.0737 | 0.3556 | −0.2392 | 0.118* | |
H24B | 0.0266 | 0.4130 | −0.3122 | 0.118* | |
H24C | −0.1203 | 0.4682 | −0.2780 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.04719 (18) | 0.0443 (2) | 0.02938 (15) | 0.00273 (13) | 0.00198 (11) | −0.00116 (15) |
Cl1 | 0.0837 (11) | 0.0546 (9) | 0.0580 (10) | 0.0195 (8) | 0.0106 (8) | 0.0102 (7) |
O1 | 0.0467 (18) | 0.050 (3) | 0.047 (2) | 0.0016 (17) | −0.0085 (15) | 0.0090 (18) |
C1 | 0.052 (3) | 0.033 (2) | 0.055 (3) | 0.004 (2) | 0.007 (2) | −0.003 (3) |
C2 | 0.079 (4) | 0.060 (4) | 0.076 (5) | 0.000 (3) | 0.000 (4) | 0.025 (4) |
C3 | 0.047 (2) | 0.049 (3) | 0.042 (3) | −0.001 (2) | 0.012 (2) | −0.003 (2) |
C4 | 0.065 (4) | 0.059 (4) | 0.070 (5) | −0.014 (3) | 0.012 (3) | −0.002 (3) |
C5 | 0.046 (3) | 0.099 (6) | 0.068 (5) | −0.022 (3) | 0.009 (3) | −0.004 (4) |
C6 | 0.034 (3) | 0.133 (8) | 0.054 (4) | 0.001 (4) | 0.005 (2) | −0.014 (5) |
C7 | 0.039 (2) | 0.078 (5) | 0.042 (3) | 0.010 (2) | 0.008 (2) | 0.001 (3) |
C8 | 0.041 (2) | 0.055 (3) | 0.030 (2) | 0.003 (2) | 0.0091 (17) | 0.000 (2) |
C9 | 0.040 (2) | 0.067 (4) | 0.034 (2) | −0.001 (2) | 0.0074 (19) | −0.004 (2) |
C10 | 0.039 (2) | 0.077 (4) | 0.037 (3) | 0.000 (2) | 0.008 (2) | −0.010 (3) |
C11 | 0.047 (2) | 0.061 (4) | 0.036 (3) | 0.002 (2) | 0.010 (2) | −0.002 (2) |
C12 | 0.062 (3) | 0.096 (5) | 0.043 (3) | 0.002 (4) | 0.008 (2) | −0.022 (4) |
Te2 | 0.04777 (18) | 0.0432 (2) | 0.03135 (16) | 0.00212 (13) | 0.00019 (12) | −0.00352 (14) |
Cl2 | 0.0768 (10) | 0.0535 (9) | 0.0646 (10) | 0.0164 (8) | 0.0063 (8) | 0.0099 (8) |
O2 | 0.052 (2) | 0.056 (3) | 0.055 (2) | −0.001 (2) | −0.0130 (17) | 0.008 (2) |
C13 | 0.060 (3) | 0.056 (3) | 0.037 (3) | 0.001 (3) | −0.001 (2) | 0.001 (3) |
C14 | 0.073 (4) | 0.058 (4) | 0.110 (7) | 0.012 (3) | 0.003 (4) | −0.004 (4) |
C15 | 0.052 (3) | 0.054 (3) | 0.041 (3) | −0.005 (2) | 0.005 (2) | 0.001 (2) |
C16 | 0.063 (3) | 0.065 (4) | 0.059 (4) | −0.009 (3) | 0.013 (3) | 0.002 (3) |
C17 | 0.055 (3) | 0.081 (5) | 0.059 (4) | −0.021 (3) | 0.013 (3) | −0.017 (4) |
C18 | 0.038 (3) | 0.087 (5) | 0.050 (3) | −0.003 (3) | 0.009 (2) | −0.014 (3) |
C19 | 0.047 (3) | 0.067 (4) | 0.037 (3) | 0.010 (2) | 0.006 (2) | 0.000 (2) |
C20 | 0.040 (2) | 0.054 (3) | 0.029 (2) | 0.002 (2) | 0.0053 (16) | −0.006 (2) |
C21 | 0.042 (2) | 0.083 (5) | 0.037 (3) | −0.001 (3) | 0.005 (2) | −0.010 (3) |
C22 | 0.046 (2) | 0.061 (4) | 0.039 (3) | 0.003 (2) | 0.010 (2) | −0.008 (2) |
C23 | 0.049 (2) | 0.062 (4) | 0.041 (3) | 0.005 (2) | 0.012 (2) | 0.001 (3) |
C24 | 0.068 (4) | 0.121 (9) | 0.045 (3) | 0.015 (4) | 0.008 (3) | −0.019 (4) |
Te1—Cl1 | 2.6137 (17) | C11—H11A | 0.9700 |
Te1—O1 | 2.021 (4) | C11—H11B | 0.9700 |
Te1—C8 | 2.107 (6) | C12—H12A | 0.9600 |
Te1—C9 | 2.138 (5) | C12—H12B | 0.9600 |
Te1—O2 | 2.945 (4) | C12—H12C | 0.9600 |
Te2—Cl2 | 2.5944 (17) | O2—C13 | 1.416 (8) |
Te2—O2 | 2.010 (5) | C13—C14 | 1.499 (10) |
Te2—C20 | 2.108 (6) | C13—C15 | 1.534 (7) |
Te2—C21 | 2.136 (6) | C13—H13 | 0.9800 |
Te2—O1 | 2.977 (4) | C14—H14A | 0.9600 |
O1—C1 | 1.424 (7) | C14—H14B | 0.9600 |
C1—C3 | 1.497 (7) | C14—H14C | 0.9600 |
C1—C2 | 1.526 (10) | C15—C20 | 1.379 (9) |
C1—H1 | 0.9800 | C15—C16 | 1.396 (9) |
C2—H2A | 0.9600 | C16—C17 | 1.383 (9) |
C2—H2B | 0.9600 | C16—H16 | 0.9300 |
C2—H2C | 0.9600 | C17—C18 | 1.376 (12) |
C3—C8 | 1.382 (9) | C17—H17 | 0.9300 |
C3—C4 | 1.405 (9) | C18—C19 | 1.374 (10) |
C4—C5 | 1.376 (10) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—C20 | 1.401 (7) |
C5—C6 | 1.408 (14) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C21—C22 | 1.494 (7) |
C6—C7 | 1.367 (11) | C21—H21A | 0.9700 |
C6—H6 | 0.9300 | C21—H21B | 0.9700 |
C7—C8 | 1.391 (7) | C22—C23 | 1.529 (7) |
C7—H7 | 0.9300 | C22—H22A | 0.9700 |
C9—C10 | 1.493 (7) | C22—H22B | 0.9700 |
C9—H9A | 0.9700 | C23—C24 | 1.490 (9) |
C9—H9B | 0.9700 | C23—H23A | 0.9700 |
C10—C11 | 1.521 (7) | C23—H23B | 0.9700 |
C10—H10A | 0.9700 | C24—H24A | 0.9600 |
C10—H10B | 0.9700 | C24—H24B | 0.9600 |
C11—C12 | 1.500 (8) | C24—H24C | 0.9600 |
Cl1—Te1—O1 | 171.04 (13) | C10—C11—H11A | 108.8 |
O1—Te1—C8 | 80.4 (2) | C12—C11—H11B | 108.8 |
C8—Te1—O2 | 145.0 (2) | C10—C11—H11B | 108.8 |
Cl2—Te2—O2 | 170.22 (14) | H11A—C11—H11B | 107.7 |
O2—Te2—C20 | 80.5 (2) | C11—C12—H12A | 109.5 |
C20—Te2—O1 | 145.38 (19) | C11—C12—H12B | 109.5 |
O1—Te1—O2 | 66.99 (14) | H12A—C12—H12B | 109.5 |
O1—Te1—C9 | 92.2 (2) | C11—C12—H12C | 109.5 |
C8—Te1—C9 | 96.7 (2) | H12A—C12—H12C | 109.5 |
C8—Te1—Cl1 | 90.85 (17) | H12B—C12—H12C | 109.5 |
C9—Te1—Cl1 | 86.78 (17) | C13—O2—Te2 | 118.6 (3) |
C9—Te1—O2 | 73.25 (17) | C13—O2—Te1 | 127.2 (3) |
Cl1—Te1—O2 | 121.01 (11) | Te2—O2—Te1 | 114.1 (2) |
C1—O1—Te1 | 116.6 (3) | O2—C13—C14 | 110.4 (5) |
C1—O1—Te2 | 124.9 (3) | O2—C13—C15 | 109.4 (5) |
Te1—O1—Te2 | 112.50 (18) | C14—C13—C15 | 113.6 (6) |
O2—Te2—C21 | 92.1 (2) | O2—C13—H13 | 107.7 |
C20—Te2—C21 | 98.2 (2) | C14—C13—H13 | 107.7 |
C20—Te2—Cl2 | 90.34 (16) | C15—C13—H13 | 107.7 |
C21—Te2—Cl2 | 85.79 (19) | C13—C14—H14A | 109.5 |
O2—Te2—O1 | 66.36 (14) | C13—C14—H14B | 109.5 |
C21—Te2—O1 | 74.15 (17) | H14A—C14—H14B | 109.5 |
Cl2—Te2—O1 | 121.88 (10) | C13—C14—H14C | 109.5 |
O1—C1—C3 | 110.1 (5) | H14A—C14—H14C | 109.5 |
O1—C1—C2 | 106.5 (6) | H14B—C14—H14C | 109.5 |
C3—C1—C2 | 113.7 (5) | C20—C15—C16 | 119.0 (5) |
O1—C1—H1 | 108.8 | C20—C15—C13 | 118.0 (5) |
C3—C1—H1 | 108.8 | C16—C15—C13 | 123.0 (6) |
C2—C1—H1 | 108.8 | C17—C16—C15 | 119.5 (7) |
C1—C2—H2A | 109.5 | C17—C16—H16 | 120.3 |
C1—C2—H2B | 109.5 | C15—C16—H16 | 120.3 |
H2A—C2—H2B | 109.5 | C16—C17—C18 | 120.9 (7) |
C1—C2—H2C | 109.5 | C16—C17—H17 | 119.5 |
H2A—C2—H2C | 109.5 | C18—C17—H17 | 119.5 |
H2B—C2—H2C | 109.5 | C19—C18—C17 | 120.5 (6) |
C8—C3—C4 | 118.3 (5) | C19—C18—H18 | 119.8 |
C8—C3—C1 | 118.5 (5) | C17—C18—H18 | 119.8 |
C4—C3—C1 | 123.1 (6) | C18—C19—C20 | 118.7 (6) |
C5—C4—C3 | 120.8 (8) | C18—C19—H19 | 120.6 |
C5—C4—H4 | 119.6 | C20—C19—H19 | 120.6 |
C3—C4—H4 | 119.6 | C15—C20—C19 | 121.3 (6) |
C4—C5—C6 | 119.4 (7) | C15—C20—Te2 | 112.3 (3) |
C4—C5—H5 | 120.3 | C19—C20—Te2 | 126.4 (5) |
C6—C5—H5 | 120.3 | C22—C21—Te2 | 116.1 (4) |
C7—C6—C5 | 120.6 (6) | C22—C21—H21A | 108.3 |
C7—C6—H6 | 119.7 | Te2—C21—H21A | 108.3 |
C5—C6—H6 | 119.7 | C22—C21—H21B | 108.3 |
C6—C7—C8 | 119.2 (7) | Te2—C21—H21B | 108.3 |
C6—C7—H7 | 120.4 | H21A—C21—H21B | 107.4 |
C8—C7—H7 | 120.4 | C21—C22—C23 | 112.5 (5) |
C3—C8—C7 | 121.7 (6) | C21—C22—H22A | 109.1 |
C3—C8—Te1 | 111.7 (4) | C23—C22—H22A | 109.1 |
C7—C8—Te1 | 126.5 (5) | C21—C22—H22B | 109.1 |
C10—C9—Te1 | 116.6 (3) | C23—C22—H22B | 109.1 |
C10—C9—H9A | 108.1 | H22A—C22—H22B | 107.8 |
Te1—C9—H9A | 108.1 | C24—C23—C22 | 113.5 (5) |
C10—C9—H9B | 108.1 | C24—C23—H23A | 108.9 |
Te1—C9—H9B | 108.1 | C22—C23—H23A | 108.9 |
H9A—C9—H9B | 107.3 | C24—C23—H23B | 108.9 |
C9—C10—C11 | 112.5 (4) | C22—C23—H23B | 108.9 |
C9—C10—H10A | 109.1 | H23A—C23—H23B | 107.7 |
C11—C10—H10A | 109.1 | C23—C24—H24A | 109.5 |
C9—C10—H10B | 109.1 | C23—C24—H24B | 109.5 |
C11—C10—H10B | 109.1 | H24A—C24—H24B | 109.5 |
H10A—C10—H10B | 107.8 | C23—C24—H24C | 109.5 |
C12—C11—C10 | 113.8 (5) | H24A—C24—H24C | 109.5 |
C12—C11—H11A | 108.8 | H24B—C24—H24C | 109.5 |
Te1—O1—C1—C3 | 18.3 (7) | Te2—O2—C13—C14 | 137.8 (6) |
Te2—O1—C1—C3 | 168.9 (3) | Te1—O2—C13—C14 | −39.0 (7) |
Te1—O1—C1—C2 | 142.1 (4) | Te2—O2—C13—C15 | 12.1 (7) |
Te2—O1—C1—C2 | −67.4 (6) | Te1—O2—C13—C15 | −164.8 (4) |
O1—C1—C3—C8 | −13.3 (8) | O2—C13—C15—C20 | −10.0 (8) |
C2—C1—C3—C8 | −132.8 (6) | C14—C13—C15—C20 | −133.9 (7) |
O1—C1—C3—C4 | 169.8 (6) | O2—C13—C15—C16 | 171.9 (6) |
C2—C1—C3—C4 | 50.4 (9) | C14—C13—C15—C16 | 48.1 (9) |
C8—C3—C4—C5 | −1.8 (10) | C20—C15—C16—C17 | 1.2 (10) |
C1—C3—C4—C5 | 175.1 (7) | C13—C15—C16—C17 | 179.2 (7) |
C3—C4—C5—C6 | 0.9 (12) | C15—C16—C17—C18 | −1.6 (11) |
C4—C5—C6—C7 | 0.3 (12) | C16—C17—C18—C19 | 0.4 (11) |
C5—C6—C7—C8 | −0.6 (10) | C17—C18—C19—C20 | 1.1 (9) |
C4—C3—C8—C7 | 1.5 (9) | C16—C15—C20—C19 | 0.4 (9) |
C1—C3—C8—C7 | −175.5 (5) | C13—C15—C20—C19 | −177.7 (5) |
C4—C3—C8—Te1 | 179.6 (5) | C16—C15—C20—Te2 | −178.1 (5) |
C1—C3—C8—Te1 | 2.6 (6) | C13—C15—C20—Te2 | 3.7 (7) |
C6—C7—C8—C3 | −0.3 (9) | C18—C19—C20—C15 | −1.6 (8) |
C6—C7—C8—Te1 | −178.1 (5) | C18—C19—C20—Te2 | 176.8 (4) |
Te1—C9—C10—C11 | 179.5 (5) | Te2—C21—C22—C23 | 175.1 (5) |
C9—C10—C11—C12 | 176.6 (8) | C21—C22—C23—C24 | −177.3 (7) |
Contact | overall (I) | Te1-molecule in (I) | Te-2 molecule in (I) |
H···H | 70.3 | 65.1 | 66.2 |
H···C···l/Cl···H | 16.6 | 15.7 | 15.4 |
H···π/π···H | 5.5 | 4.1 | 4.2 |
Te···π/π···Te | 4.0 | 3.7 | 3.6 |
H···Te/Te···H | 0.4 | 3.3 | 2.6 |
H···O/O···H | 0.0 | 2.9 | 2.9 |
O···Te/Te···O | 0.0 | 1.7 | 1.6 |
π–π/π–π | 1.7 | 1.5 | 1.5 |
Others | 1.5 | 2.0 | 2.0 |
Acknowledgements
The Brazilian agency National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013–2).
Funding information
Funding for this research was provided by: National Council for Scientific and Technological Development (award No. 305626/2013-2).
References
Albeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704–1712. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brodsky, M., Halpert, G., Albeck, M. & Sredni, B. J. (2010). J. Inflamm. 7, doi 10.1186/1476-9255-7-3. Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Caracelli, I., Vega-Teijido, M., Zukerman-Schpector, J., Cezari, M. H. S., Lopes, J. G. S., Juliano, L., Santos, P. S., Comasseto, J. V., Cunha, R. L. O. R. & Tiekink, E. R. T. (2012). J. Mol. Struct. 1013, 11–18. CSD CrossRef CAS Google Scholar
Caracelli, I., Zukerman-Schpector, J., Madureira, L. S., Maganhi, S. H., Stefani, H. A., Guadagnin, R. C. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 321–328. CAS Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Cunha, R. L. O. R., Urano, M. E., Chagas, J. R., Almeida, P. C., Bincoletto, C., Tersariol, I. L. S. & Comasseto, J. V. (2005). Bioorg. Med. Chem. Lett. 15, 755–760. CrossRef PubMed CAS Google Scholar
Engman, L. (1984). Organometallics, 3, 1308–1309. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fleming, A. (1932). J. Pathol. 35, 831–842. CrossRef CAS Google Scholar
Friedman, M., Bayer, I., Letko, I., Duvdevani, R., Zavaro-Levy, O., Ron, B., Albeck, M. & Sredni, B. (2009). Br. J. Dermatol. 160, 403–408. CrossRef PubMed CAS Google Scholar
Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Halpert, G. & Sredni, B. (2014). Autoimmun. Rev. 13, 1230–1235. CrossRef CAS PubMed Google Scholar
Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415–425. CAS Google Scholar
Maksimenko, A. A., Sadekov, I. D., Kompan, O. E., Minkin, V. I. & Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd. 30, 367–369. CrossRef Google Scholar
Nogueira, C. W., Zeni, G. W. & Rocha, J. B. (2004). Chem. Rev. 104, 6255–6286. CrossRef PubMed CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Piovan, L. M. F. M., Alves, M. F. M., Juliano, L., Brömme, D., Cunha, R. L. O. R. & Andrade, L. H. (2011). Bioorg. Med. Chem. 19, 2009–2014. CrossRef CAS PubMed Google Scholar
Seng, H. L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655–662. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silberman, A., Kalechman, Y., Hirsch, S., Erlich, Z., Sredni, B. & Albeck, A. (2016). ChemBioChem, 17, 918–927. CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sredni, B. (2012). Semin. Cancer Biol. 22, 60–69. CrossRef CAS PubMed Google Scholar
Tiekink, E. R. T. (2012). Dalton Trans. 41, 6390–6395. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.